mirror of
https://gitlab.nic.cz/labs/bird.git
synced 2025-01-10 19:11:54 +00:00
1222 lines
34 KiB
C
1222 lines
34 KiB
C
/*
|
|
* Filters: Instructions themselves
|
|
*
|
|
* Copyright 1998 Pavel Machek <pavel@ucw.cz>
|
|
* Copyright 2018 Maria Matejka <mq@jmq.cz>
|
|
* Copyright 2018 CZ.NIC z.s.p.o.
|
|
*
|
|
* Can be freely distributed and used under the terms of the GNU GPL.
|
|
*
|
|
* The filter code goes through several phases:
|
|
*
|
|
* 1 Parsing
|
|
* Flex- and Bison-generated parser decodes the human-readable data into
|
|
* a struct f_inst tree. This is an infix tree that was interpreted by
|
|
* depth-first search execution in previous versions of the interpreter.
|
|
* All instructions have their constructor: f_new_inst(FI_EXAMPLE, ...)
|
|
* translates into f_new_inst_FI_EXAMPLE(...) and the types are checked in
|
|
* compile time. If the result of the instruction is always the same,
|
|
* it's reduced to FI_CONSTANT directly in constructor. This phase also
|
|
* counts how many instructions are underlying in means of f_line_item
|
|
* fields to know how much we have to allocate in the next phase.
|
|
*
|
|
* 2 Linearize before interpreting
|
|
* The infix tree is always interpreted in the same order. Therefore we
|
|
* sort the instructions one after another into struct f_line. Results
|
|
* and arguments of these instructions are implicitly put on a value
|
|
* stack; e.g. the + operation just takes two arguments from the value
|
|
* stack and puts the result on there.
|
|
*
|
|
* 3 Interpret
|
|
* The given line is put on a custom execution stack. If needed (FI_CALL,
|
|
* FI_SWITCH, FI_AND, FI_OR, FI_CONDITION, ...), another line is put on top
|
|
* of the stack; when that line finishes, the execution continues on the
|
|
* older lines on the stack where it stopped before.
|
|
*
|
|
* 4 Same
|
|
* On config reload, the filters have to be compared whether channel
|
|
* reload is needed or not. The comparison is done by comparing the
|
|
* struct f_line's recursively.
|
|
*
|
|
* The main purpose of this rework was to improve filter performance
|
|
* by making the interpreter non-recursive.
|
|
*
|
|
* The other outcome is concentration of instruction definitions to
|
|
* one place -- right here. You shall define your instruction only here
|
|
* and nowhere else.
|
|
*
|
|
* Beware. This file is interpreted by M4 macros. These macros
|
|
* may be more stupid than you could imagine. If something strange
|
|
* happens after changing this file, compare the results before and
|
|
* after your change (see the Makefile to find out where the results are)
|
|
* and see what really happened.
|
|
*
|
|
* This file is not directly a C source code -> it is a generator input
|
|
* for several C sources; every instruction block gets expanded into many
|
|
* different places.
|
|
*
|
|
* All the arguments are processed literally; if you need an argument including comma,
|
|
* you have to quote it by [[ ... ]]
|
|
*
|
|
* What is the syntax here?
|
|
* m4_dnl INST(FI_NOP, in, out) { enum value, input args, output args
|
|
* m4_dnl ARG(num, type); argument, its id (in data fields) and type accessible by v1, v2, v3
|
|
* m4_dnl ARG_ANY(num); argument with no type check accessible by v1, v2, v3
|
|
* m4_dnl VARARG; variable-length argument list; accessible by vv(i) and whati->varcount
|
|
* m4_dnl LINE(num, unused); this argument has to be converted to its own f_line
|
|
* m4_dnl SYMBOL; symbol handed from config
|
|
* m4_dnl STATIC_ATTR; static attribute definition
|
|
* m4_dnl DYNAMIC_ATTR; dynamic attribute definition
|
|
* m4_dnl RTC; route table config
|
|
* m4_dnl ACCESS_RTE; this instruction needs route
|
|
* m4_dnl ACCESS_EATTRS; this instruction needs extended attributes
|
|
*
|
|
* m4_dnl FID_MEMBER( custom instruction member
|
|
* m4_dnl C type, for storage in structs
|
|
* m4_dnl name, how the member is named
|
|
* m4_dnl comparator for same(), if different, this should be TRUE (CAVEAT)
|
|
* m4_dnl dump format string debug -> format string for bvsnprintf
|
|
* m4_dnl dump format args appropriate args
|
|
* m4_dnl )
|
|
*
|
|
* m4_dnl RESULT(type, union-field, value); putting this on value stack
|
|
* m4_dnl RESULT_VAL(value-struct); pass the struct f_val directly
|
|
* m4_dnl RESULT_VOID; return undef
|
|
* m4_dnl }
|
|
*
|
|
* Also note that the { ... } blocks are not respected by M4 at all.
|
|
* If you get weird unmatched-brace-pair errors, check what it generated and why.
|
|
* What is really considered as one instruction is not the { ... } block
|
|
* after m4_dnl INST() but all the code between them.
|
|
*
|
|
* Other code is just copied into the interpreter part.
|
|
*
|
|
* If you are satisfied with this, you don't need to read the following
|
|
* detailed description of what is really done with the instruction definitions.
|
|
*
|
|
* m4_dnl Now let's look under the cover. The code between each INST()
|
|
* m4_dnl is copied to several places, namely these (numbered by the M4 diversions
|
|
* m4_dnl used in filter/decl.m4):
|
|
*
|
|
* m4_dnl (102) struct f_inst *f_new_inst(FI_EXAMPLE [[ put it here ]])
|
|
* m4_dnl {
|
|
* m4_dnl ... (common code)
|
|
* m4_dnl (103) [[ put it here ]]
|
|
* m4_dnl ...
|
|
* m4_dnl if (all arguments are constant)
|
|
* m4_dnl (108) [[ put it here ]]
|
|
* m4_dnl }
|
|
* m4_dnl For writing directly to constructor argument list, use FID_NEW_ARGS.
|
|
* m4_dnl For computing something in constructor (103), use FID_NEW_BODY.
|
|
* m4_dnl For constant pre-interpretation (108), see below at FID_INTERPRET_BODY.
|
|
*
|
|
* m4_dnl struct f_inst {
|
|
* m4_dnl ... (common fields)
|
|
* m4_dnl union {
|
|
* m4_dnl struct {
|
|
* m4_dnl (101) [[ put it here ]]
|
|
* m4_dnl } i_FI_EXAMPLE;
|
|
* m4_dnl ...
|
|
* m4_dnl };
|
|
* m4_dnl };
|
|
* m4_dnl This structure is returned from constructor.
|
|
* m4_dnl For writing directly to this structure, use FID_STRUCT_IN.
|
|
*
|
|
* m4_dnl linearize(struct f_line *dest, const struct f_inst *what, uint pos) {
|
|
* m4_dnl ...
