0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2025-01-18 06:51:54 +00:00
bird/doc/bird.sgml
Ondrej Zajicek (work) 7e8d6116df Doc: Fix reference
2017-10-10 14:40:22 +02:00

4105 lines
185 KiB
Plaintext

<!doctype birddoc system>
<!--
BIRD documentation
This documentation can have 4 forms: sgml (this is master copy), html, ASCII
text and dvi/postscript (generated from sgml using sgmltools). You should always
edit master copy.
This is a slightly modified linuxdoc dtd. Anything in <descrip> tags is
considered definition of configuration primitives, <cf> is fragment of
configuration within normal text, <m> is "meta" information within fragment of
configuration - something in config which is not keyword.
(set-fill-column 80)
Copyright 1999,2000 Pavel Machek <pavel@ucw.cz>, distribute under GPL version 2 or later.
-->
<book>
<title>BIRD User's Guide
<author>
Ondrej Filip <it/&lt;feela@network.cz&gt;/,
Pavel Machek <it/&lt;pavel@ucw.cz&gt;/,
Martin Mares <it/&lt;mj@ucw.cz&gt;/,
Ondrej Zajicek <it/&lt;santiago@crfreenet.org&gt;/
</author>
<abstract>
This document contains user documentation for the BIRD Internet Routing Daemon project.
</abstract>
<!-- Table of contents -->
<toc>
<!-- Begin the document -->
<chapt>Introduction
<label id="intro">
<sect>What is BIRD
<label id="what-is-bird">
<p>The name `BIRD' is actually an acronym standing for `BIRD Internet Routing
Daemon'. Let's take a closer look at the meaning of the name:
<p><em/BIRD/: Well, we think we have already explained that. It's an acronym
standing for `BIRD Internet Routing Daemon', you remember, don't you? :-)
<p><em/Internet Routing/: It's a program (well, a daemon, as you are going to
discover in a moment) which works as a dynamic router in an Internet type
network (that is, in a network running either the IPv4 or the IPv6 protocol).
Routers are devices which forward packets between interconnected networks in
order to allow hosts not connected directly to the same local area network to
communicate with each other. They also communicate with the other routers in the
Internet to discover the topology of the network which allows them to find
optimal (in terms of some metric) rules for forwarding of packets (which are
called routing tables) and to adapt themselves to the changing conditions such
as outages of network links, building of new connections and so on. Most of
these routers are costly dedicated devices running obscure firmware which is
hard to configure and not open to any changes (on the other hand, their special
hardware design allows them to keep up with lots of high-speed network
interfaces, better than general-purpose computer does). Fortunately, most
operating systems of the UNIX family allow an ordinary computer to act as a
router and forward packets belonging to the other hosts, but only according to a
statically configured table.
<p>A <em/Routing Daemon/ is in UNIX terminology a non-interactive program
running on background which does the dynamic part of Internet routing, that is
it communicates with the other routers, calculates routing tables and sends them
to the OS kernel which does the actual packet forwarding. There already exist
other such routing daemons: routed (RIP only), GateD (non-free),
<HTMLURL URL="http://www.zebra.org" name="Zebra"> and
<HTMLURL URL="http://sourceforge.net/projects/mrt" name="MRTD">,
but their capabilities are limited and they are relatively hard to configure
and maintain.
<p>BIRD is an Internet Routing Daemon designed to avoid all of these shortcomings,
to support all the routing technology used in the today's Internet or planned to
be used in near future and to have a clean extensible architecture allowing new
routing protocols to be incorporated easily. Among other features, BIRD
supports:
<itemize>
<item>both IPv4 and IPv6 protocols
<item>multiple routing tables
<item>the Border Gateway Protocol (BGPv4)
<item>the Routing Information Protocol (RIPv2)
<item>the Open Shortest Path First protocol (OSPFv2, OSPFv3)
<item>the Router Advertisements for IPv6 hosts
<item>a virtual protocol for exchange of routes between different
routing tables on a single host
<item>a command-line interface allowing on-line control and inspection
of status of the daemon
<item>soft reconfiguration (no need to use complex online commands to
change the configuration, just edit the configuration file and
notify BIRD to re-read it and it will smoothly switch itself to
the new configuration, not disturbing routing protocols unless
they are affected by the configuration changes)
<item>a powerful language for route filtering
</itemize>
<p>BIRD has been developed at the Faculty of Math and Physics, Charles
University, Prague, Czech Republic as a student project. It can be freely
distributed under the terms of the GNU General Public License.
<p>BIRD has been designed to work on all UNIX-like systems. It has been
developed and tested under Linux 2.0 to 2.6, and then ported to FreeBSD, NetBSD
and OpenBSD, porting to other systems (even non-UNIX ones) should be relatively
easy due to its highly modular architecture.
<p>BIRD supports either IPv4 or IPv6 protocol, but have to be compiled separately
for each one. Therefore, a dualstack router would run two instances of BIRD (one
for IPv4 and one for IPv6), with completely separate setups (configuration
files, tools ...).
<sect>Installing BIRD
<label id="install">
<p>On a recent UNIX system with GNU development tools (GCC, binutils, m4, make)
and Perl, installing BIRD should be as easy as:
<code>
./configure
make
make install
vi /usr/local/etc/bird.conf
bird
</code>
<p>You can use <tt>./configure --help</tt> to get a list of configure
options. The most important ones are: <tt/--enable-ipv6/ which enables building
of an IPv6 version of BIRD, <tt/--with-protocols=/ to produce a slightly smaller
BIRD executable by configuring out routing protocols you don't use, and
<tt/--prefix=/ to install BIRD to a place different from <file>/usr/local</file>.
<sect>Running BIRD
<label id="argv">
<p>You can pass several command-line options to bird:
<descrip>
<tag><label id="argv-config">-c <m/config name/</tag>
use given configuration file instead of <it/prefix/<file>/etc/bird.conf</file>.
<tag><label id="argv-debug">-d</tag>
enable debug messages and run bird in foreground.
<tag><label id="argv-log-file">-D <m/filename of debug log/</tag>
log debugging information to given file instead of stderr.
<tag><label id="argv-foreground">-f</tag>
run bird in foreground.
<tag><label id="argv-group">-g <m/group/</tag>
use that group ID, see the next section for details.
<tag><label id="argv-help">-h, --help</tag>
display command-line options to bird.
<tag><label id="argv-local">-l</tag>
look for a configuration file and a communication socket in the current
working directory instead of in default system locations. However, paths
specified by options <cf/-c/, <cf/-s/ have higher priority.
<tag><label id="argv-parse">-p</tag>
just parse the config file and exit. Return value is zero if the config
file is valid, nonzero if there are some errors.
<tag><label id="argv-pid">-P <m/name of PID file/</tag>
create a PID file with given filename.
<tag><label id="argv-recovery">-R</tag>
apply graceful restart recovery after start.
<tag><label id="argv-socket">-s <m/name of communication socket/</tag>
use given filename for a socket for communications with the client,
default is <it/prefix/<file>/var/run/bird.ctl</file>.
<tag><label id="argv-user">-u <m/user/</tag>
drop privileges and use that user ID, see the next section for details.
<tag><label id="argv-version">--version</tag>
display bird version.
</descrip>
<p>BIRD writes messages about its work to log files or syslog (according to config).
<sect>Privileges
<label id="privileges">
<p>BIRD, as a routing daemon, uses several privileged operations (like setting
routing table and using raw sockets). Traditionally, BIRD is executed and runs
with root privileges, which may be prone to security problems. The recommended
way is to use a privilege restriction (options <cf/-u/, <cf/-g/). In that case
BIRD is executed with root privileges, but it changes its user and group ID to
an unprivileged ones, while using Linux capabilities to retain just required
privileges (capabilities CAP_NET_*). Note that the control socket is created
before the privileges are dropped, but the config file is read after that. The
privilege restriction is not implemented in BSD port of BIRD.
<p>An unprivileged user (as an argument to <cf/-u/ options) may be the user
<cf/nobody/, but it is suggested to use a new dedicated user account (like
<cf/bird/). The similar considerations apply for the group option, but there is
one more condition -- the users in the same group can use <file/birdc/ to
control BIRD.
<p>Finally, there is a possibility to use external tools to run BIRD in an
environment with restricted privileges. This may need some configuration, but it
is generally easy -- BIRD needs just the standard library, privileges to read
the config file and create the control socket and the CAP_NET_* capabilities.
