mirror of
https://gitlab.nic.cz/labs/bird.git
synced 2024-12-31 22:21:54 +00:00
785 lines
19 KiB
C
785 lines
19 KiB
C
/*
|
|
* BIRD -- Forwarding Information Base -- Data Structures
|
|
*
|
|
* (c) 1998--2000 Martin Mares <mj@ucw.cz>
|
|
*
|
|
* Can be freely distributed and used under the terms of the GNU GPL.
|
|
*/
|
|
|
|
/**
|
|
* DOC: Forwarding Information Base
|
|
*
|
|
* FIB is a data structure designed for storage of routes indexed by their
|
|
* network prefixes. It supports insertion, deletion, searching by prefix,
|
|
* `routing' (in CIDR sense, that is searching for a longest prefix matching
|
|
* a given IP address) and (which makes the structure very tricky to implement)
|
|
* asynchronous reading, that is enumerating the contents of a FIB while other
|
|
* modules add, modify or remove entries.
|
|
*
|
|
* Internally, each FIB is represented as a collection of nodes of type &fib_node
|
|
* indexed using a sophisticated hashing mechanism.
|
|
* We use two-stage hashing where we calculate a 16-bit primary hash key independent
|
|
* on hash table size and then we just divide the primary keys modulo table size
|
|
* to get a real hash key used for determining the bucket containing the node.
|
|
* The lists of nodes in each bucket are sorted according to the primary hash
|
|
* key, hence if we keep the total number of buckets to be a power of two,
|
|
* re-hashing of the structure keeps the relative order of the nodes.
|
|
*
|
|
* To get the asynchronous reading consistent over node deletions, we need to
|
|
* keep a list of readers for each node. When a node gets deleted, its readers
|
|
* are automatically moved to the next node in the table.
|
|
*
|
|
* Basic FIB operations are performed by functions defined by this module,
|
|
* enumerating of FIB contents is accomplished by using the FIB_WALK() macro
|
|
* or FIB_ITERATE_START() if you want to do it asynchronously.
|
|
*
|
|
* For simple iteration just place the body of the loop between FIB_WALK() and
|
|
* FIB_WALK_END(). You can't modify the FIB during the iteration (you can modify
|
|
* data in the node, but not add or remove nodes).
|
|
*
|
|
* If you need more freedom, you can use the FIB_ITERATE_*() group of macros.
|
|
* First, you initialize an iterator with FIB_ITERATE_INIT(). Then you can put
|
|
* the loop body in between FIB_ITERATE_START() and FIB_ITERATE_END(). In
|
|
* addition, the iteration can be suspended by calling FIB_ITERATE_PUT().
|
|
* This'll link the iterator inside the FIB. While suspended, you may modify the
|
|
* FIB, exit the current function, etc. To resume the iteration, enter the loop
|
|
* again. You can use FIB_ITERATE_UNLINK() to unlink the iterator (while
|
|
* iteration is suspended) in cases like premature end of FIB iteration.
|
|
*
|
|
* Note that the iterator must not be destroyed when the iteration is suspended,
|
|
* the FIB would then contain a pointer to invalid memory. Therefore, after each
|
|
* FIB_ITERATE_INIT() or FIB_ITERATE_PUT() there must be either
|
|
* FIB_ITERATE_START() or FIB_ITERATE_UNLINK() before the iterator is destroyed.
|
|
*/
|
|
|
|
#undef LOCAL_DEBUG
|
|
|
|
#include "nest/bird.h"
|
|
#include "nest/route.h"
|
|
#include "lib/string.h"
|
|
|
|
/*
|
|
* The FIB rehash values are maintaining FIB count between N/5 and 2N. What
|
|
* does it mean?