|
|
* m4_dnl switch (what->fi_code) {
|
|
* m4_dnl case FI_EXAMPLE:
|
|
* m4_dnl (105) [[ put it here ]]
|
|
* m4_dnl break;
|
|
* m4_dnl }
|
|
* m4_dnl }
|
|
* m4_dnl This is called when translating from struct f_inst to struct f_line_item.
|
|
* m4_dnl For accessing your custom instruction data, use following macros:
|
|
* m4_dnl whati -> for accessing (struct f_inst).i_FI_EXAMPLE
|
|
* m4_dnl item -> for accessing (struct f_line)[pos].i_FI_EXAMPLE
|
|
* m4_dnl For writing directly here, use FID_LINEARIZE_BODY.
|
|
*
|
|
* m4_dnl (107) struct f_line_item {
|
|
* m4_dnl ... (common fields)
|
|
* m4_dnl union {
|
|
* m4_dnl struct {
|
|
* m4_dnl (101) [[ put it here ]]
|
|
* m4_dnl } i_FI_EXAMPLE;
|
|
* m4_dnl ...
|
|
* m4_dnl };
|
|
* m4_dnl };
|
|
* m4_dnl The same as FID_STRUCT_IN (101) but for the other structure.
|
|
* m4_dnl This structure is returned from the linearizer (105).
|
|
* m4_dnl For writing directly to this structure, use FID_LINE_IN.
|
|
*
|
|
* m4_dnl f_dump_line_item_FI_EXAMPLE(const struct f_line_item *item, const int indent)
|
|
* m4_dnl {
|
|
* m4_dnl (104) [[ put it here ]]
|
|
* m4_dnl }
|
|
* m4_dnl This code dumps the instruction on debug. Note that the argument
|
|
* m4_dnl is the linearized instruction; if the instruction has arguments,
|
|
* m4_dnl their code has already been linearized and their value is taken
|
|
* m4_dnl from the value stack.
|
|
* m4_dnl For writing directly here, use FID_DUMP_BODY.
|
|
*
|
|
* m4_dnl f_same(...)
|
|
* m4_dnl {
|
|
* m4_dnl switch (f1_->fi_code) {
|
|
* m4_dnl case FI_EXAMPLE:
|
|
* m4_dnl (106) [[ put it here ]]
|
|
* m4_dnl break;
|
|
* m4_dnl }
|
|
* m4_dnl }
|
|
* m4_dnl This code compares the two given instrucions (f1_ and f2_)
|
|
* m4_dnl on reconfigure. For accessing your custom instruction data,
|
|
* m4_dnl use macros f1 and f2.
|
|
* m4_dnl For writing directly here, use FID_SAME_BODY.
|
|
*
|
|
* m4_dnl interpret(...)
|
|
* m4_dnl {
|
|
* m4_dnl switch (what->fi_code) {
|
|
* m4_dnl case FI_EXAMPLE:
|
|
* m4_dnl (108) [[ put it here ]]
|
|
* m4_dnl break;
|
|
* m4_dnl }
|
|
* m4_dnl }
|
|
* m4_dnl This code executes the instruction. Every pre-defined macro
|
|
* m4_dnl resets the output here. For setting it explicitly,
|
|
* m4_dnl use FID_INTERPRET_BODY.
|
|
* m4_dnl This code is put on two places; one is the interpreter, the other
|
|
* m4_dnl is instruction constructor. If you need to distinguish between
|
|
* m4_dnl these two, use FID_INTERPRET_EXEC or FID_INTERPRET_NEW respectively.
|
|
* m4_dnl To address the difference between interpreter and constructor
|
|
* m4_dnl environments, there are several convenience macros defined:
|
|
* m4_dnl runtime() -> for spitting out runtime error like division by zero
|
|
* m4_dnl RESULT(...) -> declare result; may overwrite arguments
|
|
* m4_dnl v1, v2, v3 -> positional arguments, may be overwritten by RESULT()
|
|
* m4_dnl falloc(size) -> allocate memory from the appropriate linpool
|
|
* m4_dnl fpool -> the current linpool
|
|
* m4_dnl NEVER_CONSTANT-> don't generate pre-interpretation code at all
|
|
* m4_dnl ACCESS_RTE -> check that route is available, also NEVER_CONSTANT
|
|
* m4_dnl ACCESS_EATTRS -> pre-cache the eattrs; use only with ACCESS_RTE
|
|
* m4_dnl f_rta_cow(fs) -> function to call before any change to route should be done
|
|
*
|
|
* m4_dnl If you are stymied, see FI_CALL or FI_CONSTANT or just search for
|
|
* m4_dnl the mentioned macros in this file to see what is happening there in wild.
|
|
*/
|
|
|
|
/* Binary operators */
|
|
INST(FI_ADD, 2, 1) {
|
|
ARG(1,T_INT);
|
|
ARG(2,T_INT);
|
|
RESULT(T_INT, i, v1.val.i + v2.val.i);
|
|
}
|
|
INST(FI_SUBTRACT, 2, 1) {
|
|
ARG(1,T_INT);
|
|
ARG(2,T_INT);
|
|
RESULT(T_INT, i, v1.val.i - v2.val.i);
|
|
}
|
|
INST(FI_MULTIPLY, 2, 1) {
|
|
ARG(1,T_INT);
|
|
ARG(2,T_INT);
|
|
RESULT(T_INT, i, v1.val.i * v2.val.i);
|
|
}
|
|
INST(FI_DIVIDE, 2, 1) {
|
|
ARG(1,T_INT);
|
|
ARG(2,T_INT);
|
|
if (v2.val.i == 0) runtime( "Mother told me not to divide by 0" );
|
|
RESULT(T_INT, i, v1.val.i / v2.val.i);
|
|
}
|
|
INST(FI_AND, 1, 1) {
|
|
ARG(1,T_BOOL);
|
|
ARG_TYPE_STATIC(2,T_BOOL);
|
|
RESULT_TYPE(T_BOOL);
|
|
|
|
if (v1.val.i)
|
|
LINE(2,0);
|
|
else
|
|
RESULT_VAL(v1);
|
|
}
|
|
INST(FI_OR, 1, 1) {
|
|
ARG(1,T_BOOL);
|
|
ARG_TYPE_STATIC(2,T_BOOL);
|
|
RESULT_TYPE(T_BOOL);
|
|
|
|
if (!v1.val.i)
|
|
LINE(2,0);
|
|
else
|
|
RESULT_VAL(v1);
|
|
}
|
|
|
|
INST(FI_PAIR_CONSTRUCT, 2, 1) {
|
|
ARG(1,T_INT);
|
|
ARG(2,T_INT);
|
|
uint u1 = v1.val.i;
|
|
uint u2 = v2.val.i;
|
|
