0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2024-12-22 09:41:54 +00:00
bird/lib/slab.c

460 lines
9.4 KiB
C
Raw Permalink Normal View History

/*
* BIRD Resource Manager -- A SLAB-like Memory Allocator
*
* Heavily inspired by the original SLAB paper by Jeff Bonwick.
*
* (c) 1998--2000 Martin Mares <mj@ucw.cz>
* (c) 2020 Maria Matejka <mq@jmq.cz>
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
2000-06-05 11:41:41 +00:00
/**
* DOC: Slabs
*
* Slabs are collections of memory blocks of a fixed size.
* They support very fast allocation and freeing of such blocks, prevent memory
* fragmentation and optimize L2 cache usage. Slabs have been invented by Jeff Bonwick
* and published in USENIX proceedings as `The Slab Allocator: An Object-Caching Kernel
* Memory Allocator'. Our implementation follows this article except that we don't use
* constructors and destructors.
*
* When the |DEBUGGING| switch is turned on, we automatically fill all
2000-06-07 13:25:53 +00:00
* newly allocated and freed blocks with a special pattern to make detection
2000-06-05 11:41:41 +00:00
* of use of uninitialized or already freed memory easier.
*
2000-06-07 13:25:53 +00:00
* Example: Nodes of a FIB are allocated from a per-FIB Slab.
2000-06-05 11:41:41 +00:00
*/
#include <stdlib.h>
#include <stdint.h>
#include "nest/bird.h"
#include "lib/resource.h"
#include "lib/string.h"
#include "lib/tlists.h"
#undef FAKE_SLAB /* Turn on if you want to debug memory allocations */
#ifdef DEBUGGING
#define POISON /* Poison all regions after they are freed */
#endif
static void slab_free(resource *r);
static void slab_dump(resource *r, unsigned indent);
static resource *slab_lookup(resource *r, unsigned long addr);
static struct resmem slab_memsize(resource *r);
#ifdef FAKE_SLAB
/*
* Fake version used for debugging.
*/
struct slab {
resource r;
2015-05-19 06:53:34 +00:00
uint size;
list objs;
};
static struct resclass sl_class = {
"FakeSlab",
sizeof(struct slab),
slab_free,
slab_dump,
NULL,
slab_memsize
};
struct sl_obj {
node n;
uintptr_t data_align[0];
byte data[0];
};
slab *
2015-05-19 06:53:34 +00:00
sl_new(pool *p, uint size)
{
slab *s = ralloc(p, &sl_class);
s->size = size;
init_list(&s->objs);
return s;
}
void *
sl_alloc(slab *s)
{
struct sl_obj *o = xmalloc(sizeof(struct sl_obj) + s->size);
add_tail(&s->objs, &o->n);
return o->data;
}
void *
sl_allocz(slab *s)
{
void *obj = sl_alloc(s);
memset(obj, 0, s->size);
return obj;
}
void
sl_free(void *oo)
{
SKIP_BACK_DECLARE(struct sl_obj, o, data, oo);
rem_node(&o->n);
xfree(o);
}
static void
slab_free(resource *r)
{
slab *s = (slab *) r;
struct sl_obj *o, *p;
for(o = HEAD(s->objs); p = (struct sl_obj *) o->n.next; o = p)
xfree(o);
}
static void
slab_dump(resource *r, unsigned indent UNUSED)
{
slab *s = (slab *) r;
int cnt = 0;
struct sl_obj *o;
WALK_LIST(o, s->objs)
cnt++;
debug("(%d objects per %d bytes)\n", cnt, s->size);
}
static struct resmem
slab_memsize(resource *r)
{
slab *s = (slab *) r;
size_t cnt = 0;
struct sl_obj *o;
WALK_LIST(o, s->objs)
cnt++;
return (struct resmem) {
.effective = cnt * s->size,
.overhead = ALLOC_OVERHEAD + sizeof(struct slab) + cnt * ALLOC_OVERHEAD,
};
}
#else
/*
* Real efficient version.
