0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2024-12-22 09:41:54 +00:00
bird/filter/trie.c
2016-01-07 18:21:31 +01:00

345 lines
9.5 KiB
C

/*
* Filters: Trie for prefix sets
*
* Copyright 2009 Ondrej Zajicek <santiago@crfreenet.org>
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
/**
* DOC: Trie for prefix sets
*
* We use a (compressed) trie to represent prefix sets. Every node
* in the trie represents one prefix (&addr/&plen) and &plen also
* indicates the index of the bit in the address that is used to
* branch at the node. If we need to represent just a set of
* prefixes, it would be simple, but we have to represent a
* set of prefix patterns. Each prefix pattern consists of
* &ppaddr/&pplen and two integers: &low and &high, and a prefix
* &paddr/&plen matches that pattern if the first MIN(&plen, &pplen)
* bits of &paddr and &ppaddr are the same and &low <= &plen <= &high.
*
* We use a bitmask (&accept) to represent accepted prefix lengths
* at a node. As there are 33 prefix lengths (0..32 for IPv4), but
* there is just one prefix of zero length in the whole trie so we
* have &zero flag in &f_trie (indicating whether the trie accepts
* prefix 0.0.0.0/0) as a special case, and &accept bitmask
* represents accepted prefix lengths from 1 to 32.
*
* There are two cases in prefix matching - a match when the length
* of the prefix is smaller that the length of the prefix pattern,
* (&plen < &pplen) and otherwise. The second case is simple - we
* just walk through the trie and look at every visited node
* whether that prefix accepts our prefix length (&plen). The
* first case is tricky - we don't want to examine every descendant
* of a final node, so (when we create the trie) we have to propagate
* that information from nodes to their ascendants.
*
* Suppose that we have two masks (M1 and M2) for a node. Mask M1
* represents accepted prefix lengths by just the node and mask M2
* represents accepted prefix lengths by the node or any of its
* descendants. Therefore M2 is a bitwise or of M1 and children's
* M2 and this is a maintained invariant during trie building.
* Basically, when we want to match a prefix, we walk through the trie,
* check mask M1 for our prefix length and when we came to
* final node, we check mask M2.
*
* There are two differences in the real implementation. First,
* we use a compressed trie so there is a case that we skip our
* final node (if it is not in the trie) and we came to node that
* is either extension of our prefix, or completely out of path
* In the first case, we also have to check M2.
*
* Second, we really need not to maintain two separate bitmasks.
* Checks for mask M1 are always larger than &applen and we need
* just the first &pplen bits of mask M2 (if trie compression
* hadn't been used it would suffice to know just $applen-th bit),
* so we have to store them together in &accept mask - the first
* &pplen bits of mask M2 and then mask M1.
*
* There are four cases when we walk through a trie:
*
* - we are in NULL
* - we are out of path (prefixes are inconsistent)
* - we are in the wanted (final) node (node length == &plen)
* - we are beyond the end of path (node length > &plen)
* - we are still on path and keep walking (node length < &plen)
*
* The walking code in trie_match_prefix() is structured according to
* these cases.
*/
#include "nest/bird.h"
#include "lib/string.h"
#include "conf/conf.h"
#include "filter/filter.h"
/*
* In the trie code, the prefix length is internally treated as for the whole
* ip_addr, regardless whether it contains an IPv4 or IPv6 address. Therefore,
* remaining definitions make sense.
*/
#define ipa_mkmask(x) ip6_mkmask(x)
#define ipa_masklen(x) ip6_masklen(&x)
#define ipa_pxlen(x,y) ip6_pxlen(x,y)
#define ipa_getbit(x,n) ip6_getbit(x,n)
/**
* f_new_trie - allocates and returns a new empty trie
* @lp: linear pool to allocate items from
* @node_size: node size to be used (&f_trie_node and user data)
*/
struct f_trie *
f_new_trie(linpool *lp, uint node_size)
{
struct f_trie * ret;
ret = lp_allocz(lp, sizeof(struct f_trie) + node_size);
ret->lp = lp;
ret->node_size = node_size;
return ret;
}
static inline struct f_trie_node *
new_node(struct f_trie *t, int plen, ip_addr paddr, ip_addr pmask, ip_addr amask)
{
struct f_trie_node *n = lp_allocz(t->lp, t->node_size);
n->plen = plen;
n->addr = paddr;
n->mask = pmask;
n->accept = amask;
return n;
}
static inline void
attach_node(struct f_trie_node *parent, struct f_trie_node *child)
{
parent->c[ipa_getbit(child->addr, parent->plen) ? 1 : 0] = child;
}
/**
* trie_add_prefix
* @t: trie to add to
* @net: IP network prefix
* @l: prefix lower bound
* @h: prefix upper bound
*
* Adds prefix (prefix pattern) @n to trie @t. @l and @h are lower
* and upper bounds on accepted prefix lengths, both inclusive.
* 0 <= l, h <= 32 (128 for IPv6).
*
* Returns a pointer to the allocated node. The function can return a pointer to
* an existing node if @px and @plen are the same. If px/plen == 0/0 (or ::/0),
* a pointer to the root node is returned.