if ((u1 > 0xFFFF) || (u2 > 0xFFFF))
|
|
runtime( "Can't operate with value out of bounds in pair constructor" );
|
|
RESULT(T_PAIR, i, (u1 << 16) | u2);
|
|
}
|
|
|
|
INST(FI_EC_CONSTRUCT, 2, 1) {
|
|
ARG_ANY(1);
|
|
ARG(2, T_INT);
|
|
|
|
FID_MEMBER(enum ec_subtype, ecs, f1->ecs != f2->ecs, "ec subtype %s", ec_subtype_str(item->ecs));
|
|
|
|
int ipv4_used;
|
|
u32 key, val;
|
|
|
|
if (v1.type == T_INT) {
|
|
ipv4_used = 0; key = v1.val.i;
|
|
}
|
|
else if (v1.type == T_QUAD) {
|
|
ipv4_used = 1; key = v1.val.i;
|
|
}
|
|
/* IP->Quad implicit conversion */
|
|
else if (val_is_ip4(&v1)) {
|
|
ipv4_used = 1; key = ipa_to_u32(v1.val.ip);
|
|
}
|
|
else
|
|
runtime("Argument 1 of EC constructor must be integer or IPv4 address, got 0x%02x", v1.type);
|
|
|
|
val = v2.val.i;
|
|
|
|
if (ecs == EC_GENERIC)
|
|
RESULT(T_EC, ec, ec_generic(key, val));
|
|
else if (ipv4_used)
|
|
if (val <= 0xFFFF)
|
|
RESULT(T_EC, ec, ec_ip4(ecs, key, val));
|
|
else
|
|
runtime("4-byte value %u can't be used with IP-address key in extended community", val);
|
|
else if (key < 0x10000)
|
|
RESULT(T_EC, ec, ec_as2(ecs, key, val));
|
|
else
|
|
if (val <= 0xFFFF)
|
|
RESULT(T_EC, ec, ec_as4(ecs, key, val));
|
|
else
|
|
runtime("4-byte value %u can't be used with 4-byte ASN in extended community", val);
|
|
}
|
|
|
|
INST(FI_LC_CONSTRUCT, 3, 1) {
|
|
ARG(1, T_INT);
|
|
ARG(2, T_INT);
|
|
ARG(3, T_INT);
|
|
RESULT(T_LC, lc, [[(lcomm) { v1.val.i, v2.val.i, v3.val.i }]]);
|
|
}
|
|
|
|
INST(FI_PATHMASK_CONSTRUCT, 0, 1) {
|
|
VARARG;
|
|
|
|
struct f_path_mask *pm = falloc(sizeof(struct f_path_mask) + whati->varcount * sizeof(struct f_path_mask_item));
|
|
pm->len = whati->varcount;
|
|
|
|
for (uint i=0; i<whati->varcount; i++) {
|
|
switch (vv(i).type) {
|
|
case T_PATH_MASK_ITEM:
|
|
pm->item[i] = vv(i).val.pmi;
|
|
break;
|
|
|
|
case T_INT:
|
|
pm->item[i] = (struct f_path_mask_item) {
|
|
.asn = vv(i).val.i,
|
|
.kind = PM_ASN,
|
|
};
|
|
break;
|
|
|
|
case T_SET:
|
|
if (vv(i).val.t->from.type != T_INT)
|
|
runtime("Only integer sets allowed in path mask");
|
|
|
|
pm->item[i] = (struct f_path_mask_item) {
|
|
.set = vv(i).val.t,
|
|
.kind = PM_ASN_SET,
|
|
};
|
|
break;
|
|
|
|
default:
|
|
runtime( "Error resolving path mask template: value not an integer" );
|
|
}
|
|
}
|
|
|
|
RESULT(T_PATH_MASK, path_mask, pm);
|
|
}
|
|
|
|
/* Relational operators */
|
|
|
|
INST(FI_NEQ, 2, 1) {
|
|
ARG_ANY(1);
|
|
ARG_ANY(2);
|
|
RESULT(T_BOOL, i, !val_same(&v1, &v2));
|
|
}
|
|
|
|
INST(FI_EQ, 2, 1) {
|
|
ARG_ANY(1);
|
|
ARG_ANY(2);
|
|
RESULT(T_BOOL, i, val_same(&v1, &v2));
|
|
}
|
|
|
|
INST(FI_LT, 2, 1) {
|
|
ARG_ANY(1);
|
|
ARG_ANY(2);
|
|
ARG_SAME_TYPE(1, 2);
|
|
|
|
int i = val_compare(&v1, &v2);
|
|
if (i == F_CMP_ERROR)
|
|
runtime( "Can't compare values of incompatible types" );
|
|
RESULT(T_BOOL, i, (i == -1));
|
|
}
|
|
|
|
INST(FI_LTE, 2, 1) {
|
|
ARG_ANY(1);
|
|
ARG_ANY(2);
|
|
ARG_SAME_TYPE(1, 2);
|
|
|
|
int i = val_compare(&v1, &v2);
|
|
if (i == F_CMP_ERROR)
|
|
runtime( "Can't compare values of incompatible types" );
|
|
RESULT(T_BOOL, i, (i != 1));
|
|
}
|
|
|
|
INST(FI_NOT, 1, 1) {
|
|
ARG(1,T_BOOL);
|
|
RESULT(T_BOOL, i, !v1.val.i);
|
|
}
|
|
|
|
INST(FI_MATCH, 2, 1) {
|
|
ARG_ANY(1);
|
|
ARG_ANY(2);
|
|
int i = val_in_range(&v1, &v2);
|
|
if (i == F_CMP_ERROR)
|
|
runtime( "~ applied on unknown type pair" );
|
|
RESULT(T_BOOL, i, !!i);
|
|
}
|
|
|
|
INST(FI_NOT_MATCH, 2, 1) {
|
|
ARG_ANY(1);
|
|
ARG_ANY(2);
|
|
int i = val_in_range(&v1, &v2);
|
|
if (i == F_CMP_ERROR)
|
|
runtime( "!~ applied on unknown type pair" );
|
|
RESULT(T_BOOL, i, !i);
|
|
}
|
|
|
|
INST(FI_DEFINED, 1, 1) {
|
|
ARG_ANY(1);
|
|
RESULT(T_BOOL, i, (v1.type != T_VOID) && !undef_value(v1));
|
|
}
|
|
|
|
INST(FI_TYPE, 1, 1) {
|
|
ARG_ANY(1); /* There may be more types supporting this operation */
|
|
switch (v1.type)
|
|
{
|
|
case T_NET:
|
|
RESULT(T_ENUM_NETTYPE, i, v1.val.net->type);
|
|
break;
|
|
default:
|
|
runtime( "Can't determine type of this item" );
|
|
}
|
|
}
|
|
|
|
INST(FI_IS_V4, 1, 1) {
|
|
ARG(1, T_IP);
|
|
RESULT(T_BOOL, i, ipa_is_ip4(v1.val.ip));
|
|
}
|
|
|
|
/* Set to indirect value prepared in v1 */
|
|
INST(FI_VAR_SET, 1, 0) {
|
|
NEVER_CONSTANT;
|
|
ARG_ANY(1);
|
|
SYMBOL;
|
|
ARG_TYPE(1, sym->class & 0xff);
|
|
|
|
fstk->vstk[curline.vbase + sym->offset] = v1;
|
|
}
|
|
|
|
INST(FI_VAR_GET, 0, 1) {
|
|
SYMBOL;
|
|
NEVER_CONSTANT;
|
|
RESULT_TYPE(sym->class & 0xff);
|
|
RESULT_VAL(fstk->vstk[curline.vbase + sym->offset]);
|
|
}
|
|
|
|
INST(FI_CONSTANT, 0, 1) {
|
|
FID_MEMBER(
|