|
|
*
|
|
* +------------+--------+---------+-----------+----------+-----------+
|
|
* | Table size | Memory | Min cnt | net + rte | Max cnt | net + rte |
|
|
* +------------+--------+---------+-----------+----------+-----------+
|
|
* | 1k | 8k | 0 | 0 | 2k | 192 k |
|
|
* | 2k | 16k | 409 | 38.3k | 4k | 384 k |
|
|
* | 4k | 32k | 819 | 76.8k | 8k | 768 k |
|
|
* | 8k | 64k | 1.6k | 153.6k | 16k | 1.5M |
|
|
* | 16k | 128k | 3.2k | 307.1k | 32k | 3 M |
|
|
* | 32k | 256k | 6.4k | 614.3k | 64k | 6 M |
|
|
* | 64k | 512k | 12.8k | 1.2M | 128k | 12 M |
|
|
* | 128k | 1024k | 25.6k | 2.4M | 256k | 24 M |
|
|
* | 256k | 2M | 51.2k | 4.8M | 512k | 48 M |
|
|
* | 512k | 4M | 102.4k | 9.6M | 1M | 96 M |
|
|
* | 1M | 8M | 204.8k | 19.2M | 2M | 192 M |
|
|
* | 2M | 16M | 409.6k | 38.4M | 4M | 384 M |
|
|
* | 4M | 32M | 819.2k | 76.8M | 8M | 768 M |
|
|
* | 8M | 64M | 1.6M | 153.6M | infinity | infinity |
|
|
* +------------+--------+---------+-----------+----------+-----------+
|
|
*
|
|
* Table size shows how many slots are in FIB table.
|
|
* Memory shows how much memory is eaten by FIB table.
|
|
* Min cnt minimal number of nets in table of given size
|
|
* Max cnt maximal number of nets in table of given size
|
|
* net + rte memory eaten by 1 net and one route in it for min cnt and max cnt
|
|
*
|
|
* Example: If we have 750,000 network entries in a table:
|
|
* * the table size may be 512k if we have never had more
|
|
* * the table size may be 1M or 2M if we at least happened to have more
|
|
* * 256k is too small, 8M is too big
|
|
*
|
|
* When growing, rehash is done on demand so we do it on every power of 2.
|
|
* When shrinking, rehash is done on delete which is done (in global tables)
|
|
* in a scheduled event. Rehashing down 2 steps.
|
|
*
|
|
*/
|
|
|
|
|
|
#define HASH_DEF_ORDER 10
|
|
#define HASH_HI_MARK * 2
|
|
#define HASH_HI_STEP 1
|
|
#define HASH_HI_MAX 24
|
|
#define HASH_LO_MARK / 5
|
|
#define HASH_LO_STEP 2
|
|
#define HASH_LO_MIN 10
|
|
|
|
|
|
static void
|
|
fib_ht_alloc(struct fib *f)
|
|
{
|
|
f->hash_size = 1 << f->hash_order;
|
|
f->hash_shift = 32 - f->hash_order;
|
|
if (f->hash_order > HASH_HI_MAX - HASH_HI_STEP)
|
|
f->entries_max = ~0;
|
|
else
|
|
f->entries_max = f->hash_size HASH_HI_MARK;
|
|
if (f->hash_order < HASH_LO_MIN + HASH_LO_STEP)
|
|
f->entries_min = 0;
|
|
else
|
|
f->entries_min = f->hash_size HASH_LO_MARK;
|
|
DBG("Allocating FIB hash of order %d: %d entries, %d low, %d high\n",
|
|
f->hash_order, f->hash_size, f->entries_min, f->entries_max);
|
|
f->hash_table = mb_alloc(f->fib_pool, f->hash_size * sizeof(struct fib_node *));
|
|
}
|
|
|
|
static inline void
|
|
fib_ht_free(struct fib_node **h)
|
|
{
|
|
mb_free(h);
|
|
}
|
|
|
|
|
|
static inline u32 fib_hash(struct fib *f, const net_addr *a);
|
|
|
|
/**
|
|
* fib_init - initialize a new FIB
|
|
* @f: the FIB to be initialized (the structure itself being allocated by the caller)
|
|
* @p: pool to allocate the nodes in
|
|
* @node_size: node size to be used (each node consists of a standard header &fib_node
|
|
* followed by user data)
|
|
* @hash_order: initial hash order (a binary logarithm of hash table size), 0 to use default order
|
|
* (recommended)
|
|
* @init: pointer a function to be called to initialize a newly created node
|
|
*
|
|
* This function initializes a newly allocated FIB and prepares it for use.