<chapt>About routing tables
<label id="routing-tables">
<p>BIRD has one or more routing tables which may or may not be synchronized with
OS kernel and which may or may not be synchronized with each other (see the Pipe
protocol). Each routing table contains a list of known routes. Each route
consists of:
<itemize>
<item>network prefix this route is for (network address and prefix
length -- the number of bits forming the network part of the
address; also known as a netmask)
<item>preference of this route
<item>IP address of router which told us about this route
<item>IP address of router we should forward the packets to using this
route
<item>other attributes common to all routes
<item>dynamic attributes defined by protocols which may or may not be
present (typically protocol metrics)
</itemize>
Routing table maintains multiple entries for a network, but at most one entry
for one network and one protocol. The entry with the highest preference is used
for routing (we will call such an entry the <it/selected route/). If there are
more entries with the same preference and they are from the same protocol, the
protocol decides (typically according to metrics). If they aren't, an internal
ordering is used to break the tie. You can get the list of route attributes in
the Route attributes section.
<p>Each protocol is connected to a routing table through two filters which can
accept, reject and modify the routes. An <it/export/ filter checks routes passed
from the routing table to the protocol, an <it/import/ filter checks routes in
the opposite direction. When the routing table gets a route from a protocol, it
recalculates the selected route and broadcasts it to all protocols connected to
the table. The protocols typically send the update to other routers in the
network. Note that although most protocols are interested in receiving just
selected routes, some protocols (e.g. the <cf/Pipe/ protocol) receive and
process all entries in routing tables (accepted by filters).
<p><label id="dsc-table-sorted">Usually, a routing table just chooses a selected route
from a list of entries for one network. But if the <cf/sorted/ option is
activated, these lists of entries are kept completely sorted (according to
preference or some protocol-dependent metric). This is needed for some features
of some protocols (e.g. <cf/secondary/ option of BGP protocol, which allows to
accept not just a selected route, but the first route (in the sorted list) that
is accepted by filters), but it is incompatible with some other features (e.g.
<cf/deterministic med/ option of BGP protocol, which activates a way of choosing
selected route that cannot be described using comparison and ordering). Minor
advantage is that routes are shown sorted in <cf/show route/, minor disadvantage
is that it is slightly more computationally expensive.
<sect>Graceful restart
<label id="graceful-restart">
<p>When BIRD is started after restart or crash, it repopulates routing tables in
an uncoordinated manner, like after clean start. This may be impractical in some
cases, because if the forwarding plane (i.e. kernel routing tables) remains
intact, then its synchronization with BIRD would temporarily disrupt packet
forwarding until protocols converge. Graceful restart is a mechanism that could
help with this issue. Generally, it works by starting protocols and letting them
repopulate routing tables while deferring route propagation until protocols
acknowledge their convergence. Note that graceful restart behavior have to be
configured for all relevant protocols and requires protocol-specific support
(currently implemented for Kernel and BGP protocols), it is activated for
particular boot by option <cf/-R/.
<chapt>Configuration
<label id="config">
<sect>Introduction
<label id="config-intro">
<p>BIRD is configured using a text configuration file. Upon startup, BIRD reads
<it/prefix/<file>/etc/bird.conf</file> (unless the <tt/-c/ command line option
is given). Configuration may be changed at user's request: if you modify the
config file and then signal BIRD with <tt/SIGHUP/, it will adjust to the new
config. Then there's the client which allows you to talk with BIRD in an
extensive way.
<p>In the config, everything on a line after <cf/#/ or inside <cf>/* */</cf> is
a comment, whitespace characters are treated as a single space. If there's a
variable number of options, they are grouped using the <cf/{ }/ brackets. Each
option is terminated by a <cf/;/. Configuration is case sensitive. There are two
ways how to name symbols (like protocol names, filter names, constants etc.). You
can either use a simple string starting with a letter followed by any
combination of letters and numbers (e.g. "R123", "myfilter", "bgp5") or you can
enclose the name into apostrophes (<cf/'/) and than you can use any combination
of numbers, letters. hyphens, dots and colons (e.g. "'1:strange-name'",
"'-NAME-'", "'cool::name'").
<p>Here is an example of a simple config file. It enables synchronization of
routing tables with OS kernel, scans for new network interfaces every 10 seconds
and runs RIP on all network interfaces found.
<code>
protocol kernel {
persist; # Don't remove routes on BIRD shutdown
scan time 20; # Scan kernel routing table every 20 seconds
export all; # Default is export none
}
protocol device {
scan time 10; # Scan interfaces every 10 seconds
}
protocol rip {
export all;
import all;
interface "*";
}
</code>
<sect>Global options
<label id="global-opts">
<p><descrip>
<tag><label id="opt-include">include "<m/filename/"</tag>
This statement causes inclusion of a new file. <m/Filename/ could also
be a wildcard, in that case matching files are included in alphabetic
order. The maximal depth is 8. Note that this statement could be used
anywhere in the config file, not just as a top-level option.
<tag><label id="opt-log">log "<m/filename/"|syslog [name <m/name/]|stderr all|{ <m/list of classes/ }</tag>
Set logging of messages having the given class (either <cf/all/ or
<cf/{ error|trace [, <m/.../] }/ etc.) into selected destination (a file specified
as a filename string, syslog with optional name argument, or the stderr
output). Classes are:
<cf/info/, <cf/warning/, <cf/error/ and <cf/fatal/ for messages about local problems,
<cf/debug/ for debugging messages,
<cf/trace/ when you want to know what happens in the network,
<cf/remote/ for messages about misbehavior of remote machines,
<cf/auth/ about authentication failures,
<cf/bug/ for internal BIRD bugs.
You may specify more than one <cf/log/ line to establish logging to
multiple destinations. Default: log everything to the system log.
<tag><label id="opt-debug-protocols">debug protocols all|off|{ states|routes|filters|interfaces|events|packets [, <m/.../] }</tag>
Set global defaults of protocol debugging options. See <cf/debug/ in the
following section. Default: off.
<tag><label id="opt-debug-commands">debug commands <m/number/</tag>
Control logging of client connections (0 for no logging, 1 for logging
of connects and disconnects, 2 and higher for logging of all client
commands). Default: 0.
<tag><label id="opt-debug-latency">debug latency <m/switch/</tag>
Activate tracking of elapsed time for internal events. Recent events
could be examined using <cf/dump events/ command. Default: off.
<tag><label id="opt-debug-latency-limit">debug latency limit <m/time/</tag>
If <cf/debug latency/ is enabled, this option allows to specify a limit
for elapsed time. Events exceeding the limit are logged. Default: 1 s.
<tag><label id="opt-watchdog-warn">watchdog warning <m/time/</tag>
Set time limit for I/O loop cycle. If one iteration took more time to
complete, a warning is logged. Default: 5 s.
<tag><label id="opt-watchdog-timeout">watchdog timeout <m/time/</tag>
Set time limit for I/O loop cycle. If the limit is breached, BIRD is
killed by abort signal. The timeout has effective granularity of
seconds, zero means disabled. Default: disabled (0).
<tag><label id="opt-mrtdump">mrtdump "<m/filename/"</tag>
Set MRTdump file name. This option must be specified to allow MRTdump
feature. Default: no dump file.
<tag><label id="opt-mrtdump-protocols">mrtdump protocols all|off|{ states|messages [, <m/.../] }</tag>
Set global defaults of MRTdump options. See <cf/mrtdump/ in the
following section. Default: off.
<tag><label id="opt-filter">filter <m/name local variables/{ <m/commands/ }</tag>
Define a filter. You can learn more about filters in the following
chapter.
<tag><label id="opt-function">function <m/name/ (<m/parameters/) <m/local variables/ { <m/commands/ }</tag>
Define a function. You can learn more about functions in the following chapter.
<tag><label id="opt-protocol">protocol rip|ospf|bgp|<m/.../ [<m/name/ [from <m/name2/]] { <m>protocol options</m> }</tag>
Define a protocol instance called <cf><m/name/</cf> (or with a name like
"rip5" generated automatically if you don't specify any
<cf><m/name/</cf>). You can learn more about configuring protocols in
their own chapters. When <cf>from <m/name2/</cf> expression is used,
initial protocol options are taken from protocol or template
<cf><m/name2/</cf> You can run more than one instance of most protocols
(like RIP or BGP). By default, no instances are configured.
<tag><label id="opt-template">template rip|bgp|<m/.../ [<m/name/ [from <m/name2/]] { <m>protocol options</m> }</tag>
Define a protocol template instance called <m/name/ (or with a name like
"bgp1" generated automatically if you don't specify any <m/name/).
Protocol templates can be used to group common options when many
similarly configured protocol instances are to be defined. Protocol
instances (and other templates) can use templates by using <cf/from/
expression and the name of the template. At the moment templates (and
<cf/from/ expression) are not implemented for OSPF protocol.