|
struct f_val,
|
|
val,
|
|
[[ !val_same(&(f1->val), &(f2->val)) ]],
|
|
"value %s",
|
|
val_dump(&(item->val))
|
|
);
|
|
|
|
RESULT_TYPE(val.type);
|
|
RESULT_VAL(val);
|
|
}
|
|
|
|
INST(FI_CONDITION, 1, 0) {
|
|
ARG(1, T_BOOL);
|
|
if (v1.val.i)
|
|
LINE(2,0);
|
|
else
|
|
LINE(3,1);
|
|
}
|
|
|
|
INST(FI_PRINT, 0, 0) {
|
|
NEVER_CONSTANT;
|
|
VARARG;
|
|
|
|
if (whati->varcount && !(fs->flags & FF_SILENT))
|
|
for (uint i=0; i<whati->varcount; i++)
|
|
val_format(&(vv(i)), &fs->buf);
|
|
}
|
|
|
|
INST(FI_FLUSH, 0, 0) {
|
|
NEVER_CONSTANT;
|
|
if (!(fs->flags & FF_SILENT))
|
|
/* After log_commit, the buffer is reset */
|
|
log_commit(*L_INFO, &fs->buf);
|
|
}
|
|
|
|
INST(FI_DIE, 0, 0) {
|
|
NEVER_CONSTANT;
|
|
FID_MEMBER(enum filter_return, fret, f1->fret != f2->fret, "%s", filter_return_str(item->fret));
|
|
|
|
switch (whati->fret) {
|
|
case F_QUITBIRD:
|
|
die( "Filter asked me to die" );
|
|
case F_ACCEPT: /* Should take care about turning ACCEPT into MODIFY */
|
|
case F_ERROR:
|
|
case F_REJECT: /* Maybe print complete route along with reason to reject route? */
|
|
return fret; /* We have to return now, no more processing. */
|
|
default:
|
|
bug( "unknown return type: Can't happen");
|
|
}
|
|
}
|
|
|
|
INST(FI_RTA_GET, 0, 1) {
|
|
{
|
|
STATIC_ATTR;
|
|
ACCESS_RTE;
|
|
struct rta *rta = (*fs->rte)->attrs;
|
|
|
|
switch (sa.sa_code)
|
|
{
|
|
case SA_FROM: RESULT(sa.f_type, ip, rta->from); break;
|
|
case SA_GW: RESULT(sa.f_type, ip, rta->nh.gw); break;
|
|
case SA_NET: RESULT(sa.f_type, net, (*fs->rte)->net->n.addr); break;
|
|
case SA_PROTO: RESULT(sa.f_type, s, rta->src->proto->name); break;
|
|
case SA_SOURCE: RESULT(sa.f_type, i, rta->source); break;
|
|
case SA_SCOPE: RESULT(sa.f_type, i, rta->scope); break;
|
|
case SA_DEST: RESULT(sa.f_type, i, rta->dest); break;
|
|
case SA_IFNAME: RESULT(sa.f_type, s, rta->nh.iface ? rta->nh.iface->name : ""); break;
|
|
case SA_IFINDEX: RESULT(sa.f_type, i, rta->nh.iface ? rta->nh.iface->index : 0); break;
|
|
|
|
default:
|
|
bug("Invalid static attribute access (%u/%u)", sa.f_type, sa.sa_code);
|
|
}
|
|
}
|
|
}
|
|
|
|
INST(FI_RTA_SET, 1, 0) {
|
|
ACCESS_RTE;
|
|
ARG_ANY(1);
|
|
STATIC_ATTR;
|
|
ARG_TYPE(1, sa.f_type);
|
|
|
|
f_rta_cow(fs);
|
|
{
|
|
struct rta *rta = (*fs->rte)->attrs;
|
|
|
|
switch (sa.sa_code)
|
|
{
|
|
case SA_FROM:
|
|
rta->from = v1.val.ip;
|
|
break;
|
|
|
|
case SA_GW:
|
|
{
|
|
ip_addr ip = v1.val.ip;
|
|
neighbor *n = neigh_find(rta->src->proto, ip, NULL, 0);
|
|
if (!n || (n->scope == SCOPE_HOST))
|
|
runtime( "Invalid gw address" );
|
|
|
|
rta->dest = RTD_UNICAST;
|
|
rta->nh.gw = ip;
|
|
rta->nh.iface = n->iface;
|
|
rta->nh.next = NULL;
|
|
rta->hostentry = NULL;
|
|
}
|
|
break;
|
|
|
|
case SA_SCOPE:
|
|
rta->scope = v1.val.i;
|
|
break;
|
|
|
|
case SA_DEST:
|
|
{
|
|
int i = v1.val.i;
|
|
if ((i != RTD_BLACKHOLE) && (i != RTD_UNREACHABLE) && (i != RTD_PROHIBIT))
|
|
runtime( "Destination can be changed only to blackhole, unreachable or prohibit" );
|
|
|
|
rta->dest = i;
|
|
rta->nh.gw = IPA_NONE;
|
|
rta->nh.iface = NULL;
|
|
rta->nh.next = NULL;
|
|
rta->hostentry = NULL;
|
|
}
|
|
break;
|
|
|
|
case SA_IFNAME:
|
|
{
|
|
struct iface *ifa = if_find_by_name(v1.val.s);
|
|
if (!ifa)
|
|
runtime( "Invalid iface name" );
|
|
|
|
rta->dest = RTD_UNICAST;
|
|
rta->nh.gw = IPA_NONE;
|
|
rta->nh.iface = ifa;
|
|
rta->nh.next = NULL;
|
|
rta->hostentry = NULL;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
bug("Invalid static attribute access (%u/%u)", sa.f_type, sa.sa_code);
|
|
}
|
|
}
|
|
}
|
|
|
|
INST(FI_EA_GET, 0, 1) { /* Access to extended attributes */
|
|
DYNAMIC_ATTR;
|
|
ACCESS_RTE;
|
|
ACCESS_EATTRS;
|
|
RESULT_TYPE(da.f_type);
|
|
{
|
|
eattr *e = ea_find(*fs->eattrs, da.ea_code);
|
|
|
|
if (!e) {
|
|
/* A special case: undefined as_path looks like empty as_path */
|
|
if (da.type == EAF_TYPE_AS_PATH) {
|
|
RESULT_(T_PATH, ad, &null_adata);
|
|
break;
|
|
}
|
|
|
|
/* The same special case for int_set */
|
|
if (da.type == EAF_TYPE_INT_SET) {
|
|
RESULT_(T_CLIST, ad, &null_adata);
|
|
break;
|
|
}
|
|
|
|
/* The same special case for ec_set */
|
|
if (da.type == EAF_TYPE_EC_SET) {
|
|
RESULT_(T_ECLIST, ad, &null_adata);
|
|
break;
|
|
}
|
|
|
|
/* The same special case for lc_set */
|
|
if (da.type == EAF_TYPE_LC_SET) {
|
|
RESULT_(T_LCLIST, ad, &null_adata);
|
|
break;
|
|
}
|
|
|
|
/* Undefined value */
|
|
RESULT_VOID;
|
|
break;
|
|
}
|
|
|
|
switch (e->type & EAF_TYPE_MASK) {
|
|
case EAF_TYPE_INT:
|
|
RESULT_(da.f_type, i, e->u.data);