*/
#define MAX_EMPTY_HEADS 1
enum sl_head_state {
slh_empty = 2,
slh_partial = 0,
slh_full = 1,
} PACKED;
struct sl_head {
struct slab *slab;
TLIST_NODE(sl_head, struct sl_head) n;
u16 num_full;
enum sl_head_state state;
u32 used_bits[0];
};
struct sl_alignment { /* Magic structure for testing of alignment */
byte data;
int x[0];
};
#define TLIST_PREFIX sl_head
#define TLIST_TYPE struct sl_head
#define TLIST_ITEM n
#define TLIST_WANT_WALK
#define TLIST_WANT_ADD_HEAD
#include "lib/tlists.h"
struct slab {
resource r;
uint obj_size, head_size, head_bitfield_len;
uint objs_per_slab, num_empty_heads, data_size;
struct sl_head_list empty_heads, partial_heads, full_heads;
};
static struct resclass sl_class = {
"Slab",
sizeof(struct slab),
slab_free,
slab_dump,
slab_lookup,
slab_memsize
};
#define SL_GET_HEAD(x) PAGE_HEAD(x)
#define SL_HEAD_CHANGE_STATE(_s, _h, _from, _to) ({ \
ASSERT_DIE(_h->state == slh_##_from); \
sl_head_rem_node(&_s->_from##_heads, _h); \
sl_head_add_head(&_s->_to##_heads, _h); \
_h->state = slh_##_to; \
})
2000-06-05 11:41:41 +00:00
/**
* sl_new - create a new Slab
* @p: resource pool
* @size: block size
*
* This function creates a new Slab resource from which
* objects of size @size can be allocated.
*/
slab *
2015-05-19 06:53:34 +00:00
sl_new(pool *p, uint size)
{
slab *s = ralloc(p, &sl_class);
2015-05-19 06:53:34 +00:00
uint align = sizeof(struct sl_alignment);
if (align < sizeof(void *))
align = sizeof(void *);
2000-05-16 15:02:33 +00:00
s->data_size = size;
size = (size + align - 1) / align * align;
s->obj_size = size;
s->head_size = sizeof(struct sl_head);
do {
s->objs_per_slab = (page_size - s->head_size) / size;
s->head_bitfield_len = (s->objs_per_slab + 31) / 32;
s->head_size = (
sizeof(struct sl_head)
+ sizeof(u32) * s->head_bitfield_len
+ align - 1)
/ align * align;
} while (s->objs_per_slab * size + s->head_size > (size_t) page_size);
if (!s->objs_per_slab)
bug("Slab: object too large");
s->num_empty_heads = 0;
return s;
}
/**
* sl_delete - destroy an existing Slab
* @s: slab
*
* This function destroys the given Slab.
*/
void sl_delete(slab *s)
{
rfree(&s->r);
}
2000-06-05 11:41:41 +00:00
/**
* sl_alloc - allocate an object from Slab
* @s: slab
*
* sl_alloc() allocates space for a single object from the
* Slab and returns a pointer to the object.
*/
void *
sl_alloc(slab *s)
{
struct sl_head *h;
ASSERT_DIE(DG_IS_LOCKED(resource_parent(&s->r)->domain));
redo:
if (!(h = s->partial_heads.first))
goto no_partial;
okay:
for (uint i=0; i<s->head_bitfield_len; i++)
if (~h->used_bits[i])
{
uint pos = u32_ctz(~h->used_bits[i]);
if (i * 32 + pos >= s->objs_per_slab)
break;
h->used_bits[i] |= 1 << pos;
h->num_full++;
void *out = ((void *) h) + s->head_size + (i * 32 + pos) * s->obj_size;
2000-05-16 15:02:33 +00:00
#ifdef POISON
memset(out, 0xcd, s->data_size);
2000-05-16 15:02:33 +00:00
#endif
return out;
}
SL_HEAD_CHANGE_STATE(s, h, partial, full);
goto redo;
no_partial:
if (h = s->empty_heads.first)
{
SL_HEAD_CHANGE_STATE(s, h, empty, partial);
s->num_empty_heads--;
goto okay;
}
h = alloc_page();
ASSERT_DIE(SL_GET_HEAD(h) == h);
2021-05-27 08:35:33 +00:00
#ifdef POISON
memset(h, 0xba, page_size);
2021-05-27 08:35:33 +00:00
#endif
memset(h, 0, s->head_size);
h->slab = s;
sl_head_add_head(&s->partial_heads, h);
goto okay;
}
/**
* sl_allocz - allocate an object from Slab and zero it
* @s: slab
*
* sl_allocz() allocates space for a single object from the
* Slab and returns a pointer to the object after zeroing out
* the object memory.