|
|
*/
|
|
void
|
|
fib_init(struct fib *f, pool *p, uint addr_type, uint node_size, uint node_offset, uint hash_order, fib_init_fn init)
|
|
{
|
|
uint addr_length = net_addr_length[addr_type];
|
|
|
|
if (!hash_order)
|
|
hash_order = HASH_DEF_ORDER;
|
|
f->fib_pool = p;
|
|
f->fib_slab = addr_length ? sl_new(p, node_size + addr_length) : NULL;
|
|
f->addr_type = addr_type;
|
|
f->node_size = node_size;
|
|
f->node_offset = node_offset;
|
|
f->hash_order = hash_order;
|
|
fib_ht_alloc(f);
|
|
bzero(f->hash_table, f->hash_size * sizeof(struct fib_node *));
|
|
f->entries = 0;
|
|
f->entries_min = 0;
|
|
f->init = init;
|
|
}
|
|
|
|
static void
|
|
fib_rehash(struct fib *f, int step)
|
|
{
|
|
unsigned old, new, oldn, newn, ni, nh;
|
|
struct fib_node **n, *e, *x, **t, **m, **h;
|
|
|
|
old = f->hash_order;
|
|
oldn = f->hash_size;
|
|
new = old + step;
|
|
m = h = f->hash_table;
|
|
DBG("Re-hashing FIB from order %d to %d\n", old, new);
|
|
f->hash_order = new;
|
|
fib_ht_alloc(f);
|
|
t = n = f->hash_table;
|
|
newn = f->hash_size;
|
|
ni = 0;
|
|
|
|
while (oldn--)
|
|
{
|
|
x = *h++;
|
|
while (e = x)
|
|
{
|
|
x = e->next;
|
|
nh = fib_hash(f, e->addr);
|
|
while (nh > ni)
|
|
{
|
|
*t = NULL;
|
|
ni++;
|
|
t = ++n;
|
|
}
|
|
*t = e;
|
|
t = &e->next;
|
|
}
|
|
}
|
|
while (ni < newn)
|
|
{
|
|
*t = NULL;
|
|
ni++;
|
|
t = ++n;
|
|
}
|
|
fib_ht_free(m);
|
|
}
|
|
|
|
#define CAST(t) (const net_addr_##t *)
|
|
#define CAST2(t) (net_addr_##t *)
|
|
|
|
#define FIB_HASH(f,a,t) (net_hash_##t(CAST(t) a) >> f->hash_shift)
|
|
|
|
#define FIB_FIND(f,a,t) \
|
|
({ \
|
|
struct fib_node *e = f->hash_table[FIB_HASH(f, a, t)]; \
|
|
while (e && !net_equal_##t(CAST(t) e->addr, CAST(t) a)) \
|
|
e = e->next; \
|
|
fib_node_to_user(f, e); \
|
|
})
|
|
|
|
#define FIB_INSERT(f,a,e,t) \
|
|
({ \
|
|
u32 h = net_hash_##t(CAST(t) a); \
|
|
struct fib_node **ee = f->hash_table + (h >> f->hash_shift); \
|
|
struct fib_node *g; \
|
|
\
|
|
while ((g = *ee) && (net_hash_##t(CAST(t) g->addr) < h)) \
|
|
ee = &g->next; \
|
|
\
|
|
net_copy_##t(CAST2(t) e->addr, CAST(t) a); \
|
|
e->next = *ee; \
|
|
*ee = e; \
|
|
})
|
|
|
|
|
|
static inline u32
|
|
fib_hash(struct fib *f, const net_addr *a)
|
|
{
|
|
/* Same as FIB_HASH() */
|
|
return net_hash(a) >> f->hash_shift;
|
|
}
|
|
|
|
void *
|
|
fib_get_chain(struct fib *f, const net_addr *a)
|
|
{
|
|
ASSERT(f->addr_type == a->type);
|
|
|
|
struct fib_node *e = f->hash_table[fib_hash(f, a)];
|
|
return e;
|
|
}
|
|
|
|
/**
|
|
* fib_find - search for FIB node by prefix
|
|
* @f: FIB to search in
|
|
* @n: network address
|
|
*
|
|
* Search for a FIB node corresponding to the given prefix, return
|
|
* a pointer to it or %NULL if no such node exists.