|
|
break;
|
|
case EAF_TYPE_ROUTER_ID:
|
|
RESULT_(T_QUAD, i, e->u.data);
|
|
break;
|
|
case EAF_TYPE_OPAQUE:
|
|
RESULT_(T_ENUM_EMPTY, i, 0);
|
|
break;
|
|
case EAF_TYPE_IP_ADDRESS:
|
|
RESULT_(T_IP, ip, *((ip_addr *) e->u.ptr->data));
|
|
break;
|
|
case EAF_TYPE_AS_PATH:
|
|
RESULT_(T_PATH, ad, e->u.ptr);
|
|
break;
|
|
case EAF_TYPE_BITFIELD:
|
|
RESULT_(T_BOOL, i, !!(e->u.data & (1u << da.bit)));
|
|
break;
|
|
case EAF_TYPE_INT_SET:
|
|
RESULT_(T_CLIST, ad, e->u.ptr);
|
|
break;
|
|
case EAF_TYPE_EC_SET:
|
|
RESULT_(T_ECLIST, ad, e->u.ptr);
|
|
break;
|
|
case EAF_TYPE_LC_SET:
|
|
RESULT_(T_LCLIST, ad, e->u.ptr);
|
|
break;
|
|
case EAF_TYPE_UNDEF:
|
|
RESULT_VOID;
|
|
break;
|
|
default:
|
|
bug("Unknown dynamic attribute type");
|
|
}
|
|
}
|
|
}
|
|
|
|
INST(FI_EA_SET, 1, 0) {
|
|
ACCESS_RTE;
|
|
ACCESS_EATTRS;
|
|
ARG_ANY(1);
|
|
DYNAMIC_ATTR;
|
|
ARG_TYPE(1, da.f_type);
|
|
{
|
|
struct ea_list *l = lp_alloc(fs->pool, sizeof(struct ea_list) + sizeof(eattr));
|
|
|
|
l->next = NULL;
|
|
l->flags = EALF_SORTED;
|
|
l->count = 1;
|
|
l->attrs[0].id = da.ea_code;
|
|
l->attrs[0].flags = 0;
|
|
l->attrs[0].type = da.type | EAF_ORIGINATED | EAF_FRESH;
|
|
|
|
switch (da.type) {
|
|
case EAF_TYPE_INT:
|
|
case EAF_TYPE_ROUTER_ID:
|
|
l->attrs[0].u.data = v1.val.i;
|
|
break;
|
|
|
|
case EAF_TYPE_OPAQUE:
|
|
runtime( "Setting opaque attribute is not allowed" );
|
|
break;
|
|
|
|
case EAF_TYPE_IP_ADDRESS:;
|
|
int len = sizeof(ip_addr);
|
|
struct adata *ad = lp_alloc(fs->pool, sizeof(struct adata) + len);
|
|
ad->length = len;
|
|
(* (ip_addr *) ad->data) = v1.val.ip;
|
|
l->attrs[0].u.ptr = ad;
|
|
break;
|
|
|
|
case EAF_TYPE_AS_PATH:
|
|
case EAF_TYPE_INT_SET:
|
|
case EAF_TYPE_EC_SET:
|
|
case EAF_TYPE_LC_SET:
|
|
l->attrs[0].u.ptr = v1.val.ad;
|
|
break;
|
|
|
|
case EAF_TYPE_BITFIELD:
|
|
{
|
|
/* First, we have to find the old value */
|
|
eattr *e = ea_find(*fs->eattrs, da.ea_code);
|
|
u32 data = e ? e->u.data : 0;
|
|
|
|
if (v1.val.i)
|
|
l->attrs[0].u.data = data | (1u << da.bit);
|
|
else
|
|
l->attrs[0].u.data = data & ~(1u << da.bit);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
bug("Unknown dynamic attribute type");
|
|
}
|
|
|
|
f_rta_cow(fs);
|
|
l->next = *fs->eattrs;
|
|
*fs->eattrs = l;
|
|
}
|
|
}
|
|
|
|
INST(FI_EA_UNSET, 0, 0) {
|
|
DYNAMIC_ATTR;
|
|
ACCESS_RTE;
|
|
ACCESS_EATTRS;
|
|
|
|
{
|
|
struct ea_list *l = lp_alloc(fs->pool, sizeof(struct ea_list) + sizeof(eattr));
|
|
|
|
l->next = NULL;
|
|
l->flags = EALF_SORTED;
|
|
l->count = 1;
|
|
l->attrs[0].id = da.ea_code;
|
|
l->attrs[0].flags = 0;
|
|
l->attrs[0].type = EAF_TYPE_UNDEF | EAF_ORIGINATED | EAF_FRESH;
|
|
l->attrs[0].u.data = 0;
|
|
|
|
f_rta_cow(fs);
|
|
l->next = *fs->eattrs;
|
|
*fs->eattrs = l;
|
|
}
|
|
}
|
|
|
|
INST(FI_PREF_GET, 0, 1) {
|
|
ACCESS_RTE;
|
|
RESULT(T_INT, i, (*fs->rte)->pref);
|
|
}
|
|
|
|
INST(FI_PREF_SET, 1, 0) {
|
|
ACCESS_RTE;
|
|
ARG(1,T_INT);
|
|
if (v1.val.i > 0xFFFF)
|
|
runtime( "Setting preference value out of bounds" );
|
|
f_rte_cow(fs);
|
|
(*fs->rte)->pref = v1.val.i;
|
|
}
|
|
|
|
INST(FI_LENGTH, 1, 1) { /* Get length of */
|
|
ARG_ANY(1);
|
|
switch(v1.type) {
|
|
case T_NET: RESULT(T_INT, i, net_pxlen(v1.val.net)); break;
|
|
case T_PATH: RESULT(T_INT, i, as_path_getlen(v1.val.ad)); break;
|
|
case T_CLIST: RESULT(T_INT, i, int_set_get_size(v1.val.ad)); break;
|
|
case T_ECLIST: RESULT(T_INT, i, ec_set_get_size(v1.val.ad)); break;
|
|
case T_LCLIST: RESULT(T_INT, i, lc_set_get_size(v1.val.ad)); break;
|
|
default: runtime( "Prefix, path, clist or eclist expected" );
|
|
}
|
|
}
|
|
|
|
INST(FI_NET_SRC, 1, 1) { /* Get src prefix */
|
|
ARG(1, T_NET);
|
|
|
|
net_addr_union *net = (void *) v1.val.net;
|
|
net_addr *src = falloc(sizeof(net_addr_ip6));
|
|
const byte *part;
|
|
|
|
switch(v1.val.net->type) {
|
|
case NET_FLOW4:
|
|
part = flow4_get_part(&net->flow4, FLOW_TYPE_SRC_PREFIX);
|
|
if (part)
|
|
net_fill_ip4(src, flow_read_ip4_part(part), flow_read_pxlen(part));
|
|
else
|
|
net_fill_ip4(src, IP4_NONE, 0);
|
|
break;
|
|
|
|
case NET_FLOW6:
|
|
part = flow6_get_part(&net->flow6, FLOW_TYPE_SRC_PREFIX);
|
|
if (part)
|
|
net_fill_ip6(src, flow_read_ip6_part(part), flow_read_pxlen(part));
|
|
else
|
|
net_fill_ip6(src, IP6_NONE, 0);
|
|
break;
|
|
|
|
case NET_IP6_SADR:
|
|
net_fill_ip6(src, net->ip6_sadr.src_prefix, net->ip6_sadr.src_pxlen);
|
|
break;
|
|
|
|
default:
|
|
runtime( "Flow or SADR expected" );
|
|
}
|
|
|
|
RESULT(T_NET, net, src);
|
|
}
|
|
|
|
INST(FI_NET_DST, 1, 1) { /* Get dst prefix */
