0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2024-12-31 22:21:54 +00:00
bird/filter/tree.c
Ondrej Zajicek e20bef69cc Filter: Change linearization of branches in switch instruction
Most branching instructions (FI_CONDITION, FI_AND, FI_OR) linearize its
branches in a recursive way, while FI_SWITCH branches are linearized
from parser even before the switch instruction is allocated.

Change linearization of FI_SWITCH branches to make it similar to other
branching instructions. This also fixes an issue with constant
switch evaluation, where linearized branch is mistaken for
non-linearized during switch construction.

Thanks to Jiten Kumar Pathy for the bugreport.
2023-01-07 20:18:44 +01:00

212 lines
4.3 KiB
C

/*
* Filters: utility functions
*
* Copyright 1998 Pavel Machek <pavel@ucw.cz>
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
#include "lib/alloca.h"
#include "nest/bird.h"
#include "conf/conf.h"
#include "filter/filter.h"
#include "filter/data.h"
/**
* find_tree
* @t: tree to search in
* @val: value to find
*
* Search for given value in the tree. I relies on fact that sorted tree is populated
* by &f_val structures (that can be compared by val_compare()). In each node of tree,
* either single value (then t->from==t->to) or range is present.
*
* Both set matching and |switch() { }| construction is implemented using this function,
* thus both are as fast as they can be.
*/
const struct f_tree *
find_tree(const struct f_tree *t, const struct f_val *val)
{
if (!t)
return NULL;
if ((val_compare(&(t->from), val) != 1) &&
(val_compare(&(t->to), val) != -1))
return t;
if (val_compare(&(t->from), val) == -1)
return find_tree(t->right, val);
else
return find_tree(t->left, val);
}
/**
* find_tree_linear
* @t: tree to search in
* @val: value to find
*
* Search for given value in the degenerated linear tree, which is generated by
* parser before build_tree() is applied. The tree is not sorted and all nodes
* are linked by left ptr.
*/
const struct f_tree *
find_tree_linear(const struct f_tree *t, const struct f_val *val)
{
for (; t; t = t->left)
if ((val_compare(&(t->from), val) != 1) &&
(val_compare(&(t->to), val) != -1))
return t;
return NULL;
}
static struct f_tree *
build_tree_rec(struct f_tree **buf, int l, int h)
{
struct f_tree *n;
int pos;
if (l >= h)
return NULL;
pos = (l+h)/2;
n = buf[pos];
n->left = build_tree_rec(buf, l, pos);
n->right = build_tree_rec(buf, pos+1, h);
return n;
}
static int
tree_compare(const void *p1, const void *p2)
{
return val_compare(&((* (struct f_tree **) p1)->from), &((* (struct f_tree **) p2)->from));
}
/**
* build_tree
* @from: degenerated tree (linked by @tree->left) to be transformed into form suitable for find_tree()
*
* Transforms degenerated tree into balanced tree.
*/
struct f_tree *
build_tree(struct f_tree *from)
{
struct f_tree *tmp, *root;
struct f_tree **buf;
int len, i;
if (from == NULL)
return NULL;
len = 0;
for (tmp = from; tmp != NULL; tmp = tmp->left)
len++;
if (len <= 1024)
buf = alloca(len * sizeof(struct f_tree *));
else
buf = xmalloc(len * sizeof(struct f_tree *));
/* Convert a degenerated tree into an sorted array */
i = 0;
for (tmp = from; tmp != NULL; tmp = tmp->left)
buf[i++] = tmp;
qsort(buf, len, sizeof(struct f_tree *), tree_compare);
root = build_tree_rec(buf, 0, len);
if (len > 1024)
xfree(buf);
return root;
}
struct f_tree *
f_new_tree(void)
{
struct f_tree *ret = cfg_allocz(sizeof(struct f_tree));
return ret;
}
/**
* same_tree
* @t1: first tree to be compared
* @t2: second one
*
* Compares two trees and returns 1 if they are same
*/
int
same_tree(const struct f_tree *t1, const struct f_tree *t2)
{
if ((!!t1) != (!!t2))
return 0;
if (!t1)
return 1;
if (val_compare(&(t1->from), &(t2->from)))
return 0;
if (val_compare(&(t1->to), &(t2->to)))
return 0;
if (!same_tree(t1->left, t2->left))
return 0;
if (!same_tree(t1->right, t2->right))
return 0;
if (!f_same(t1->data, t2->data))
return 0;
return 1;
}
int
tree_node_count(const struct f_tree *t)
{
if (t == NULL)
return 0;
return 1 + tree_node_count(t->left) + tree_node_count(t->right);
}
static void
tree_node_format(const struct f_tree *t, buffer *buf)
{
if (t == NULL)
return;
tree_node_format(t->left, buf);
val_format(&(t->from), buf);
if (val_compare(&(t->from), &(t->to)) != 0)
{
buffer_puts(buf, "..");
val_format(&(t->to), buf);
}
buffer_puts(buf, ", ");
tree_node_format(t->right, buf);
}
void
tree_format(const struct f_tree *t, buffer *buf)
{
buffer_puts(buf, "[");
tree_node_format(t, buf);
if (buf->pos == buf->end)
return;
/* Undo last separator */
if (buf->pos[-1] != '[')
buf->pos -= 2;
buffer_puts(buf, "]");
}
void
tree_walk(const struct f_tree *t, void (*hook)(const struct f_tree *, void *), void *data)
{
if (!t)
return;
tree_walk(t->left, hook, data);
hook(t, data);
tree_walk(t->right, hook, data);
}