0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2024-12-31 22:21:54 +00:00
bird/lib/blake2-impl.h
Toke Høiland-Jørgensen 725d9af94a Lib: Add Blake2s and Blake2b hash functions
The Babel MAC authentication RFC recommends implementing Blake2s as one of
the supported algorithms. In order to achieve do this, add the blake2b and
blake2s hash functions for MAC authentication. The hashing function
implementations are the reference implementations from blake2.net.

The Blake2 algorithms allow specifying an arbitrary output size, and the
Babel MAC spec says to implement Blake2s with 128-bit output. To satisfy
this, we add two different variants of each of the algorithms, one using
the default size (256 bits for Blake2s, 512 bits for Blake2b), and one
using half the default output size.

Update to BIRD coding style done by committer.
2021-06-06 16:26:58 +02:00

154 lines
3.3 KiB
C

/*
* BIRD Library -- BLAKE2 Support Code
*
* Based on the code from BLAKE2 reference source code package
*
* Copyright 2012, Samuel Neves <sneves@dei.uc.pt>
*
* You may use this under the terms of the CC0, the OpenSSL Licence, or the
* Apache Public License 2.0, at your option. The terms of these licenses
* can be found at:
*
* - CC0 1.0 Universal : https://creativecommons.org/publicdomain/zero/1.0
* - OpenSSL license : https://www.openssl.org/source/license.html
* - Apache 2.0 : https://www.apache.org/licenses/LICENSE-2.0
*
* More information about the BLAKE2 hash function can be found at
* https://blake2.net/ web.
*/
#ifndef _BIRD_BLAKE2_IMPL_H_
#define _BIRD_BLAKE2_IMPL_H_
#include "nest/bird.h"
static inline u32 load32(const void *src)
{
#if !defined(CPU_BIG_ENDIAN)
u32 w;
memcpy(&w, src, sizeof w);
return w;
#else
const u8 *p = (const u8 *) src;
return ((u32) (p[0]) << 0) |
((u32) (p[1]) << 8) |
((u32) (p[2]) << 16) |
((u32) (p[3]) << 24) ;
#endif
}
static inline u64 load64(const void *src)
{
#if !defined(CPU_BIG_ENDIAN)
u64 w;
memcpy(&w, src, sizeof w);
return w;
#else
const u8 *p = (const u8 *) src;
return ((u64) (p[0]) << 0) |
((u64) (p[1]) << 8) |
((u64) (p[2]) << 16) |
((u64) (p[3]) << 24) |
((u64) (p[4]) << 32) |
((u64) (p[5]) << 40) |
((u64) (p[6]) << 48) |
((u64) (p[7]) << 56) ;
#endif
}
static inline u16 load16(const void *src)
{
#if !defined(CPU_BIG_ENDIAN)
u16 w;
memcpy(&w, src, sizeof w);
return w;
#else
const u8 *p = (const u8 *) src;
return (u16) (((u32) (p[0]) << 0) |
((u32) (p[1]) << 8));
#endif
}
static inline void store16(void *dst, u16 w)
{
#if !defined(CPU_BIG_ENDIAN)
memcpy(dst, &w, sizeof w);
#else
u8 *p = (u8 *) dst;
*p++ = (u8)w; w >>= 8;
*p++ = (u8)w;
#endif
}
static inline void store32(void *dst, u32 w)
{
#if !defined(CPU_BIG_ENDIAN)
memcpy(dst, &w, sizeof w);
#else
u8 *p = (u8 *)dst;
p[0] = (u8) (w >> 0);
p[1] = (u8) (w >> 8);
p[2] = (u8) (w >> 16);
p[3] = (u8) (w >> 24);
#endif
}
static inline void store64(void *dst, u64 w)
{
#if !defined(CPU_BIG_ENDIAN)
memcpy(dst, &w, sizeof w);
#else
u8 *p = (u8 *) dst;
p[0] = (u8) (w >> 0);
p[1] = (u8) (w >> 8);
p[2] = (u8) (w >> 16);
p[3] = (u8) (w >> 24);
p[4] = (u8) (w >> 32);
p[5] = (u8) (w >> 40);
p[6] = (u8) (w >> 48);
p[7] = (u8) (w >> 56);
#endif
}
static inline u64 load48(const void *src)
{
const u8 *p = (const u8 *) src;
return ((u64) (p[0]) << 0) |
((u64) (p[1]) << 8) |
((u64) (p[2]) << 16) |
((u64) (p[3]) << 24) |
((u64) (p[4]) << 32) |
((u64) (p[5]) << 40) ;
}
static inline void store48(void *dst, u64 w)
{
u8 *p = (u8 *) dst;
p[0] = (u8) (w >> 0);
p[1] = (u8) (w >> 8);
p[2] = (u8) (w >> 16);
p[3] = (u8) (w >> 24);
p[4] = (u8) (w >> 32);
p[5] = (u8) (w >> 40);
}
static inline u32 rotr32(const u32 w, const uint c)
{
return (w >> c) | (w << (32 - c));
}
static inline u64 rotr64(const u64 w, const uint c)
{
return (w >> c) | (w << (64 - c));
}
/* prevents compiler optimizing out memset() */
static inline void secure_zero_memory(void *v, size_t n)
{
static void *(*const volatile memset_v)(void *, int, size_t) = &memset;
memset_v(v, 0, n);
}
#endif