|
|
*/
|
|
void *
|
|
fib_find(struct fib *f, const net_addr *a)
|
|
{
|
|
ASSERT(f->addr_type == a->type);
|
|
|
|
switch (f->addr_type)
|
|
{
|
|
case NET_IP4: return FIB_FIND(f, a, ip4);
|
|
case NET_IP6: return FIB_FIND(f, a, ip6);
|
|
case NET_VPN4: return FIB_FIND(f, a, vpn4);
|
|
case NET_VPN6: return FIB_FIND(f, a, vpn6);
|
|
case NET_ROA4: return FIB_FIND(f, a, roa4);
|
|
case NET_ROA6: return FIB_FIND(f, a, roa6);
|
|
case NET_FLOW4: return FIB_FIND(f, a, flow4);
|
|
case NET_FLOW6: return FIB_FIND(f, a, flow6);
|
|
case NET_IP6_SADR: return FIB_FIND(f, a, ip6_sadr);
|
|
case NET_MPLS: return FIB_FIND(f, a, mpls);
|
|
default: bug("invalid type");
|
|
}
|
|
}
|
|
|
|
static void
|
|
fib_insert(struct fib *f, const net_addr *a, struct fib_node *e)
|
|
{
|
|
ASSERT(f->addr_type == a->type);
|
|
|
|
switch (f->addr_type)
|
|
{
|
|
case NET_IP4: FIB_INSERT(f, a, e, ip4); return;
|
|
case NET_IP6: FIB_INSERT(f, a, e, ip6); return;
|
|
case NET_VPN4: FIB_INSERT(f, a, e, vpn4); return;
|
|
case NET_VPN6: FIB_INSERT(f, a, e, vpn6); return;
|
|
case NET_ROA4: FIB_INSERT(f, a, e, roa4); return;
|
|
case NET_ROA6: FIB_INSERT(f, a, e, roa6); return;
|
|
case NET_FLOW4: FIB_INSERT(f, a, e, flow4); return;
|
|
case NET_FLOW6: FIB_INSERT(f, a, e, flow6); return;
|
|
case NET_IP6_SADR: FIB_INSERT(f, a, e, ip6_sadr); return;
|
|
case NET_MPLS: FIB_INSERT(f, a, e, mpls); return;
|
|
default: bug("invalid type");
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* fib_get - find or create a FIB node
|
|
* @f: FIB to work with
|
|
* @n: network address
|
|
*
|
|
* Search for a FIB node corresponding to the given prefix and
|
|
* return a pointer to it. If no such node exists, create it.
|
|
*/
|
|
void *
|
|
fib_get(struct fib *f, const net_addr *a)
|
|
{
|
|
void *b = fib_find(f, a);
|
|
if (b)
|
|
return b;
|
|
|
|
if (f->fib_slab)
|
|
b = sl_alloc(f->fib_slab);
|
|
else
|
|
b = mb_alloc(f->fib_pool, f->node_size + a->length);
|
|
|
|
struct fib_node *e = fib_user_to_node(f, b);
|
|
e->readers = NULL;
|
|
fib_insert(f, a, e);
|
|
|
|
memset(b, 0, f->node_offset);
|
|
if (f->init)
|
|
f->init(f, b);
|
|
|
|
if (f->entries++ > f->entries_max)
|
|
fib_rehash(f, HASH_HI_STEP);
|
|
|
|
return b;
|
|
}
|
|
|
|
static inline void *
|
|
fib_route_ip4(struct fib *f, net_addr_ip4 *n)
|
|
{
|
|
void *r;
|
|
|
|
while (!(r = fib_find(f, (net_addr *) n)) && (n->pxlen > 0))
|
|
{
|
|
n->pxlen--;
|
|
ip4_clrbit(&n->prefix, n->pxlen);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static inline void *
|
|
fib_route_ip6(struct fib *f, net_addr_ip6 *n)
|
|
{
|
|
void *r;
|
|
|
|
while (!(r = fib_find(f, (net_addr *) n)) && (n->pxlen > 0))
|
|
{
|
|
n->pxlen--;
|
|
ip6_clrbit(&n->prefix, n->pxlen);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* fib_route - CIDR routing lookup
|
|
* @f: FIB to search in
|
|
* @n: network address
|
|
*
|
|
* Search for a FIB node with longest prefix matching the given
|
|
* network, that is a node which a CIDR router would use for routing
|
|
* that network.