*/
void *
trie_add_prefix(struct f_trie *t, const net_addr *net, uint l, uint h)
{
ip_addr px = net_prefix(net);
uint plen = net_pxlen(net);
if (net->type == NET_IP4)
{
const uint delta = IP6_MAX_PREFIX_LENGTH - IP4_MAX_PREFIX_LENGTH;
plen += delta;
l += delta;
h += delta;
}
if (l == 0)
t->zero = 1;
else
l--;
if (h < plen)
plen = h;
ip_addr amask = ipa_xor(ipa_mkmask(l), ipa_mkmask(h));
ip_addr pmask = ipa_mkmask(plen);
ip_addr paddr = ipa_and(px, pmask);
struct f_trie_node *o = NULL;
struct f_trie_node *n = t->root;
while (n)
{
ip_addr cmask = ipa_and(n->mask, pmask);
if (ipa_compare(ipa_and(paddr, cmask), ipa_and(n->addr, cmask)))
{
/* We are out of path - we have to add branching node 'b'
between node 'o' and node 'n', and attach new node 'a'
as the other child of 'b'. */
int blen = ipa_pxlen(paddr, n->addr);
ip_addr bmask = ipa_mkmask(blen);
ip_addr baddr = ipa_and(px, bmask);
/* Merge accept masks from children to get accept mask for node 'b' */
ip_addr baccm = ipa_and(ipa_or(amask, n->accept), bmask);
struct f_trie_node *a = new_node(t, plen, paddr, pmask, amask);
struct f_trie_node *b = new_node(t, blen, baddr, bmask, baccm);
attach_node(o, b);
attach_node(b, n);
attach_node(b, a);
return a;
}
if (plen < n->plen)
{
/* We add new node 'a' between node 'o' and node 'n' */
amask = ipa_or(amask, ipa_and(n->accept, pmask));
struct f_trie_node *a = new_node(t, plen, paddr, pmask, amask);
attach_node(o, a);
attach_node(a, n);
return a;
}
if (plen == n->plen)
{
/* We already found added node in trie. Just update accept mask */
n->accept = ipa_or(n->accept, amask);
return n;
}
/* Update accept mask part M2 and go deeper */
n->accept = ipa_or(n->accept, ipa_and(amask, n->mask));
/* n->plen < plen and plen <= 32 (128) */
o = n;
n = n->c[ipa_getbit(paddr, n->plen) ? 1 : 0];
}
/* We add new tail node 'a' after node 'o' */
struct f_trie_node *a = new_node(t, plen, paddr, pmask, amask);
attach_node(o, a);
return a;
}
static int
trie_match_prefix(struct f_trie *t, ip_addr px, int plen)
{
ip_addr pmask = ipa_mkmask(plen);
ip_addr paddr = ipa_and(px, pmask);
if (plen == 0)
return t->zero;
int plentest = plen - 1;
struct f_trie_node *n = t->root;
while(n)
{
ip_addr cmask = ipa_and(n->mask, pmask);
/* We are out of path */
if (ipa_compare(ipa_and(paddr, cmask), ipa_and(n->addr, cmask)))
return 0;
/* Check accept mask */
if (ipa_getbit(n->accept, plentest))
return 1;
/* We finished trie walk and still no match */
if (plen <= n->plen)
return 0;
/* Choose children */
n = n->c[(ipa_getbit(paddr, n->plen)) ? 1 : 0];
}
return 0;
}
/**
* trie_match_net
* @t: trie
* @n: net address
*
* Tries to find a matching net in the trie such that
* prefix @n matches that prefix pattern. Returns 1 if there
* is such prefix pattern in the trie.
*/
int
trie_match_net(struct f_trie *t, const net_addr *n)
{
int add = 0;
switch (n->type) {
case NET_IP4:
case NET_VPN4:
case NET_ROA4:
add = IP6_MAX_PREFIX_LENGTH - IP4_MAX_PREFIX_LENGTH;
}
return trie_match_prefix(t, net_prefix(n), net_pxlen(n) + add);
}
static int
trie_node_same(struct f_trie_node *t1, struct f_trie_node *t2)
{
if ((t1 == NULL) && (t2 == NULL))
return 1;
if ((t1 == NULL) || (t2 == NULL))
return 0;
if ((t1->plen != t2->plen) ||
(! ipa_equal(t1->addr, t2->addr)) ||
(! ipa_equal(t1->accept, t2->accept)))
return 0;
return trie_node_same(t1->c[0], t2->c[0]) && trie_node_same(t1->c[1], t2->c[1]);
}
/**
* trie_same
* @t1: first trie to be compared
* @t2: second one
*
* Compares two tries and returns 1 if they are same
*/
int
trie_same(struct f_trie *t1, struct f_trie *t2)
{
return (t1->zero == t2->zero) && trie_node_same(t1->root, t2->root);
}
static void
trie_node_format(struct f_trie_node *t, buffer *buf)
{
if (t == NULL)
return;
if (ipa_nonzero(t->accept))
buffer_print(buf, "%I/%d{%I}, ", t->addr, t->plen, t->accept);
trie_node_format(t->c[0], buf);
trie_node_format(t->c[1], buf);
}
/**
* trie_format
* @t: trie to be formatted
* @buf: destination buffer
*
* Prints the trie to the supplied buffer.
*/
void
trie_format(struct f_trie *t, buffer *buf)
{
buffer_puts(buf, "[");
if (t->zero)
buffer_print(buf, "%I/%d", IPA_NONE, 0);
trie_node_format(t->root, buf);
/* Undo last separator */
if (buf->pos[-1] != '[')
buf->pos -= 2;
buffer_puts(buf, "]");
}