<tag><label id="opt-define">define <m/constant/ = <m/expression/</tag>
Define a constant. You can use it later in every place you could use a
value of the same type. Besides, there are some predefined numeric
constants based on /etc/iproute2/rt_* files. A list of defined constants
can be seen (together with other symbols) using 'show symbols' command.
<tag><label id="opt-router-id">router id <m/IPv4 address/</tag>
Set BIRD's router ID. It's a world-wide unique identification of your
router, usually one of router's IPv4 addresses. Default: in IPv4
version, the lowest IP address of a non-loopback interface. In IPv6
version, this option is mandatory.
<tag><label id="opt-router-id-from">router id from [-] [ "<m/mask/" ] [ <m/prefix/ ] [, <m/.../]</tag>
Set BIRD's router ID based on an IP address of an interface specified by
an interface pattern. The option is applicable for IPv4 version only.
See <ref id="proto-iface" name="interface"> section for detailed
description of interface patterns with extended clauses.
<tag><label id="opt-listen-bgp">listen bgp [address <m/address/] [port <m/port/] [dual]</tag>
This option allows to specify address and port where BGP protocol should
listen. It is global option as listening socket is common to all BGP
instances. Default is to listen on all addresses (0.0.0.0) and port 179.
In IPv6 mode, option <cf/dual/ can be used to specify that BGP socket
should accept both IPv4 and IPv6 connections (but even in that case,
BIRD would accept IPv6 routes only). Such behavior was default in older
versions of BIRD.
<tag><label id="opt-graceful-restart">graceful restart wait <m/number/</tag>
During graceful restart recovery, BIRD waits for convergence of routing
protocols. This option allows to specify a timeout for the recovery to
prevent waiting indefinitely if some protocols cannot converge. Default:
240 seconds.
<tag><label id="opt-timeformat">timeformat route|protocol|base|log "<m/format1/" [<m/limit/ "<m/format2/"]</tag>
This option allows to specify a format of date/time used by BIRD. The
first argument specifies for which purpose such format is used.
<cf/route/ is a format used in 'show route' command output,
<cf/protocol/ is used in 'show protocols' command output, <cf/base/ is
used for other commands and <cf/log/ is used in a log file.
"<m/format1/" is a format string using <it/strftime(3)/ notation (see
<it/man strftime/ for details). <m/limit> and "<m/format2/" allow to
specify the second format string for times in past deeper than <m/limit/
seconds. There are few shorthands: <cf/iso long/ is a ISO 8601 date/time
format (YYYY-MM-DD hh:mm:ss) that can be also specified using <cf/"%F %T"/.
<cf/iso short/ is a variant of ISO 8601 that uses just the time format
(hh:mm:ss) for near times (up to 20 hours in the past) and the date
format (YYYY-MM-DD) for far times. This is a shorthand for
<cf/"%T" 72000 "%F"/.
By default, BIRD uses the <cf/iso short/ format for <cf/route/ and
<cf/protocol/ times, and the <cf/iso long/ format for <cf/base/ and
<cf/log/ times.
In pre-1.4.0 versions, BIRD used an short, ad-hoc format for <cf/route/
and <cf/protocol/ times, and a <cf/iso long/ similar format (DD-MM-YYYY
hh:mm:ss) for <cf/base/ and <cf/log/. These timeformats could be set by
<cf/old short/ and <cf/old long/ compatibility shorthands.
<tag><label id="opt-table">table <m/name/ [sorted]</tag>
Create a new routing table. The default routing table is created
implicitly, other routing tables have to be added by this command.
Option <cf/sorted/ can be used to enable sorting of routes, see
<ref id="dsc-table-sorted" name="sorted table"> description for details.
<tag><label id="opt-roa-table">roa table <m/name/ [ { <m/roa table options .../ } ]</tag>
Create a new ROA (Route Origin Authorization) table. ROA tables can be
used to validate route origination of BGP routes. A ROA table contains
ROA entries, each consist of a network prefix, a max prefix length and
an AS number. A ROA entry specifies prefixes which could be originated
by that AS number. ROA tables could be filled with data from RPKI (<rfc
id="6480">) or from public databases like Whois. ROA tables are
examined by <cf/roa_check()/ operator in filters.
Currently, there is just one option, <cf>roa <m/prefix/ max <m/num/ as
<m/num/</cf>, which can be used to populate the ROA table with static
ROA entries. The option may be used multiple times. Other entries can be
added dynamically by <cf/add roa/ command.
<tag><label id="opt-eval">eval <m/expr/</tag>
Evaluates given filter expression. It is used by us for testing of filters.
</descrip>
<sect>Protocol options
<label id="protocol-opts">
<p>For each protocol instance, you can configure a bunch of options. Some of
them (those described in this section) are generic, some are specific to the
protocol (see sections talking about the protocols).
<p>Several options use a <m/switch/ argument. It can be either <cf/on/,
<cf/yes/ or a numeric expression with a non-zero value for the option to be
enabled or <cf/off/, <cf/no/ or a numeric expression evaluating to zero to
disable it. An empty <m/switch/ is equivalent to <cf/on/ ("silence means
agreement").
<descrip>
<tag><label id="proto-preference">preference <m/expr/</tag>
Sets the preference of routes generated by this protocol. Default:
protocol dependent.
<tag><label id="proto-disabled">disabled <m/switch/</tag>
Disables the protocol. You can change the disable/enable status from the
command line interface without needing to touch the configuration.
Disabled protocols are not activated. Default: protocol is enabled.
<tag><label id="proto-debug">debug all|off|{ states|routes|filters|interfaces|events|packets [, <m/.../] }</tag>
Set protocol debugging options. If asked, each protocol is capable of
writing trace messages about its work to the log (with category
<cf/trace/). You can either request printing of <cf/all/ trace messages
or only of the types selected: <cf/states/ for protocol state changes
(protocol going up, down, starting, stopping etc.), <cf/routes/ for
routes exchanged with the routing table, <cf/filters/ for details on
route filtering, <cf/interfaces/ for interface change events sent to the
protocol, <cf/events/ for events internal to the protocol and <cf/packets/
for packets sent and received by the protocol. Default: off.
<tag><label id="proto-mrtdump">mrtdump all|off|{ states|messages [, <m/.../] }</tag>
Set protocol MRTdump flags. MRTdump is a standard binary format for
logging information from routing protocols and daemons. These flags
control what kind of information is logged from the protocol to the
MRTdump file (which must be specified by global <cf/mrtdump/ option, see
the previous section). Although these flags are similar to flags of
<cf/debug/ option, their meaning is different and protocol-specific. For
BGP protocol, <cf/states/ logs BGP state changes and <cf/messages/ logs
received BGP messages. Other protocols does not support MRTdump yet.
<tag><label id="proto-router-id">router id <m/IPv4 address/</tag>
This option can be used to override global router id for a given
protocol. Default: uses global router id.
<tag><label id="proto-import">import all | none | filter <m/name/ | filter { <m/filter commands/ } | where <m/filter expression/</tag>
Specify a filter to be used for filtering routes coming from the
protocol to the routing table. <cf/all/ is shorthand for <cf/where true/
and <cf/none/ is shorthand for <cf/where false/. Default: <cf/all/.
<tag><label id="proto-export">export <m/filter/</tag>
This is similar to the <cf>import</cf> keyword, except that it works in
the direction from the routing table to the protocol. Default: <cf/none/.
<tag><label id="proto-import-keep-filtered">import keep filtered <m/switch/</tag>
Usually, if an import filter rejects a route, the route is forgotten.
When this option is active, these routes are kept in the routing table,
but they are hidden and not propagated to other protocols. But it is
possible to show them using <cf/show route filtered/. Note that this
option does not work for the pipe protocol. Default: off.
<tag><label id="proto-import-limit">import limit [<m/number/ | off ] [action warn | block | restart | disable]</tag>
Specify an import route limit (a maximum number of routes imported from
the protocol) and optionally the action to be taken when the limit is
hit. Warn action just prints warning log message. Block action discards
new routes coming from the protocol. Restart and disable actions shut
the protocol down like appropriate commands. Disable is the default
action if an action is not explicitly specified. Note that limits are
reset during protocol reconfigure, reload or restart. Default: <cf/off/.
<tag><label id="proto-receive-limit">receive limit [<m/number/ | off ] [action warn | block | restart | disable]</tag>
Specify an receive route limit (a maximum number of routes received from
the protocol and remembered). It works almost identically to <cf>import
limit</cf> option, the only difference is that if <cf/import keep
filtered/ option is active, filtered routes are counted towards the
limit and blocked routes are forgotten, as the main purpose of the
receive limit is to protect routing tables from overflow. Import limit,
on the contrary, counts accepted routes only and routes blocked by the
limit are handled like filtered routes. Default: <cf/off/.