|
|
*/
|
|
void *
|
|
fib_route(struct fib *f, const net_addr *n)
|
|
{
|
|
ASSERT(f->addr_type == n->type);
|
|
|
|
net_addr *n0 = alloca(n->length);
|
|
net_copy(n0, n);
|
|
|
|
switch (n->type)
|
|
{
|
|
case NET_IP4:
|
|
case NET_VPN4:
|
|
case NET_ROA4:
|
|
case NET_FLOW4:
|
|
return fib_route_ip4(f, (net_addr_ip4 *) n0);
|
|
|
|
case NET_IP6:
|
|
case NET_VPN6:
|
|
case NET_ROA6:
|
|
case NET_FLOW6:
|
|
return fib_route_ip6(f, (net_addr_ip6 *) n0);
|
|
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
static inline void
|
|
fib_merge_readers(struct fib_iterator *i, struct fib_node *to)
|
|
{
|
|
if (to)
|
|
{
|
|
struct fib_iterator *j = to->readers;
|
|
if (!j)
|
|
{
|
|
/* Fast path */
|
|
to->readers = i;
|
|
i->prev = (struct fib_iterator *) to;
|
|
}
|
|
else
|
|
{
|
|
/* Really merging */
|
|
while (j->next)
|
|
j = j->next;
|
|
j->next = i;
|
|
i->prev = j;
|
|
}
|
|
while (i && i->node)
|
|
{
|
|
i->node = NULL;
|
|
i = i->next;
|
|
}
|
|
}
|
|
else /* No more nodes */
|
|
while (i)
|
|
{
|
|
i->prev = NULL;
|
|
i = i->next;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* fib_delete - delete a FIB node
|
|
* @f: FIB to delete from
|
|
* @E: entry to delete
|
|
*
|
|
* This function removes the given entry from the FIB,
|
|
* taking care of all the asynchronous readers by shifting
|
|
* them to the next node in the canonical reading order.
|
|
*/
|
|
void
|
|
fib_delete(struct fib *f, void *E)
|
|
{
|
|
struct fib_node *e = fib_user_to_node(f, E);
|
|
uint h = fib_hash(f, e->addr);
|
|
struct fib_node **ee = f->hash_table + h;
|
|
struct fib_iterator *it;
|
|
|
|
while (*ee)
|
|
{
|
|
if (*ee == e)
|
|
{
|
|
*ee = e->next;
|
|
if (it = e->readers)
|
|
{
|
|
struct fib_node *l = e->next;
|
|
while (!l)
|
|
{
|
|
h++;
|
|
if (h >= f->hash_size)
|
|
break;
|
|
else
|
|
l = f->hash_table[h];
|
|
}
|
|
fib_merge_readers(it, l);
|
|
}
|
|
|
|
if (f->fib_slab)
|
|
sl_free(E);
|
|
else
|
|
mb_free(E);
|
|
|
|
if (f->entries-- < f->entries_min)
|
|
fib_rehash(f, -HASH_LO_STEP);
|
|
return;
|
|
}
|
|
ee = &((*ee)->next);
|
|
}
|
|
bug("fib_delete() called for invalid node");
|
|
}
|
|
|
|
/**
|
|
* fib_free - delete a FIB
|
|
* @f: FIB to be deleted
|
|
*
|
|
* This function deletes a FIB -- it frees all memory associated
|
|
* with it and all its entries.