|
|
ARG(1, T_NET);
|
|
|
|
net_addr_union *net = (void *) v1.val.net;
|
|
net_addr *dst = falloc(sizeof(net_addr_ip6));
|
|
const byte *part;
|
|
|
|
switch(v1.val.net->type) {
|
|
case NET_FLOW4:
|
|
part = flow4_get_part(&net->flow4, FLOW_TYPE_DST_PREFIX);
|
|
if (part)
|
|
net_fill_ip4(dst, flow_read_ip4_part(part), flow_read_pxlen(part));
|
|
else
|
|
net_fill_ip4(dst, IP4_NONE, 0);
|
|
break;
|
|
|
|
case NET_FLOW6:
|
|
part = flow6_get_part(&net->flow6, FLOW_TYPE_DST_PREFIX);
|
|
if (part)
|
|
net_fill_ip6(dst, flow_read_ip6_part(part), flow_read_pxlen(part));
|
|
else
|
|
net_fill_ip6(dst, IP6_NONE, 0);
|
|
break;
|
|
|
|
case NET_IP6_SADR:
|
|
net_fill_ip6(dst, net->ip6_sadr.dst_prefix, net->ip6_sadr.dst_pxlen);
|
|
break;
|
|
|
|
default:
|
|
runtime( "Flow or SADR expected" );
|
|
}
|
|
|
|
RESULT(T_NET, net, dst);
|
|
}
|
|
|
|
INST(FI_ROA_MAXLEN, 1, 1) { /* Get ROA max prefix length */
|
|
ARG(1, T_NET);
|
|
if (!net_is_roa(v1.val.net))
|
|
runtime( "ROA expected" );
|
|
|
|
RESULT(T_INT, i, (v1.val.net->type == NET_ROA4) ?
|
|
((net_addr_roa4 *) v1.val.net)->max_pxlen :
|
|
((net_addr_roa6 *) v1.val.net)->max_pxlen);
|
|
}
|
|
|
|
INST(FI_ROA_ASN, 1, 1) { /* Get ROA ASN */
|
|
ARG(1, T_NET);
|
|
if (!net_is_roa(v1.val.net))
|
|
runtime( "ROA expected" );
|
|
|
|
RESULT(T_INT, i, (v1.val.net->type == NET_ROA4) ?
|
|
((net_addr_roa4 *) v1.val.net)->asn :
|
|
((net_addr_roa6 *) v1.val.net)->asn);
|
|
}
|
|
|
|
INST(FI_IP, 1, 1) { /* Convert prefix to ... */
|
|
ARG(1, T_NET);
|
|
RESULT(T_IP, ip, net_prefix(v1.val.net));
|
|
}
|
|
|
|
INST(FI_ROUTE_DISTINGUISHER, 1, 1) {
|
|
ARG(1, T_NET);
|
|
if (!net_is_vpn(v1.val.net))
|
|
runtime( "VPN address expected" );
|
|
RESULT(T_RD, ec, net_rd(v1.val.net));
|
|
}
|
|
|
|
INST(FI_AS_PATH_FIRST, 1, 1) { /* Get first ASN from AS PATH */
|
|
ARG(1, T_PATH);
|
|
u32 as = 0;
|
|
as_path_get_first(v1.val.ad, &as);
|
|
RESULT(T_INT, i, as);
|
|
}
|
|
|
|
INST(FI_AS_PATH_LAST, 1, 1) { /* Get last ASN from AS PATH */
|
|
ARG(1, T_PATH);
|
|
u32 as = 0;
|
|
as_path_get_last(v1.val.ad, &as);
|
|
RESULT(T_INT, i, as);
|
|
}
|
|
|
|
INST(FI_AS_PATH_LAST_NAG, 1, 1) { /* Get last ASN from non-aggregated part of AS PATH */
|
|
ARG(1, T_PATH);
|
|
RESULT(T_INT, i, as_path_get_last_nonaggregated(v1.val.ad));
|
|
}
|
|
|
|
INST(FI_RETURN, 1, 1) {
|
|
NEVER_CONSTANT;
|
|
/* Acquire the return value */
|
|
ARG_ANY(1);
|
|
uint retpos = fstk->vcnt;
|
|
|
|
/* Drop every sub-block including ourselves */
|
|
while ((fstk->ecnt-- > 0) && !(fstk->estk[fstk->ecnt].emask & FE_RETURN))
|
|
;
|
|
|
|
/* Now we are at the caller frame; if no such, try to convert to accept/reject. */
|
|
if (!fstk->ecnt)
|
|
if (fstk->vstk[retpos].type == T_BOOL)
|
|
if (fstk->vstk[retpos].val.i)
|
|
return F_ACCEPT;
|
|
else
|
|
return F_REJECT;
|
|
else
|
|
runtime("Can't return non-bool from non-function");
|
|
|
|
/* Set the value stack position, overwriting the former implicit void */
|
|
fstk->vcnt = fstk->estk[fstk->ecnt].ventry - 1;
|
|
|
|
/* Copy the return value */
|
|
RESULT_VAL(fstk->vstk[retpos]);
|
|
}
|
|
|
|
INST(FI_CALL, 0, 1) {
|
|
NEVER_CONSTANT;
|
|
SYMBOL;
|
|
|
|
FID_SAME_BODY()
|
|
if (!(f1->sym->flags & SYM_FLAG_SAME))
|
|
return 0;
|
|
FID_INTERPRET_BODY()
|
|
|
|
/* Push the body on stack */
|
|
LINEX(sym->function);
|
|
curline.emask |= FE_RETURN;
|
|
|
|
/* Before this instruction was called, there was the T_VOID
|
|
* automatic return value pushed on value stack and also
|
|
* sym->function->args function arguments. Setting the
|
|
* vbase to point to first argument. */
|
|
ASSERT(curline.ventry >= sym->function->args);
|
|
curline.ventry -= sym->function->args;
|
|
curline.vbase = curline.ventry;
|
|
|
|
/* Storage for local variables */
|
|
memset(&(fstk->vstk[fstk->vcnt]), 0, sizeof(struct f_val) * sym->function->vars);
|
|
fstk->vcnt += sym->function->vars;
|
|
}
|
|
|
|
INST(FI_DROP_RESULT, 1, 0) {
|
|
NEVER_CONSTANT;
|
|
ARG_ANY(1);
|
|
}
|
|
|
|
INST(FI_SWITCH, 1, 0) {
|
|
ARG_ANY(1);
|
|
|
|
FID_MEMBER(struct f_tree *, tree, [[!same_tree(f1->tree, f2->tree)]], "tree %p", item->tree);
|
|
|
|
const struct f_tree *t = find_tree(tree, &v1);
|
|
if (!t) {
|
|
v1.type = T_VOID;
|
|
t = find_tree(tree, &v1);
|
|
if (!t) {
|
|
debug( "No else statement?\n");
|
|
FID_HIC(,break,return NULL);
|
|
}
|
|
}
|
|
/* It is actually possible to have t->data NULL */
|
|
|
|
LINEX(t->data);
|
|
}
|
|
|
|
INST(FI_IP_MASK, 2, 1) { /* IP.MASK(val) */
|
|
ARG(1, T_IP);
|
|
ARG(2, T_INT);
|
|
RESULT(T_IP, ip, [[ ipa_is_ip4(v1.val.ip) ?