<tag><label id="proto-export-limit">export limit [ <m/number/ | off ] [action warn | block | restart | disable]</tag>
Specify an export route limit, works similarly to the <cf>import
limit</cf> option, but for the routes exported to the protocol. This
option is experimental, there are some problems in details of its
behavior -- the number of exported routes can temporarily exceed the
limit without triggering it during protocol reload, exported routes
counter ignores route blocking and block action also blocks route
updates of already accepted routes -- and these details will probably
change in the future. Default: <cf/off/.
<tag><label id="proto-description">description "<m/text/"</tag>
This is an optional description of the protocol. It is displayed as a
part of the output of 'show route all' command.
<tag><label id="proto-table">table <m/name/</tag>
Connect this protocol to a non-default routing table.
<tag><label id="proto-vrf">vrf "<m/text/"</tag>
Associate the protocol with specific VRF. The protocol will be
restricted to interfaces assigned to the VRF and will use sockets bound
to the VRF. Appropriate VRF interface must exist on OS level. For kernel
protocol, an appropriate table still must be explicitly selected by
<cf/table/ option. Note that the VRF support in BIRD and Linux kernel
(4.11) is still in development and is currently problematic outside of
multihop BGP.
</descrip>
<p>There are several options that give sense only with certain protocols:
<descrip>
<tag><label id="proto-iface">interface [-] [ "<m/mask/" ] [ <m/prefix/ ] [, <m/.../] [ { <m/option/; [<m/.../] } ]</tag>
Specifies a set of interfaces on which the protocol is activated with
given interface-specific options. A set of interfaces specified by one
interface option is described using an interface pattern. The interface
pattern consists of a sequence of clauses (separated by commas), each
clause is a mask specified as a shell-like pattern. Interfaces are
matched by their name.
An interface matches the pattern if it matches any of its clauses. If
the clause begins with <cf/-/, matching interfaces are excluded. Patterns
are processed left-to-right, thus <cf/interface "eth0", -"eth*", "*";/
means eth0 and all non-ethernets.
Some protocols (namely OSPFv2 and Direct) support extended clauses that
may contain a mask, a prefix, or both of them. An interface matches such
clause if its name matches the mask (if specified) and its address
matches the prefix (if specified). Extended clauses are used when the
protocol handles multiple addresses on an interface independently.
An interface option can be used more times with different interface-specific
options, in that case for given interface the first matching interface
option is used.
This option is allowed in Babel, BFD, Direct, OSPF, RAdv and RIP
protocols, but in OSPF protocol it is used in the <cf/area/ subsection.
Default: none.
Examples:
<cf>interface "*" { type broadcast; };</cf> - start the protocol on all
interfaces with <cf>type broadcast</cf> option.
<cf>interface "eth1", "eth4", "eth5" { type ptp; };</cf> - start the
protocol on enumerated interfaces with <cf>type ptp</cf> option.
<cf>interface -192.168.1.0/24, 192.168.0.0/16;</cf> - start the protocol
on all interfaces that have address from 192.168.0.0/16, but not from
192.168.1.0/24.
<cf>interface -192.168.1.0/24, 192.168.0.0/16;</cf> - start the protocol
on all interfaces that have address from 192.168.0.0/16, but not from
192.168.1.0/24.
<cf>interface "eth*" 192.168.1.0/24;</cf> - start the protocol on all
ethernet interfaces that have address from 192.168.1.0/24.
<tag><label id="proto-tx-class">tx class|dscp <m/num/</tag>
This option specifies the value of ToS/DS/Class field in IP headers of
the outgoing protocol packets. This may affect how the protocol packets
are processed by the network relative to the other network traffic. With
<cf/class/ keyword, the value (0-255) is used for the whole ToS/Class
octet (but two bits reserved for ECN are ignored). With <cf/dscp/
keyword, the value (0-63) is used just for the DS field in the octet.
Default value is 0xc0 (DSCP 0x30 - CS6).
<tag><label id="proto-tx-priority">tx priority <m/num/</tag>
This option specifies the local packet priority. This may affect how the
protocol packets are processed in the local TX queues. This option is
Linux specific. Default value is 7 (highest priority, privileged traffic).
<tag><label id="proto-pass">password "<m/password/" [ { <m>password options</m> } ]</tag>
Specifies a password that can be used by the protocol as a shared secret
key. Password option can be used more times to specify more passwords.
If more passwords are specified, it is a protocol-dependent decision
which one is really used. Specifying passwords does not mean that
authentication is enabled, authentication can be enabled by separate,
protocol-dependent <cf/authentication/ option.
This option is allowed in BFD, OSPF and RIP protocols. BGP has also
<cf/password/ option, but it is slightly different and described
separately.
Default: none.
</descrip>
<p>Password option can contain section with some (not necessary all) password sub-options:
<descrip>
<tag><label id="proto-pass-id">id <M>num</M></tag>
ID of the password, (1-255). If it is not used, BIRD will choose ID based
on an order of the password item in the interface. For example, second
password item in one interface will have default ID 2. ID is used by
some routing protocols to identify which password was used to
authenticate protocol packets.
<tag><label id="proto-pass-gen-from">generate from "<m/time/"</tag>
The start time of the usage of the password for packet signing.
The format of <cf><m/time/</cf> is <tt>dd-mm-yyyy HH:MM:SS</tt>.
<tag><label id="proto-pass-gen-to">generate to "<m/time/"</tag>
The last time of the usage of the password for packet signing.
<tag><label id="proto-pass-accept-from">accept from "<m/time/"</tag>
The start time of the usage of the password for packet verification.
<tag><label id="proto-pass-accept-to">accept to "<m/time/"</tag>
The last time of the usage of the password for packet verification.
<tag><label id="proto-pass-from">from "<m/time/"</tag>
Shorthand for setting both <cf/generate from/ and <cf/accept from/.
<tag><label id="proto-pass-to">to "<m/time/"</tag>
Shorthand for setting both <cf/generate to/ and <cf/accept to/.
<tag><label id="proto-pass-algorithm">algorithm ( keyed md5 | keyed sha1 | hmac sha1 | hmac sha256 | hmac sha384 | hmac sha512 )</tag>
The message authentication algorithm for the password when cryptographic
authentication is enabled. The default value depends on the protocol.
For RIP and OSPFv2 it is Keyed-MD5 (for compatibility), for OSPFv3
protocol it is HMAC-SHA-256.
</descrip>
<chapt>Remote control
<label id="remote-control">
<p>You can use the command-line client <file>birdc</file> to talk with a running
BIRD. Communication is done using a <file/bird.ctl/ UNIX domain socket (unless
changed with the <tt/-s/ option given to both the server and the client). The
commands can perform simple actions such as enabling/disabling of protocols,
telling BIRD to show various information, telling it to show routing table
filtered by filter, or asking BIRD to reconfigure. Press <tt/?/ at any time to
get online help. Option <tt/-r/ can be used to enable a restricted mode of BIRD
client, which allows just read-only commands (<cf/show .../). Option <tt/-v/ can
be passed to the client, to make it dump numeric return codes along with the
messages. You do not necessarily need to use <file/birdc/ to talk to BIRD, your
own applications could do that, too -- the format of communication between BIRD
and <file/birdc/ is stable (see the programmer's documentation).
<p>There is also lightweight variant of BIRD client called <file/birdcl/, which
does not support command line editing and history and has minimal dependencies.
This is useful for running BIRD in resource constrained environments, where
Readline library (required for regular BIRD client) is not available.
<p>Many commands have the <m/name/ of the protocol instance as an argument.
This argument can be omitted if there exists only a single instance.
<p>Here is a brief list of supported functions:
<descrip>
<tag><label id="cli-show-status">show status</tag>
Show router status, that is BIRD version, uptime and time from last
reconfiguration.
<tag><label id="cli-show-interfaces">show interfaces [summary]</tag>
Show the list of interfaces. For each interface, print its type, state,
MTU and addresses assigned.
<tag><label id="cli-show-protocols">show protocols [all]</tag>
Show list of protocol instances along with tables they are connected to
and protocol status, possibly giving verbose information, if <cf/all/ is
specified.
<tag><label id="cli-show-ospf-iface">show ospf interface [<m/name/] ["<m/interface/"]</tag>
Show detailed information about OSPF interfaces.
<tag><label id="cli-show-ospf-neighbors">show ospf neighbors [<m/name/] ["<m/interface/"]</tag>
Show a list of OSPF neighbors and a state of adjacency to them.
<tag><label id="cli-show-ospf-state">show ospf state [all] [<m/name/]</tag>
Show detailed information about OSPF areas based on a content of the
link-state database. It shows network topology, stub networks,
aggregated networks and routers from other areas and external routes.
