The BIRD protocol SNMP makes it possible to retrieve management information
through SNMP. This is accomplished by implementing AgentX protocol. The BIRD
acts as an AgentX subagent, registers to master agent and provides management
information. Master agent handles SNMP communication and forwards request to
registered subagents. You will therefore need an additional component -- a SNMP
daemon capable of acting as AgentX master agent. In theory, the information
consumer don't have to support SNMP and could be very simple master agent for
logging/monitoring the BIRD state. For more detail see provided documentation.
This commit is squashed version of development history. Full development history
could be found on branch `proto-snmp'.
Trie walk supports adding restriction on walk bounds by supplying option net
during walk initialization. Currently, walk initialized this way couldn't escape
specified subnet. By additional flag, we add support to drop to subnet's upper
bound for subnet started walks. Therefore it is now possible to start a walk in
some subnet and continue walking all lexicagraphical successors present in the
trie.
This allows to have one main socket for the heavy operations
very restricted just for the appropriate users, whereas the
looking glass socket may be more open.
Implemented an idea originally submitted and requested by Akamai.
Move bfd_opts grammar inside BFD parser code to avoid dependences between
nest and BFD grammars, which breaks when BFD build is disabled.
Add dummy bfd_opts grammar rule, so protocols can use this nonterminal
even with BFD disabled.
Thanks to Yuri Honegger for the bugreport.
In OSPFv3-IPv4 there is no requirement that link-local next hop announced
in Link-LSA must be in interface address range. Therefore, for interfaces
that do not have IPv4 address we can use some loopback IP address and
announce it as a next hop. Also we should accept such address.
Add route attribute gw_mpls_stack to make MPLS stack of route nexthop
accessible from filters. Its type is T_CLIST, which is really not correct
(as it is a list, while T_CLIST is a set). Therefore, we keep this
attribute *undocumented* and it will be *changed* without further notice.
Based on a patch from Trisha Biswas <tbiswas@fastly.com>, thanks!
We can distinguish BGP sessions if at least one side uses a different IP
address. Extend olock mechanism to handle local IP as a part of key, with
optional wildcard, so BGP sessions could local IP in the olock and not
block themselves.
When a recursive route with MPLS-labeled nexthop was exported to kernel
and read back, the nexthop_same() failed due to different labels_orig
field and kernel protocol reinstalled it unnecessarily.
For comparing hext hops, route cache has to distinguish ones with
different labels_orig, but KRT has to ignore that, so we need two
nexthop compare functions.
Thanks to Marcel Menzel for the bugreport.
Old configs do not define MPLS domains and may use a static protocol
to define static MPLS routes.
When MPLS channel is the only channel of static protocol, handle it
as a main channel. Also, define implicit MPLS domain if needed and
none is defined.
Use mpls_new_label() / mpls_free_label() also for static labels, to keep
track of allocated labels and to enforce label ranges.
Static label allocations always use static label range, regardless of
configured label range.
Instead of just using route attributes, static routes with
static MPLS labels can be defined just by e.g.:
route 10.1.1.0/24 mpls 100 via 10.1.2.1 mpls 200;
The L3VPN protocol implements RFC 4364 BGP/MPLS VPNs using MPLS backbone.
It works similarly to pipe. It connects IP table (one per VRF) with (global)
VPN table. Routes passed from VPN table to IP table are stripped of RD and
filtered by import targets, routes passed in the other direction are extended
with RD, MPLS labels and export targets in extended communities. A separate
MPLS channel is used to announce MPLS routes for the labels.
The new labeling policy MPLS_POLICY_VRF assigns one label to all routes
(from the same FEC map associated with one VRF), while replaces their
next hops with a lookup to a VRF table. This is useful for L3VPN
protocol.
The MPLS subsystem manages MPLS labels and handles their allocation to
MPLS-aware routing protocols. These labels are then attached to IP or VPN
routes representing label switched paths -- LSPs.
There was already a preliminary MPLS support consisting of MPLS label
net_addr, MPLS routing tables with static MPLS routes, remote labels in
next hops, and kernel protocol support.
This patch adds the MPLS domain as a basic structure representing local
label space with dynamic label allocator and configurable label ranges.
To represent LSPs, allocated local labels can be attached as route
attributes to IP or VPN routes with local labels as attributes.
There are several steps for handling LSP routes in routing protocols --
deciding to which forwarding equivalence class (FEC) the LSP route
belongs, allocating labels for new FECs, announcing MPLS routes for new
FECs, attaching labels to LSP routes. The FEC map structure implements
basic code for managing FECs in routing protocols, therefore existing
protocols can be made MPLS-aware by adding FEC map and delegating
most work related to local label management to it.
In general, private_id is sparse and protocols may want to map some
internal values directly into it. For example, L3VPN needs to
map VPN route discriminators to private_id.
OTOH, u32 is enough for global_id, as these identifiers are dense.
Add a new protocol offering route aggregation.
User can specify list of route attributes in the configuration file and
run route aggregation on the export side of the pipe protocol. Routes are
sorted and for every group of equivalent routes new route is created and
exported to the routing table. It is also possible to specify filter
which will run for every route before aggregation.
Furthermore, it will be possible to set attributes of new routes
according to attributes of the aggregated routes.
This is a work in progress.
Original work by Igor Putovny, subsequent cleanups and finalization by
Maria Matejka.
This is a backport cherry-pick of commits
165156beebcce974e8ea
from the v3.0 branch as we need symbol hashes directly inside their
scopes for more general usage than before.
Most syntactic constructs in BIRD configuration (e.g. protocol options)
are defined as keywords, which are distinct from symbols (user-defined
names for protocols, variables, ...). That may cause backwards
compatibility issue when a new feature is added, as it may collide with
existing user names.
We can allow keywords to be shadowed by symbols in almost all cases to
avoid this issue.
This replaces the previous mechanism, where shadowable symbols have to be
explictly added to kw_syms.
Nonterminal bytestring allows to provide expressions to be evaluated in
places where BYTETEXT is used now: passwords, radv custom option.
Based on the patch from Alexander Zubkov <green@qrator.net>, thanks!
- Rename BYTESTRING lexem to BYTETEXT, not to collide with 'bytestring' type name
- Add bytestring type with id T_BYTESTRING (0x2c)
- Add from_hex() filter function to create bytestring from hex string
- Add filter test cases for bytestring type
Minor changes by committer.