|
|
*/
|
|
void
|
|
fib_free(struct fib *f)
|
|
{
|
|
fib_ht_free(f->hash_table);
|
|
rfree(f->fib_slab);
|
|
}
|
|
|
|
void
|
|
fit_init(struct fib_iterator *i, struct fib *f)
|
|
{
|
|
unsigned h;
|
|
struct fib_node *n;
|
|
|
|
i->efef = 0xff;
|
|
for(h=0; h<f->hash_size; h++)
|
|
if (n = f->hash_table[h])
|
|
{
|
|
i->prev = (struct fib_iterator *) n;
|
|
if (i->next = n->readers)
|
|
i->next->prev = i;
|
|
n->readers = i;
|
|
i->node = n;
|
|
return;
|
|
}
|
|
/* The fib is empty, nothing to do */
|
|
i->prev = i->next = NULL;
|
|
i->node = NULL;
|
|
}
|
|
|
|
struct fib_node *
|
|
fit_get(struct fib *f, struct fib_iterator *i)
|
|
{
|
|
struct fib_node *n;
|
|
struct fib_iterator *j, *k;
|
|
|
|
if (!i->prev)
|
|
{
|
|
/* We are at the end */
|
|
i->hash = ~0 - 1;
|
|
return NULL;
|
|
}
|
|
if (!(n = i->node))
|
|
{
|
|
/* No node info available, we are a victim of merging. Try harder. */
|
|
j = i;
|
|
while (j->efef == 0xff)
|
|
j = j->prev;
|
|
n = (struct fib_node *) j;
|
|
}
|
|
j = i->prev;
|
|
if (k = i->next)
|
|
k->prev = j;
|
|
j->next = k;
|
|
i->hash = fib_hash(f, n->addr);
|
|
return n;
|
|
}
|
|
|
|
void
|
|
fit_put(struct fib_iterator *i, struct fib_node *n)
|
|
{
|
|
struct fib_iterator *j;
|
|
|
|
i->node = n;
|
|
if (j = n->readers)
|
|
j->prev = i;
|
|
i->next = j;
|
|
n->readers = i;
|
|
i->prev = (struct fib_iterator *) n;
|
|
}
|
|
|
|
void
|
|
fit_put_next(struct fib *f, struct fib_iterator *i, struct fib_node *n, uint hpos)
|
|
{
|
|
if (n = n->next)
|
|
goto found;
|
|
|
|
while (++hpos < f->hash_size)
|
|
if (n = f->hash_table[hpos])
|
|
goto found;
|
|
|
|
/* We are at the end */
|
|
i->prev = i->next = NULL;
|
|
i->node = NULL;
|
|
return;
|
|
|
|
found:
|
|
fit_put(i, n);
|
|
}
|
|
|
|
void
|
|
fit_put_end(struct fib_iterator *i)
|
|
{
|
|
i->prev = i->next = NULL;
|
|
i->node = NULL;
|
|
i->hash = ~0 - 1;
|
|
}
|
|
|
|
void
|
|
fit_copy(struct fib *f, struct fib_iterator *dst, struct fib_iterator *src)
|
|
{
|
|
struct fib_iterator *nxt = src->next;
|
|
|
|
fit_get(f, dst);
|
|
|
|
if (!src->prev)
|
|
{
|
|
/* We are at the end */
|
|
fit_put_end(dst);
|
|
return;
|
|
}
|
|
|
|
src->next = dst;
|
|
dst->prev = src;
|
|
|
|
dst->next = nxt;
|
|
if (nxt)
|
|
nxt->prev = dst;
|
|
|
|
dst->node = src->node;
|
|
dst->hash = src->hash;
|
|
}
|
|
|
|
|
|
#ifdef DEBUGGING
|
|
|
|
/**
|
|
* fib_check - audit a FIB
|
|
* @f: FIB to be checked
|
|
*
|
|
* This debugging function audits a FIB by checking its internal consistency.
|
|
* Use when you suspect somebody of corrupting innocent data structures.