The command shows information about reachable network nodes, use option
<cf/all/ to show information about all network nodes in the link-state
database.
<tag><label id="cli-show-ospf-topology">show ospf topology [all] [<m/name/]</tag>
Show a topology of OSPF areas based on a content of the link-state
database. It is just a stripped-down version of 'show ospf state'.
<tag><label id="cli-show-ospf-lsadb">show ospf lsadb [global | area <m/id/ | link] [type <m/num/] [lsid <m/id/] [self | router <m/id/] [<m/name/] </tag>
Show contents of an OSPF LSA database. Options could be used to filter
entries.
<tag><label id="cli-show-rip-interfaces">show rip interfaces [<m/name/] ["<m/interface/"]</tag>
Show detailed information about RIP interfaces.
<tag><label id="cli-show-rip-neighbors">show rip neighbors [<m/name/] ["<m/interface/"]</tag>
Show a list of RIP neighbors and associated state.
<tag><label id="cli-show-static">show static [<m/name/]</tag>
Show detailed information about static routes.
<tag><label id="cli-show-bfd-sessions">show bfd sessions [<m/name/]</tag>
Show information about BFD sessions.
<tag><label id="cli-show-symbols">show symbols [table|filter|function|protocol|template|roa|<m/symbol/]</tag>
Show the list of symbols defined in the configuration (names of
protocols, routing tables etc.).
<tag><label id="cli-show-route">show route [[for] <m/prefix/|<m/IP/] [table <m/t/] [filter <m/f/|where <m/c/] [(export|preexport|noexport) <m/p/] [protocol <m/p/] [<m/options/]</tag>
Show contents of a routing table (by default of the main one or the
table attached to a respective protocol), that is routes, their metrics
and (in case the <cf/all/ switch is given) all their attributes.
<p>You can specify a <m/prefix/ if you want to print routes for a
specific network. If you use <cf>for <m/prefix or IP/</cf>, you'll get
the entry which will be used for forwarding of packets to the given
destination. By default, all routes for each network are printed with
the selected one at the top, unless <cf/primary/ is given in which case
only the selected route is shown.
<p>You can also ask for printing only routes processed and accepted by
a given filter (<cf>filter <m/name/</cf> or <cf>filter { <m/filter/ }
</cf> or matching a given condition (<cf>where <m/condition/</cf>).
The <cf/export/, <cf/preexport/ and <cf/noexport/ switches ask for
printing of routes that are exported to the specified protocol.
With <cf/preexport/, the export filter of the protocol is skipped.
With <cf/noexport/, routes rejected by the export filter are printed
instead. Note that routes not exported to the protocol for other reasons
(e.g. secondary routes or routes imported from that protocol) are not
printed even with <cf/noexport/.
<p>You can also select just routes added by a specific protocol.
<cf>protocol <m/p/</cf>.
<p>If BIRD is configured to keep filtered routes (see <cf/import keep
filtered/ option), you can show them instead of routes by using
<cf/filtered/ switch.
<p>The <cf/stats/ switch requests showing of route statistics (the
number of networks, number of routes before and after filtering). If
you use <cf/count/ instead, only the statistics will be printed.
<tag><label id="cli-show-roa">show roa [<m/prefix/ | in <m/prefix/ | for <m/prefix/] [as <m/num/] [table <m/t/]</tag>
Show contents of a ROA table (by default of the first one). You can
specify a <m/prefix/ to print ROA entries for a specific network. If you
use <cf>for <m/prefix/</cf>, you'll get all entries relevant for route
validation of the network prefix; i.e., ROA entries whose prefixes cover
the network prefix. Or you can use <cf>in <m/prefix/</cf> to get ROA
entries covered by the network prefix. You could also use <cf/as/ option
to show just entries for given AS.
<tag><label id="cli-add-roa">add roa <m/prefix/ max <m/num/ as <m/num/ [table <m/t/]</tag>
Add a new ROA entry to a ROA table. Such entry is called <it/dynamic/
compared to <it/static/ entries specified in the config file. These
dynamic entries survive reconfiguration.
<tag><label id="cli-delete-roa">delete roa <m/prefix/ max <m/num/ as <m/num/ [table <m/t/]</tag>
Delete the specified ROA entry from a ROA table. Only dynamic ROA
entries (i.e., the ones added by <cf/add roa/ command) can be deleted.
<tag><label id="cli-flush-roa">flush roa [table <m/t/]</tag>
Remove all dynamic ROA entries from a ROA table.
<tag><label id="cli-configure">configure [soft] ["<m/config file/"] [timeout [<m/num/]]</tag>
Reload configuration from a given file. BIRD will smoothly switch itself
to the new configuration, protocols are reconfigured if possible,
restarted otherwise. Changes in filters usually lead to restart of
affected protocols.
If <cf/soft/ option is used, changes in filters does not cause BIRD to
restart affected protocols, therefore already accepted routes (according
to old filters) would be still propagated, but new routes would be
processed according to the new filters.
If <cf/timeout/ option is used, config timer is activated. The new
configuration could be either confirmed using <cf/configure confirm/
command, or it will be reverted to the old one when the config timer
expires. This is useful for cases when reconfiguration breaks current
routing and a router becomes inaccessible for an administrator. The
config timeout expiration is equivalent to <cf/configure undo/
command. The timeout duration could be specified, default is 300 s.
<tag><label id="cli-configure-confirm">configure confirm</tag>
Deactivate the config undo timer and therefore confirm the current
configuration.
<tag><label id="cli-configure-undo">configure undo</tag>
Undo the last configuration change and smoothly switch back to the
previous (stored) configuration. If the last configuration change was
soft, the undo change is also soft. There is only one level of undo, but
in some specific cases when several reconfiguration requests are given
immediately in a row and the intermediate ones are skipped then the undo
also skips them back.
<tag><label id="cli-configure-check">configure check ["<m/config file/"]</tag>
Read and parse given config file, but do not use it. useful for checking
syntactic and some semantic validity of an config file.
<tag><label id="cli-enable-disable-restart">enable|disable|restart <m/name/|"<m/pattern/"|all</tag>
Enable, disable or restart a given protocol instance, instances matching
the <cf><m/pattern/</cf> or <cf/all/ instances.
<tag><label id="cli-reload">reload [in|out] <m/name/|"<m/pattern/"|all</tag>
Reload a given protocol instance, that means re-import routes from the
protocol instance and re-export preferred routes to the instance. If
<cf/in/ or <cf/out/ options are used, the command is restricted to one
direction (re-import or re-export).
This command is useful if appropriate filters have changed but the
protocol instance was not restarted (or reloaded), therefore it still
propagates the old set of routes. For example when <cf/configure soft/
command was used to change filters.
Re-export always succeeds, but re-import is protocol-dependent and might
fail (for example, if BGP neighbor does not support route-refresh
extension). In that case, re-export is also skipped. Note that for the
pipe protocol, both directions are always reloaded together (<cf/in/ or
<cf/out/ options are ignored in that case).
<tag><label id="cli-down">down</tag>
Shut BIRD down.
<tag><label id="cli-debug">debug <m/protocol/|<m/pattern/|all all|off|{ states|routes|filters|events|packets [, <m/.../] }</tag>
Control protocol debugging.
<tag><label id="cli-dump">dump resources|sockets|interfaces|neighbors|attributes|routes|protocols</tag>
Dump contents of internal data structures to the debugging output.
<tag><label id="cli-echo">echo all|off|{ <m/list of log classes/ } [ <m/buffer-size/ ]</tag>
Control echoing of log messages to the command-line output.
See <ref id="opt-log" name="log option"> for a list of log classes.
<tag><label id="cli-eval">eval <m/expr/</tag>
Evaluate given expression.
</descrip>
<chapt>Filters
<label id="filters">
<sect>Introduction
<label id="filters-intro">
<p>BIRD contains a simple programming language. (No, it can't yet read mail :-).
There are two objects in this language: filters and functions. Filters are
interpreted by BIRD core when a route is being passed between protocols and
routing tables. The filter language contains control structures such as if's and
switches, but it allows no loops. An example of a filter using many features can
be found in <file>filter/test.conf</file>.
<p>Filter gets the route, looks at its attributes and modifies some of them if
it wishes. At the end, it decides whether to pass the changed route through
(using <cf/accept/) or whether to <cf/reject/ it. A simple filter looks like
this:
<code>
filter not_too_far
int var;
{
if defined( rip_metric ) then
var = rip_metric;
else {
var = 1;
rip_metric = 1;
}
if rip_metric &gt; 10 then
reject "RIP metric is too big";
else
accept "ok";
}
</code>
<p>As you can see, a filter has a header, a list of local variables, and a body.