*/
void *
sl_allocz(slab *s)
{
void *obj = sl_alloc(s);
memset(obj, 0, s->data_size);
return obj;
}
2000-06-05 11:41:41 +00:00
/**
* sl_free - return a free object back to a Slab
* @s: slab
* @oo: object returned by sl_alloc()
*
* This function frees memory associated with the object @oo
* and returns it back to the Slab @s.
*/
void
sl_free(void *oo)
{
struct sl_head *h = SL_GET_HEAD(oo);
struct slab *s = h->slab;
ASSERT_DIE(DG_IS_LOCKED(resource_parent(&s->r)->domain));
#ifdef POISON
2000-05-16 15:02:33 +00:00
memset(oo, 0xdb, s->data_size);
#endif
uint offset = oo - ((void *) h) - s->head_size;
ASSERT_DIE(offset % s->obj_size == 0);
uint pos = offset / s->obj_size;
ASSERT_DIE(pos < s->objs_per_slab);
h->used_bits[pos / 32] &= ~(1 << (pos % 32));
if ((h->num_full-- == s->objs_per_slab) && (h->state == slh_full))
SL_HEAD_CHANGE_STATE(s, h, full, partial);
else if (!h->num_full)
{
sl_head_rem_node(&s->partial_heads, h);
if (s->num_empty_heads >= MAX_EMPTY_HEADS)
2021-05-27 08:35:33 +00:00
{
#ifdef POISON
memset(h, 0xde, page_size);
2021-05-27 08:35:33 +00:00
#endif
free_page(h);
2021-05-27 08:35:33 +00:00
}
else
{
sl_head_add_head(&s->empty_heads, h);
h->state = slh_empty;
s->num_empty_heads++;
}
}
}
static void
slab_free(resource *r)
{
slab *s = (slab *) r;
WALK_TLIST_DELSAFE(sl_head, h, &s->empty_heads)
free_page(h);
WALK_TLIST_DELSAFE(sl_head, h, &s->partial_heads)
free_page(h);
WALK_TLIST_DELSAFE(sl_head, h, &s->full_heads)
free_page(h);
}
static void
slab_dump(resource *r, unsigned indent UNUSED)
{
slab *s = (slab *) r;
int ec=0, pc=0, fc=0;
WALK_TLIST(sl_head, h, &s->empty_heads)
ec++;
WALK_TLIST(sl_head, h, &s->partial_heads)
pc++;
WALK_TLIST(sl_head, h, &s->full_heads)
fc++;
debug("(%de+%dp+%df blocks per %d objs per %d bytes)\n", ec, pc, fc, s->objs_per_slab, s->obj_size);
char x[16];
bsprintf(x, "%%%ds%%s %%p\n", indent + 2);
WALK_TLIST(sl_head, h, &s->full_heads)
debug(x, "", "full", h);
WALK_TLIST(sl_head, h, &s->partial_heads)
debug(x, "", "partial", h);
WALK_TLIST(sl_head, h, &s->empty_heads)
debug(x, "", "empty", h);
}
static struct resmem
slab_memsize(resource *r)
{
slab *s = (slab *) r;
size_t heads = 0;
WALK_TLIST(sl_head, h, &s->full_heads)
heads++;
size_t items = heads * s->objs_per_slab;
WALK_TLIST(sl_head, h, &s->partial_heads)
{
heads++;
items += h->num_full;
}
WALK_TLIST(sl_head, h, &s->empty_heads)
heads++;
2022-03-14 16:29:39 +00:00
size_t eff = items * s->data_size;
return (struct resmem) {
.effective = eff,
.overhead = ALLOC_OVERHEAD + sizeof(struct slab) + heads * page_size - eff,
};
}
static resource *
slab_lookup(resource *r, unsigned long a)
{
slab *s = (slab *) r;
WALK_TLIST(sl_head, h, &s->partial_heads)
if ((unsigned long) h < a && (unsigned long) h + page_size < a)
return r;
WALK_TLIST(sl_head, h, &s->full_heads)
if ((unsigned long) h < a && (unsigned long) h + page_size < a)
return r;
return NULL;
}
#endif