|
|
*/
|
|
void
|
|
fib_check(struct fib *f)
|
|
{
|
|
uint i, ec, nulls;
|
|
|
|
ec = 0;
|
|
for(i=0; i<f->hash_size; i++)
|
|
{
|
|
struct fib_node *n;
|
|
for(n=f->hash_table[i]; n; n=n->next)
|
|
{
|
|
struct fib_iterator *j, *j0;
|
|
uint h0 = fib_hash(f, n->addr);
|
|
if (h0 != i)
|
|
bug("fib_check: mishashed %x->%x (order %d)", h0, i, f->hash_order);
|
|
j0 = (struct fib_iterator *) n;
|
|
nulls = 0;
|
|
for(j=n->readers; j; j=j->next)
|
|
{
|
|
if (j->prev != j0)
|
|
bug("fib_check: iterator->prev mismatch");
|
|
j0 = j;
|
|
if (!j->node)
|
|
nulls++;
|
|
else if (nulls)
|
|
bug("fib_check: iterator nullified");
|
|
else if (j->node != n)
|
|
bug("fib_check: iterator->node mismatch");
|
|
}
|
|
ec++;
|
|
}
|
|
}
|
|
if (ec != f->entries)
|
|
bug("fib_check: invalid entry count (%d != %d)", ec, f->entries);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
int
|
|
fib_histogram(struct fib *f)
|
|
{
|
|
log(L_WARN "Histogram dump start %d %d", f->hash_size, f->entries);
|
|
|
|
int i, j;
|
|
struct fib_node *e;
|
|
|
|
for (i = 0; i < f->hash_size; i++)
|
|
{
|
|
j = 0;
|
|
for (e = f->hash_table[i]; e != NULL; e = e->next)
|
|
j++;
|
|
if (j > 0)
|
|
log(L_WARN "Histogram line %d: %d", i, j);
|
|
}
|
|
|
|
log(L_WARN "Histogram dump end");
|
|
}
|
|
*/
|
|
|
|
#endif
|
|
|
|
#ifdef TEST
|
|
|
|
#include "lib/resource.h"
|
|
|
|
struct fib f;
|
|
|
|
void dump(char *m)
|
|
{
|
|
uint i;
|
|
|
|
debug("%s ... order=%d, size=%d, entries=%d\n", m, f.hash_order, f.hash_size, f.hash_size);
|
|
for(i=0; i<f.hash_size; i++)
|
|
{
|
|
struct fib_node *n;
|
|
struct fib_iterator *j;
|
|
for(n=f.hash_table[i]; n; n=n->next)
|
|
{
|
|
debug("%04x %08x %p %N", i, ipa_hash(n->prefix), n, n->addr);
|
|
for(j=n->readers; j; j=j->next)
|
|
debug(" %p[%p]", j, j->node);
|
|
debug("\n");
|
|
}
|
|
}
|
|
fib_check(&f);
|
|
debug("-----\n");
|
|
}
|
|
|
|
void init(struct fib_node *n)
|
|
{
|
|
}
|
|
|
|
int main(void)
|
|
{
|
|
struct fib_node *n;
|
|
struct fib_iterator i, j;
|
|
ip_addr a;
|
|
int c;
|
|
|
|
log_init_debug(NULL);
|
|
resource_init();
|
|
fib_init(&f, &root_pool, sizeof(struct fib_node), 4, init);
|
|
dump("init");
|
|
|
|
a = ipa_from_u32(0x01020304); n = fib_get(&f, &a, 32);
|
|
a = ipa_from_u32(0x02030405); n = fib_get(&f, &a, 32);
|
|
a = ipa_from_u32(0x03040506); n = fib_get(&f, &a, 32);
|
|
a = ipa_from_u32(0x00000000); n = fib_get(&f, &a, 32);
|
|
a = ipa_from_u32(0x00000c01); n = fib_get(&f, &a, 32);
|
|
a = ipa_from_u32(0xffffffff); n = fib_get(&f, &a, 32);
|
|
dump("fill");
|
|
|
|
fit_init(&i, &f);
|
|
dump("iter init");
|
|
|
|
fib_rehash(&f, 1);
|
|
dump("rehash up");
|
|
|
|
fib_rehash(&f, -1);
|
|
dump("rehash down");
|
|
|
|
next:
|
|
c = 0;
|
|
FIB_ITERATE_START(&f, &i, z)
|
|
{
|
|
if (c)
|
|
{
|
|
FIB_ITERATE_PUT(&i, z);
|
|
dump("iter");
|
|
goto next;
|
|
}
|
|
c = 1;
|
|
debug("got %p\n", z);
|
|
}
|
|
FIB_ITERATE_END(z);
|
|
dump("iter end");
|
|
|
|
fit_init(&i, &f);
|
|
fit_init(&j, &f);
|
|
dump("iter init 2");
|
|
|
|
n = fit_get(&f, &i);
|
|
dump("iter step 2");
|
|
|
|
fit_put(&i, n->next);
|
|
dump("iter step 3");
|
|
|
|
a = ipa_from_u32(0xffffffff); n = fib_get(&f, &a, 32);
|
|
fib_delete(&f, n);
|
|
dump("iter step 3");
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|