The header consists of the <cf/filter/ keyword followed by a (unique) name of
filter. The list of local variables consists of <cf><M>type name</M>;</cf>
pairs where each pair defines one local variable. The body consists of <cf>
{ <M>statements</M> }</cf>. Each <m/statement/ is terminated by a <cf/;/. You
can group several statements to a single compound statement by using braces
(<cf>{ <M>statements</M> }</cf>) which is useful if you want to make a bigger
block of code conditional.
<p>BIRD supports functions, so that you don't have to repeat the same blocks of
code over and over. Functions can have zero or more parameters and they can have
local variables. Recursion is not allowed. Function definitions look like this:
<code>
function name ()
int local_variable;
{
local_variable = 5;
}
function with_parameters (int parameter)
{
print parameter;
}
</code>
<p>Unlike in C, variables are declared after the <cf/function/ line, but before
the first <cf/{/. You can't declare variables in nested blocks. Functions are
called like in C: <cf>name(); with_parameters(5);</cf>. Function may return
values using the <cf>return <m/[expr]/</cf> command. Returning a value exits
from current function (this is similar to C).
<p>Filters are declared in a way similar to functions except they can't have
explicit parameters. They get a route table entry as an implicit parameter, it
is also passed automatically to any functions called. The filter must terminate
with either <cf/accept/ or <cf/reject/ statement. If there's a runtime error in
filter, the route is rejected.
<p>A nice trick to debug filters is to use <cf>show route filter <m/name/</cf>
from the command line client. An example session might look like:
<code>
pavel@bug:~/bird$ ./birdc -s bird.ctl
BIRD 0.0.0 ready.
bird> show route
10.0.0.0/8 dev eth0 [direct1 23:21] (240)
195.113.30.2/32 dev tunl1 [direct1 23:21] (240)
127.0.0.0/8 dev lo [direct1 23:21] (240)
bird> show route ?
show route [<prefix>] [table <t>] [filter <f>] [all] [primary]...
bird> show route filter { if 127.0.0.5 &tilde; net then accept; }
127.0.0.0/8 dev lo [direct1 23:21] (240)
bird>
</code>
<sect>Data types
<label id="data-types">
<p>Each variable and each value has certain type. Booleans, integers and enums
are incompatible with each other (that is to prevent you from shooting in the
foot).
<descrip>
<tag><label id="type-bool">bool</tag>
This is a boolean type, it can have only two values, <cf/true/ and
<cf/false/. Boolean is the only type you can use in <cf/if/ statements.
<tag><label id="type-int">int</tag>
This is a general integer type. It is an unsigned 32bit type; i.e., you
can expect it to store values from 0 to 4294967295. Overflows are not
checked. You can use <cf/0x1234/ syntax to write hexadecimal values.
<tag><label id="type-pair">pair</tag>
This is a pair of two short integers. Each component can have values
from 0 to 65535. Literals of this type are written as <cf/(1234,5678)/.
The same syntax can also be used to construct a pair from two arbitrary
integer expressions (for example <cf/(1+2,a)/).
<tag><label id="type-quad">quad</tag>
This is a dotted quad of numbers used to represent router IDs (and
others). Each component can have a value from 0 to 255. Literals of
this type are written like IPv4 addresses.
<tag><label id="type-string">string</tag>
This is a string of characters. There are no ways to modify strings in
filters. You can pass them between functions, assign them to variables
of type <cf/string/, print such variables, use standard string
comparison operations (e.g. <cf/=, !=, &lt;, &gt;, &lt;=, &gt;=/), but
you can't concatenate two strings. String literals are written as
<cf/"This is a string constant"/. Additionally matching (<cf/&tilde;,
!&tilde;/) operators could be used to match a string value against
a shell pattern (represented also as a string).
<tag><label id="type-ip">ip</tag>
This type can hold a single IP address. Depending on the compile-time
configuration of BIRD you are using, it is either an IPv4 or IPv6
address. IP addresses are written in the standard notation
(<cf/10.20.30.40/ or <cf/fec0:3:4::1/). You can apply special operator
<cf>.mask(<M>num</M>)</cf> on values of type ip. It masks out all but
first <cf><M>num</M></cf> bits from the IP address. So
<cf/1.2.3.4.mask(8) = 1.0.0.0/ is true.
<tag><label id="type-prefix">prefix</tag>
This type can hold a network prefix consisting of IP address and prefix
length. Prefix literals are written as <cf><m/ipaddress//<m/pxlen/</cf>,
or <cf><m>ipaddress</m>/<m>netmask</m></cf>. There are two special
operators on prefixes: <cf/.ip/ which extracts the IP address from the
pair, and <cf/.len/, which separates prefix length from the pair.
So <cf>1.2.0.0/16.len = 16</cf> is true.
<tag><label id="type-ec">ec</tag>
This is a specialized type used to represent BGP extended community
values. It is essentially a 64bit value, literals of this type are
usually written as <cf>(<m/kind/, <m/key/, <m/value/)</cf>, where
<cf/kind/ is a kind of extended community (e.g. <cf/rt/ / <cf/ro/ for a
route target / route origin communities), the format and possible values
of <cf/key/ and <cf/value/ are usually integers, but it depends on the
used kind. Similarly to pairs, ECs can be constructed using expressions
for <cf/key/ and <cf/value/ parts, (e.g. <cf/(ro, myas, 3*10)/, where
<cf/myas/ is an integer variable).
<tag><label id="type-lc">lc</tag>
This is a specialized type used to represent BGP large community
values. It is essentially a triplet of 32bit values, where the first
value is reserved for the AS number of the issuer, while meaning of
remaining parts is defined by the issuer. Literals of this type are
written as <cf/(123, 456, 789)/, with any integer values. Similarly to
pairs, LCs can be constructed using expressions for its parts, (e.g.
<cf/(myas, 10+20, 3*10)/, where <cf/myas/ is an integer variable).
<tag><label id="type-set">int|pair|quad|ip|prefix|ec|lc|enum set</tag>
Filters recognize four types of sets. Sets are similar to strings: you
can pass them around but you can't modify them. Literals of type <cf>int
set</cf> look like <cf> [ 1, 2, 5..7 ]</cf>. As you can see, both simple
values and ranges are permitted in sets.
For pair sets, expressions like <cf/(123,*)/ can be used to denote
ranges (in that case <cf/(123,0)..(123,65535)/). You can also use
<cf/(123,5..100)/ for range <cf/(123,5)..(123,100)/. You can also use
<cf/*/ and <cf/a..b/ expressions in the first part of a pair, note that
such expressions are translated to a set of intervals, which may be
memory intensive. E.g. <cf/(*,4..20)/ is translated to <cf/(0,4..20),
(1,4..20), (2,4..20), ... (65535, 4..20)/.
EC sets use similar expressions like pair sets, e.g. <cf/(rt, 123,
10..20)/ or <cf/(ro, 123, *)/. Expressions requiring the translation
(like <cf/(rt, *, 3)/) are not allowed (as they usually have 4B range
for ASNs).
Also LC sets use similar expressions like pair sets. You can use ranges
and wildcards, but if one field uses that, more specific (later) fields
must be wildcards. E.g., <cf/(10, 20..30, *)/ or <cf/(10, 20, 30..40)/
is valid, while <cf/(10, *, 20..30)/ or <cf/(10, 20..30, 40)/ is not
valid.
You can also use expressions for int, pair, EC and LC set values.
However, it must be possible to evaluate these expressions before daemon
boots. So you can use only constants inside them. E.g.
<code>
define one=1;
define myas=64500;
int set odds;
pair set ps;
ec set es;
odds = [ one, 2+1, 6-one, 2*2*2-1, 9, 11 ];
ps = [ (1,one+one), (3,4)..(4,8), (5,*), (6,3..6), (7..9,*) ];
es = [ (rt, myas, 3*10), (rt, myas+one, 0..16*16*16-1), (ro, myas+2, *) ];
</code>
Sets of prefixes are special: their literals does not allow ranges, but
allows prefix patterns that are written
as <cf><M>ipaddress</M>/<M>pxlen</M>{<M>low</M>,<M>high</M>}</cf>.
Prefix <cf><m>ip1</m>/<m>len1</m></cf> matches prefix
pattern <cf><m>ip2</m>/<m>len2</m>{<m>l</m>,<m>h</m>}</cf> if the
first <cf>min(len1, len2)</cf> bits of <cf/ip1/ and <cf/ip2/ are
identical and <cf>len1 &lt;= ip1 &lt;= len2</cf>. A valid prefix pattern
has to satisfy <cf>low &lt;= high</cf>, but <cf/pxlen/ is not
constrained by <cf/low/ or <cf/high/. Obviously, a prefix matches a
prefix set literal if it matches any prefix pattern in the prefix set
literal.