|
|
ipa_from_ip4(ip4_and(ipa_to_ip4(v1.val.ip), ip4_mkmask(v2.val.i))) :
|
|
ipa_from_ip6(ip6_and(ipa_to_ip6(v1.val.ip), ip6_mkmask(v2.val.i))) ]]);
|
|
}
|
|
|
|
INST(FI_PATH_PREPEND, 2, 1) { /* Path prepend */
|
|
ARG(1, T_PATH);
|
|
ARG(2, T_INT);
|
|
RESULT(T_PATH, ad, [[ as_path_prepend(fpool, v1.val.ad, v2.val.i) ]]);
|
|
}
|
|
|
|
INST(FI_CLIST_ADD, 2, 1) { /* (Extended) Community list add */
|
|
ARG_ANY(1);
|
|
ARG_ANY(2);
|
|
RESULT_TYPE(f1->type);
|
|
|
|
if (v1.type == T_PATH)
|
|
runtime("Can't add to path");
|
|
|
|
else if (v1.type == T_CLIST)
|
|
{
|
|
/* Community (or cluster) list */
|
|
struct f_val dummy;
|
|
|
|
if ((v2.type == T_PAIR) || (v2.type == T_QUAD))
|
|
RESULT_(T_CLIST, ad, [[ int_set_add(fpool, v1.val.ad, v2.val.i) ]]);
|
|
/* IP->Quad implicit conversion */
|
|
else if (val_is_ip4(&v2))
|
|
RESULT_(T_CLIST, ad, [[ int_set_add(fpool, v1.val.ad, ipa_to_u32(v2.val.ip)) ]]);
|
|
else if ((v2.type == T_SET) && clist_set_type(v2.val.t, &dummy))
|
|
runtime("Can't add set");
|
|
else if (v2.type == T_CLIST)
|
|
RESULT_(T_CLIST, ad, [[ int_set_union(fpool, v1.val.ad, v2.val.ad) ]]);
|
|
else
|
|
runtime("Can't add non-pair");
|
|
}
|
|
|
|
else if (v1.type == T_ECLIST)
|
|
{
|
|
/* v2.val is either EC or EC-set */
|
|
if ((v2.type == T_SET) && eclist_set_type(v2.val.t))
|
|
runtime("Can't add set");
|
|
else if (v2.type == T_ECLIST)
|
|
RESULT_(T_ECLIST, ad, [[ ec_set_union(fpool, v1.val.ad, v2.val.ad) ]]);
|
|
else if (v2.type != T_EC)
|
|
runtime("Can't add non-ec");
|
|
else
|
|
RESULT_(T_ECLIST, ad, [[ ec_set_add(fpool, v1.val.ad, v2.val.ec) ]]);
|
|
}
|
|
|
|
else if (v1.type == T_LCLIST)
|
|
{
|
|
/* v2.val is either LC or LC-set */
|
|
if ((v2.type == T_SET) && lclist_set_type(v2.val.t))
|
|
runtime("Can't add set");
|
|
else if (v2.type == T_LCLIST)
|
|
RESULT_(T_LCLIST, ad, [[ lc_set_union(fpool, v1.val.ad, v2.val.ad) ]]);
|
|
else if (v2.type != T_LC)
|
|
runtime("Can't add non-lc");
|
|
else
|
|
RESULT_(T_LCLIST, ad, [[ lc_set_add(fpool, v1.val.ad, v2.val.lc) ]]);
|
|
|
|
}
|
|
|
|
else
|
|
runtime("Can't add to non-[e|l]clist");
|
|
}
|
|
|
|
INST(FI_CLIST_DEL, 2, 1) { /* (Extended) Community list add or delete */
|
|
ARG_ANY(1);
|
|
ARG_ANY(2);
|
|
RESULT_TYPE(f1->type);
|
|
|
|
if (v1.type == T_PATH)
|
|
{
|
|
const struct f_tree *set = NULL;
|
|
u32 key = 0;
|
|
|
|
if (v2.type == T_INT)
|
|
key = v2.val.i;
|
|
else if ((v2.type == T_SET) && (v2.val.t->from.type == T_INT))
|
|
set = v2.val.t;
|
|
else
|
|
runtime("Can't delete non-integer (set)");
|
|
|
|
RESULT_(T_PATH, ad, [[ as_path_filter(fpool, v1.val.ad, set, key, 0) ]]);
|
|
}
|
|
|
|
else if (v1.type == T_CLIST)
|
|
{
|
|
/* Community (or cluster) list */
|
|
struct f_val dummy;
|
|
|
|
if ((v2.type == T_PAIR) || (v2.type == T_QUAD))
|
|
RESULT_(T_CLIST, ad, [[ int_set_del(fpool, v1.val.ad, v2.val.i) ]]);
|
|
/* IP->Quad implicit conversion */
|
|
else if (val_is_ip4(&v2))
|
|
RESULT_(T_CLIST, ad, [[ int_set_del(fpool, v1.val.ad, ipa_to_u32(v2.val.ip)) ]]);
|
|
else if ((v2.type == T_SET) && clist_set_type(v2.val.t, &dummy) || (v2.type == T_CLIST))
|
|
RESULT_(T_CLIST, ad, [[ clist_filter(fpool, v1.val.ad, &v2, 0) ]]);
|
|
else
|
|
runtime("Can't delete non-pair");
|
|
}
|
|
|
|
else if (v1.type == T_ECLIST)
|
|
{
|
|
/* v2.val is either EC or EC-set */
|
|
if ((v2.type == T_SET) && eclist_set_type(v2.val.t) || (v2.type == T_ECLIST))
|
|
RESULT_(T_ECLIST, ad, [[ eclist_filter(fpool, v1.val.ad, &v2, 0) ]]);
|
|
else if (v2.type != T_EC)
|
|
runtime("Can't delete non-ec");
|
|
else
|
|
RESULT_(T_ECLIST, ad, [[ ec_set_del(fpool, v1.val.ad, v2.val.ec) ]]);
|
|
}
|
|
|
|
else if (v1.type == T_LCLIST)
|
|
{
|
|
/* v2.val is either LC or LC-set */
|
|
if ((v2.type == T_SET) && lclist_set_type(v2.val.t) || (v2.type == T_LCLIST))
