To avoid needs for keeping local temporary references for attributes,
now one can use ea_lookup_tmp() to ensure that the attributes are
valid and stored until the task ends. After that, the attributes are
automatically unref'd and also deallocated if needed.
Explicitly marking domains eligible for RCU synchronization. It's then
forbidden to lock these domains in RCU critical section to avoid
possible deadlock.
This commit makes the route chains in the tables atomic. This allows not
only standard exports but also feeds and bulk exports to be processed
without ever locking the table.
Design note: the overall data structures are quite brittle. We're using
RCU read-locks to keep track about readers, and we're indicating ongoing
work on the data structures by prepending a REF_OBSOLETE sentinel node
to make every reader go waiting.
All the operations are intended to stay inside nest/rt-table.c and it
may be even best to further refactor the code to hide the routing table
internal structure inside there. Nobody shall definitely write any
routines manipulating live routes in tables from outside.
We were, once again, forgetting to mark empty-net journal entries as
processed, as was fixed in 32bb548c11.
Introduced in 548dbb2252.
Caught by cf-ebgp-graceful.
Add a new protocol offering route aggregation.
User can specify list of route attributes in the configuration file and
run route aggregation on the export side of the pipe protocol. Routes are
sorted and for every group of equivalent routes new route is created and
exported to the routing table. It is also possible to specify filter
which will run for every route before aggregation.
Furthermore, it will be possible to set attributes of new routes
according to attributes of the aggregated routes.
This is a work in progress.
Original work by Igor Putovny, subsequent cleanups and finalization by
Maria Matejka.
This is a split-commit of the neighboring aggregator branch
with a bit improved lvalue handling, to have easier merge into v3.
Some [redacted] (yes, myself) had a really bad idea
to rename nest/route.h to nest/rt.h while refactoring
some data structures out of it.
This led to unnecessarily complex problems with
merging updates from v2. Reverting this change
to make my life a bit easier.
At least it needed only one find-sed command:
find -name '*.[chlY]' -type f -exec sed -i 's#nest/rt.h#nest/route.h#' '{}' +
The MPLS subsystem manages MPLS labels and handles their allocation to
MPLS-aware routing protocols. These labels are then attached to IP or VPN
routes representing label switched paths -- LSPs.
There was already a preliminary MPLS support consisting of MPLS label
net_addr, MPLS routing tables with static MPLS routes, remote labels in
next hops, and kernel protocol support.
This patch adds the MPLS domain as a basic structure representing local
label space with dynamic label allocator and configurable label ranges.
To represent LSPs, allocated local labels can be attached as route
attributes to IP or VPN routes with local labels as attributes.
There are several steps for handling LSP routes in routing protocols --
deciding to which forwarding equivalence class (FEC) the LSP route
belongs, allocating labels for new FECs, announcing MPLS routes for new
FECs, attaching labels to LSP routes. The FEC map structure implements
basic code for managing FECs in routing protocols, therefore existing
protocols can be made MPLS-aware by adding FEC map and delegating
most work related to local label management to it.
If the protocol supports route refresh on export, we keep the stop-start
method of route refeed. This applies for BGP with ERR or with export
table on, for OSPF, Babel, RIP or Pipe.
For BGP without ERR or for future selective ROA reloads, we're adding an
auxiliary export request, doing the refeed while the main export request
is running, somehow resembling the original method of BIRD 2 refeed.
There is also a refeed request queue to keep track of different refeed
requests.
In general, private_id is sparse and protocols may want to map some
internal values directly into it. For example, L3VPN needs to
map VPN route discriminators to private_id.
OTOH, u32 is enough for global_id, as these identifiers are dense.
Add a new protocol offering route aggregation.
User can specify list of route attributes in the configuration file and
run route aggregation on the export side of the pipe protocol. Routes are
sorted and for every group of equivalent routes new route is created and
exported to the routing table. It is also possible to specify filter
which will run for every route before aggregation.
Furthermore, it will be possible to set attributes of new routes
according to attributes of the aggregated routes.
This is a work in progress.
Original work by Igor Putovny, subsequent cleanups and finalization by
Maria Matejka.
The problem happened like this:
1. Single route for the given net in table
2. A feed is started
3. The route is deleted (from another thread)
4. The feed finds an empty net, exports nothing, ignores journal (here is bug)
5. The route is added
6. The export transitions from FEEDING to READY
7. While processing the journal, the route deletion and addition combines into noop.
This way routes mysteriously disappeared in specific cases of link instability.
Problem fixed by explicitly marking the empty-net journal entries as processed in step 4.
Due to a race condition between rta_apply_hostentry() and rt_update_hostentry(),
happening when a new route is inserted to a table, this commit makes it mandatory
to lock the next hop resolution table while resolving the next hop.
This may be slow, we'll fix it better in some future release
- Manage BMP state through bmp_peer, bmp_stream, bmp_table structures
- Use channels and rt_notify() hook for route announcements
- Add support for post-policy monitoring
- Send End-of-RIB even when there is no routes
- Remove rte_update_in_notify() hook from import tables
- Update import tables to support channels
- Add bmp_hack (no feed / no flush) flag to channels
Memory allocation is a fragile part of BIRD and we need checking that
everybody is using the resource pools in an appropriate way. To assure
this, all the resource pools are associated with locking domains and
every resource manipulation is thoroughly checked whether the
appropriate locking domain is locked.
With transitive resource manipulation like resource dumping or mass free
operations, domains are locked and unlocked on the go, thus we require
pool domains to have higher order than their parent to allow for this
transitive operations.
Adding pool locking revealed some cases of insecure memory manipulation
and this commit fixes that as well.
Initial implementation of a basic subset of the BMP (BGP Monitoring
Protocol, RFC 7854) from Akamai team. Submitted for further review
and improvement.
If there are lots of loops in a single thread and only some of the loops
are actually active, the other loops are now kept aside and not checked
until they actually get some timers, events or active sockets.
This should help with extreme loads like 100k tables and protocols.
Also ping and loop pickup mechanism was allowing subtle race
conditions. Now properly handling collisions between loop ping and pickup.
Repeated pipe refeed should not end route refresh as the prune routine
may start pruning otherwise valid routes.
The same applies for BGP repeated route refresh.
When changing default table behavior, I missed that it enabled to
configure multiple master4 and master6 tables. Now BIRD recognizes it
and fails properly.
The import table feed wasn't resetting the table-specific route values
like REF_FILTERED and thus made the route look like filtered even though
it should have been re-evaluated as accepted.