There are also two shorthands for prefix patterns: <cf><m/address//<m/len/+</cf>
is a shorthand for <cf><m/address//<m/len/{<m/len/,<m/maxlen/}</cf>
(where <cf><m/maxlen/</cf> is 32 for IPv4 and 128 for IPv6), that means
network prefix <cf><m/address//<m/len/</cf> and all its subnets.
<cf><m/address//<m/len/-</cf> is a shorthand for
<cf><m/address//<m/len/{0,<m/len/}</cf>, that means network prefix
<cf><m/address//<m/len/</cf> and all its supernets (network prefixes
that contain it).
For example, <cf>[ 1.0.0.0/8, 2.0.0.0/8+, 3.0.0.0/8-, 4.0.0.0/8{16,24}
]</cf> matches prefix <cf>1.0.0.0/8</cf>, all subprefixes of
<cf>2.0.0.0/8</cf>, all superprefixes of <cf>3.0.0.0/8</cf> and prefixes
<cf/4.X.X.X/ whose prefix length is 16 to 24. <cf>[ 0.0.0.0/0{20,24} ]</cf>
matches all prefixes (regardless of IP address) whose prefix length is
20 to 24, <cf>[ 1.2.3.4/32- ]</cf> matches any prefix that contains IP
address <cf>1.2.3.4</cf>. <cf>1.2.0.0/16 &tilde; [ 1.0.0.0/8{15,17} ]</cf>
is true, but <cf>1.0.0.0/16 &tilde; [ 1.0.0.0/8- ]</cf> is false.
Cisco-style patterns like <cf>10.0.0.0/8 ge 16 le 24</cf> can be expressed
in BIRD as <cf>10.0.0.0/8{16,24}</cf>, <cf>192.168.0.0/16 le 24</cf> as
<cf>192.168.0.0/16{16,24}</cf> and <cf>192.168.0.0/16 ge 24</cf> as
<cf>192.168.0.0/16{24,32}</cf>.
<tag><label id="type-enum">enum</tag>
Enumeration types are fixed sets of possibilities. You can't define your
own variables of such type, but some route attributes are of enumeration
type. Enumeration types are incompatible with each other.
<tag><label id="type-bgppath">bgppath</tag>
BGP path is a list of autonomous system numbers. You can't write
literals of this type. There are several special operators on bgppaths:
<cf><m/P/.first</cf> returns the first ASN (the neighbor ASN) in path <m/P/.
<cf><m/P/.last</cf> returns the last ASN (the source ASN) in path <m/P/.
<cf><m/P/.last_nonaggregated</cf> returns the last ASN in the non-aggregated part of the path <m/P/.
Both <cf/first/ and <cf/last/ return zero if there is no appropriate
ASN, for example if the path contains an AS set element as the first (or
the last) part. If the path ends with an AS set, <cf/last_nonaggregated/
may be used to get last ASN before any AS set.
<cf><m/P/.len</cf> returns the length of path <m/P/.
<cf><m/P/.empty</cf> resets path <m/P/ to empty path.
<cf>prepend(<m/P/,<m/A/)</cf> prepends ASN <m/A/ to path <m/P/ and
returns the result.
<cf>delete(<m/P/,<m/A/)</cf> deletes all instances of ASN <m/A/ from
from path <m/P/ and returns the result. <m/A/ may also be an integer
set, in that case the operator deletes all ASNs from path <m/P/ that are
also members of set <m/A/.
<cf>filter(<m/P/,<m/A/)</cf> deletes all ASNs from path <m/P/ that are
not members of integer set <m/A/. I.e., <cf/filter/ do the same as
<cf/delete/ with inverted set <m/A/.
Statement <cf><m/P/ = prepend(<m/P/, <m/A/);</cf> can be shortened to
<cf><m/P/.prepend(<m/A/);</cf> if <m/P/ is appropriate route attribute
(for example <cf/bgp_path/). Similarly for <cf/delete/ and <cf/filter/.
<tag><label id="type-bgpmask">bgpmask</tag>
BGP masks are patterns used for BGP path matching (using <cf>path
&tilde; [= 2 3 5 * =]</cf> syntax). The masks resemble wildcard patterns
as used by UNIX shells. Autonomous system numbers match themselves,
<cf/*/ matches any (even empty) sequence of arbitrary AS numbers and
<cf/?/ matches one arbitrary AS number. For example, if <cf>bgp_path</cf>
is 4 3 2 1, then: <tt>bgp_path &tilde; [= * 4 3 * =]</tt> is true,
but <tt>bgp_path &tilde; [= * 4 5 * =]</tt> is false. BGP mask
expressions can also contain integer expressions enclosed in parenthesis
and integer variables, for example <tt>[= * 4 (1+2) a =]</tt>. You can
also use ranges, for example <tt>[= * 3..5 2 100..200 * =]</tt>.
There is also old (deprecated) syntax that uses / .. / instead of [= .. =]
and ? instead of *.
<tag><label id="type-clist">clist</tag>
Clist is similar to a set, except that unlike other sets, it can be
modified. The type is used for community list (a set of pairs) and for
cluster list (a set of quads). There exist no literals of this type.
There are three special operators on clists:
<cf><m/C/.len</cf> returns the length of clist <m/C/.
<cf><m/C/.empty</cf> resets clist <m/C/ to empty clist.
<cf>add(<m/C/,<m/P/)</cf> adds pair (or quad) <m/P/ to clist <m/C/ and
returns the result. If item <m/P/ is already in clist <m/C/, it does
nothing. <m/P/ may also be a clist, in that case all its members are
added; i.e., it works as clist union.
<cf>delete(<m/C/,<m/P/)</cf> deletes pair (or quad) <m/P/ from clist
<m/C/ and returns the result. If clist <m/C/ does not contain item
<m/P/, it does nothing. <m/P/ may also be a pair (or quad) set, in that
case the operator deletes all items from clist <m/C/ that are also
members of set <m/P/. Moreover, <m/P/ may also be a clist, which works
analogously; i.e., it works as clist difference.
<cf>filter(<m/C/,<m/P/)</cf> deletes all items from clist <m/C/ that are
not members of pair (or quad) set <m/P/. I.e., <cf/filter/ do the same
as <cf/delete/ with inverted set <m/P/. <m/P/ may also be a clist, which
works analogously; i.e., it works as clist intersection.
Statement <cf><m/C/ = add(<m/C/, <m/P/);</cf> can be shortened to
<cf><m/C/.add(<m/P/);</cf> if <m/C/ is appropriate route attribute (for
example <cf/bgp_community/). Similarly for <cf/delete/ and <cf/filter/.
<tag><label id="type-eclist">eclist</tag>
Eclist is a data type used for BGP extended community lists. Eclists
are very similar to clists, but they are sets of ECs instead of pairs.
The same operations (like <cf/add/, <cf/delete/ or <cf/&tilde;/ and
<cf/!&tilde;/ membership operators) can be used to modify or test
eclists, with ECs instead of pairs as arguments.
<tag/lclist/
Lclist is a data type used for BGP large community lists. Like eclists,
lclists are very similar to clists, but they are sets of LCs instead of
pairs. The same operations (like <cf/add/, <cf/delete/ or <cf/&tilde;/
and <cf/!&tilde;/ membership operators) can be used to modify or test
lclists, with LCs instead of pairs as arguments.
</descrip>
<sect>Operators
<label id="operators">
<p>The filter language supports common integer operators <cf>(+,-,*,/)</cf>,
parentheses <cf/(a*(b+c))/, comparison <cf/(a=b, a!=b, a&lt;b, a&gt;=b)/.
Logical operations include unary not (<cf/!/), and (<cf/&amp;&amp;/) and or
(<cf/&verbar;&verbar;/). Special operators include (<cf/&tilde;/,
<cf/!&tilde;/) for "is (not) element of a set" operation - it can be used on
element and set of elements of the same type (returning true if element is
contained in the given set), or on two strings (returning true if first string
matches a shell-like pattern stored in second string) or on IP and prefix
(returning true if IP is within the range defined by that prefix), or on prefix
and prefix (returning true if first prefix is more specific than second one) or
on bgppath and bgpmask (returning true if the path matches the mask) or on
number and bgppath (returning true if the number is in the path) or on bgppath
and int (number) set (returning true if any ASN from the path is in the set) or
on pair/quad and clist (returning true if the pair/quad is element of the
clist) or on clist and pair/quad set (returning true if there is an element of
the clist that is also a member of the pair/quad set).