|
|
RESULT_(T_LCLIST, ad, [[ lclist_filter(fpool, v1.val.ad, &v2, 0) ]]);
|
|
else if (v2.type != T_LC)
|
|
runtime("Can't delete non-lc");
|
|
else
|
|
RESULT_(T_LCLIST, ad, [[ lc_set_del(fpool, v1.val.ad, v2.val.lc) ]]);
|
|
}
|
|
|
|
else
|
|
runtime("Can't delete in non-[e|l]clist");
|
|
}
|
|
|
|
INST(FI_CLIST_FILTER, 2, 1) { /* (Extended) Community list add or delete */
|
|
ARG_ANY(1);
|
|
ARG_ANY(2);
|
|
RESULT_TYPE(f1->type);
|
|
|
|
if (v1.type == T_PATH)
|
|
{
|
|
u32 key = 0;
|
|
|
|
if ((v2.type == T_SET) && (v2.val.t->from.type == T_INT))
|
|
RESULT_(T_PATH, ad, [[ as_path_filter(fpool, v1.val.ad, v2.val.t, key, 1) ]]);
|
|
else
|
|
runtime("Can't filter integer");
|
|
}
|
|
|
|
else if (v1.type == T_CLIST)
|
|
{
|
|
/* Community (or cluster) list */
|
|
struct f_val dummy;
|
|
|
|
if ((v2.type == T_SET) && clist_set_type(v2.val.t, &dummy) || (v2.type == T_CLIST))
|
|
RESULT_(T_CLIST, ad, [[ clist_filter(fpool, v1.val.ad, &v2, 1) ]]);
|
|
else
|
|
runtime("Can't filter pair");
|
|
}
|
|
|
|
else if (v1.type == T_ECLIST)
|
|
{
|
|
/* v2.val is either EC or EC-set */
|
|
if ((v2.type == T_SET) && eclist_set_type(v2.val.t) || (v2.type == T_ECLIST))
|
|
RESULT_(T_ECLIST, ad, [[ eclist_filter(fpool, v1.val.ad, &v2, 1) ]]);
|
|
else
|
|
runtime("Can't filter ec");
|
|
}
|
|
|
|
else if (v1.type == T_LCLIST)
|
|
{
|
|
/* v2.val is either LC or LC-set */
|
|
if ((v2.type == T_SET) && lclist_set_type(v2.val.t) || (v2.type == T_LCLIST))
|
|
RESULT_(T_LCLIST, ad, [[ lclist_filter(fpool, v1.val.ad, &v2, 1) ]]);
|
|
else
|
|
runtime("Can't filter lc");
|
|
}
|
|
|
|
else
|
|
runtime("Can't filter non-[e|l]clist");
|
|
}
|
|
|
|
INST(FI_ROA_CHECK_IMPLICIT, 0, 1) { /* ROA Check */
|
|
NEVER_CONSTANT;
|
|
RTC(1);
|
|
struct rtable *table = rtc->table;
|
|
ACCESS_RTE;
|
|
ACCESS_EATTRS;
|
|
const net_addr *net = (*fs->rte)->net->n.addr;
|
|
|
|
/* We ignore temporary attributes, probably not a problem here */
|
|
/* 0x02 is a value of BA_AS_PATH, we don't want to include BGP headers */
|
|
eattr *e = ea_find(*fs->eattrs, EA_CODE(PROTOCOL_BGP, 0x02));
|
|
|
|
if (!e || ((e->type & EAF_TYPE_MASK) != EAF_TYPE_AS_PATH))
|
|
runtime("Missing AS_PATH attribute");
|
|
|
|
u32 as = 0;
|
|
as_path_get_last(e->u.ptr, &as);
|
|
|
|
if (!table)
|
|
runtime("Missing ROA table");
|
|
|
|
if (table->addr_type != NET_ROA4 && table->addr_type != NET_ROA6)
|
|
runtime("Table type must be either ROA4 or ROA6");
|
|
|
|
if (table->addr_type != (net->type == NET_IP4 ? NET_ROA4 : NET_ROA6))
|
|
RESULT(T_ENUM_ROA, i, ROA_UNKNOWN); /* Prefix and table type mismatch */
|
|
else
|
|
RESULT(T_ENUM_ROA, i, [[ net_roa_check(table, net, as) ]]);
|
|
}
|
|
|
|
INST(FI_ROA_CHECK_EXPLICIT, 2, 1) { /* ROA Check */
|
|
NEVER_CONSTANT;
|
|
ARG(1, T_NET);
|
|
ARG(2, T_INT);
|
|
RTC(3);
|
|
struct rtable *table = rtc->table;
|
|
|
|
u32 as = v2.val.i;
|
|
|
|
if (!table)
|
|
runtime("Missing ROA table");
|
|
|
|
if (table->addr_type != NET_ROA4 && table->addr_type != NET_ROA6)
|
|
runtime("Table type must be either ROA4 or ROA6");
|
|
|
|
if (table->addr_type != (v1.val.net->type == NET_IP4 ? NET_ROA4 : NET_ROA6))
|
|
RESULT(T_ENUM_ROA, i, ROA_UNKNOWN); /* Prefix and table type mismatch */
|
|
else
|
|
RESULT(T_ENUM_ROA, i, [[ net_roa_check(table, v1.val.net, as) ]]);
|
|
|
|
}
|
|
|
|
INST(FI_FORMAT, 1, 0) { /* Format */
|
|
ARG_ANY(1);
|
|
RESULT(T_STRING, s, val_format_str(fpool, &v1));
|
|
}
|
|
|
|
INST(FI_ASSERT, 1, 0) { /* Birdtest Assert */
|
|
NEVER_CONSTANT;
|
|
ARG(1, T_BOOL);
|
|
|
|
FID_MEMBER(char *, s, [[strcmp(f1->s, f2->s)]], "string %s", item->s);
|
|
|
|
ASSERT(s);
|
|
|
|
if (!bt_assert_hook)
|
|
runtime("No bt_assert hook registered, can't assert");
|
|
|
|
bt_assert_hook(v1.val.i, what);
|
|
}
|