<p>There is one operator related to ROA infrastructure - <cf/roa_check()/. It
examines a ROA table and does <rfc id="6483"> route origin validation for a
given network prefix. The basic usage is <cf>roa_check(<m/table/)</cf>, which
checks current route (which should be from BGP to have AS_PATH argument) in the
specified ROA table and returns ROA_UNKNOWN if there is no relevant ROA,
ROA_VALID if there is a matching ROA, or ROA_INVALID if there are some relevant
ROAs but none of them match. There is also an extended variant
<cf>roa_check(<m/table/, <m/prefix/, <m/asn/)</cf>, which allows to specify a
prefix and an ASN as arguments.
<sect>Control structures
<label id="control-structures">
<p>Filters support two control structures: conditions and case switches.
<p>Syntax of a condition is: <cf>if <M>boolean expression</M> then <m/command1/;
else <m/command2/;</cf> and you can use <cf>{ <m/command_1/; <m/command_2/;
<M>...</M> }</cf> instead of either command. The <cf>else</cf> clause may be
omitted. If the <cf><m>boolean expression</m></cf> is true, <m/command1/ is
executed, otherwise <m/command2/ is executed.
<p>The <cf>case</cf> is similar to case from Pascal. Syntax is <cf>case
<m/expr/ { else: | <m/num_or_prefix [ .. num_or_prefix]/: <m/statement/ ; [
... ] }</cf>. The expression after <cf>case</cf> can be of any type which can be
on the left side of the &tilde; operator and anything that could be a member of
a set is allowed before <cf/:/. Multiple commands are allowed without <cf/{}/
grouping. If <cf><m/expr/</cf> matches one of the <cf/:/ clauses, statements
between it and next <cf/:/ statement are executed. If <cf><m/expr/</cf> matches
neither of the <cf/:/ clauses, the statements after <cf/else:/ are executed.
<p>Here is example that uses <cf/if/ and <cf/case/ structures:
<code>
case arg1 {
2: print "two"; print "I can do more commands without {}";
3 .. 5: print "three to five";
else: print "something else";
}
if 1234 = i then printn "."; else {
print "not 1234";
print "You need {} around multiple commands";
}
</code>
<sect>Route attributes
<label id="route-attributes">
<p>A filter is implicitly passed a route, and it can access its attributes just
like it accesses variables. Attempts to access undefined attribute result in a
runtime error; you can check if an attribute is defined by using the
<cf>defined( <m>attribute</m> )</cf> operator. One notable exception to this
rule are attributes of clist type, where undefined value is regarded as empty
clist for most purposes.
<descrip>
<tag><label id="rta-net"><m/prefix/ net</tag>
Network the route is talking about. Read-only. (See the chapter about
routing tables.)
<tag><label id="rta-scope"><m/enum/ scope</tag>
The scope of the route. Possible values: <cf/SCOPE_HOST/ for routes
local to this host, <cf/SCOPE_LINK/ for those specific for a physical
link, <cf/SCOPE_SITE/ and <cf/SCOPE_ORGANIZATION/ for private routes and
<cf/SCOPE_UNIVERSE/ for globally visible routes. This attribute is not
interpreted by BIRD and can be used to mark routes in filters. The
default value for new routes is <cf/SCOPE_UNIVERSE/.
<tag><label id="rta-preference"><m/int/ preference</tag>
Preference of the route. Valid values are 0-65535. (See the chapter
about routing tables.)
<tag><label id="rta-from"><m/ip/ from</tag>
The router which the route has originated from.
<tag><label id="rta-gw"><m/ip/ gw</tag>
Next hop packets routed using this route should be forwarded to.
<tag><label id="rta-proto"><m/string/ proto</tag>
The name of the protocol which the route has been imported from.
Read-only.
<tag><label id="rta-source"><m/enum/ source</tag>
what protocol has told me about this route. Possible values:
<cf/RTS_DUMMY/, <cf/RTS_STATIC/, <cf/RTS_INHERIT/, <cf/RTS_DEVICE/,
<cf/RTS_STATIC_DEVICE/, <cf/RTS_REDIRECT/, <cf/RTS_RIP/, <cf/RTS_OSPF/,
<cf/RTS_OSPF_IA/, <cf/RTS_OSPF_EXT1/, <cf/RTS_OSPF_EXT2/, <cf/RTS_BGP/,
<cf/RTS_PIPE/, <cf/RTS_BABEL/.
<tag><label id="rta-cast"><m/enum/ cast</tag>
Route type (Currently <cf/RTC_UNICAST/ for normal routes,
<cf/RTC_BROADCAST/, <cf/RTC_MULTICAST/, <cf/RTC_ANYCAST/ will be used in
the future for broadcast, multicast and anycast routes). Read-only.
<tag><label id="rta-dest"><m/enum/ dest</tag>
Type of destination the packets should be sent to
(<cf/RTD_ROUTER/ for forwarding to a neighboring router,
<cf/RTD_DEVICE/ for routing to a directly-connected network,
<cf/RTD_MULTIPATH/ for multipath destinations,
<cf/RTD_BLACKHOLE/ for packets to be silently discarded,
<cf/RTD_UNREACHABLE/, <cf/RTD_PROHIBIT/ for packets that should be
returned with ICMP host unreachable / ICMP administratively prohibited
messages). Can be changed, but only to <cf/RTD_BLACKHOLE/,
<cf/RTD_UNREACHABLE/ or <cf/RTD_PROHIBIT/.
<tag><label id="rta-ifname"><m/string/ ifname</tag>
Name of the outgoing interface. Sink routes (like blackhole, unreachable
or prohibit) and multipath routes have no interface associated with
them, so <cf/ifname/ returns an empty string for such routes. Read-only.
<tag><label id="rta-ifindex"><m/int/ ifindex</tag>
Index of the outgoing interface. System wide index of the interface. May
be used for interface matching, however indexes might change on interface
creation/removal. Zero is returned for routes with undefined outgoing
interfaces. Read-only.
<tag><label id="rta-igp-metric"><m/int/ igp_metric</tag>
The optional attribute that can be used to specify a distance to the
network for routes that do not have a native protocol metric attribute
(like <cf/ospf_metric1/ for OSPF routes). It is used mainly by BGP to
compare internal distances to boundary routers (see below). It is also
used when the route is exported to OSPF as a default value for OSPF type
1 metric.
</descrip>
<p>There also exist some protocol-specific attributes which are described in the
corresponding protocol sections.
<sect>Other statements
<label id="other-statements">
<p>The following statements are available:
<descrip>
<tag><label id="assignment"><m/variable/ = <m/expr/</tag>
Set variable to a given value.
<tag><label id="filter-accept-reject">accept|reject [ <m/expr/ ]</tag>
Accept or reject the route, possibly printing <cf><m>expr</m></cf>.
<tag><label id="return">return <m/expr/</tag>
Return <cf><m>expr</m></cf> from the current function, the function ends
at this point.
<tag><label id="print">print|printn <m/expr/ [<m/, expr.../]</tag>
Prints given expressions; useful mainly while debugging filters. The
<cf/printn/ variant does not terminate the line.
<tag><label id="quitbird">quitbird</tag>
Terminates BIRD. Useful when debugging the filter interpreter.
</descrip>
<chapt>Protocols
<label id="protocols">
<sect>Babel
<label id="babel">
<sect1>Introduction
<label id="babel-intro">
<p>The Babel protocol
(<rfc id="6126">) is a loop-avoiding distance-vector routing protocol that is
robust and efficient both in ordinary wired networks and in wireless mesh
networks. Babel is conceptually very simple in its operation and "just works"
in its default configuration, though some configuration is possible and in some
cases desirable.
<p>While the Babel protocol is dual stack (i.e., can carry both IPv4 and IPv6
routes over the same IPv6 transport), BIRD presently implements only the IPv6
subset of the protocol. No Babel extensions are implemented, but the BIRD
implementation can coexist with implementations using the extensions (and will
just ignore extension messages).
<p>The Babel protocol implementation in BIRD is currently in alpha stage.
<sect1>Configuration
<label id="babel-config">
<p>Babel supports no global configuration options apart from those common to all
other protocols, but supports the following per-interface configuration options:
<code>
protocol babel [<name>] {
interface <interface pattern> {
type <wired|wireless>;
rxcost <number>;
hello interval <number>;
update interval <number>;
port <number>;
tx class|dscp <number>;
tx priority <number>;
rx buffer <number>;
tx length <number>;
check link <switch>;
};
}
</code>
<descrip>
<tag><label id="babel-type">type wired|wireless </tag>
This option specifies the interface type: Wired or wireless. Wired
interfaces are considered more reliable, and so the default hello
interval is higher, and a neighbour is considered unreachable after only
a small number of "hello" packets are lost. On wireless interfaces,
hello packets are sent more often, and the ETX link quality estimation
technique is used to compute the metrics of routes discovered over this
interface. This technique will gradually degrade the metric of routes
when packets are lost rather than the more binary up/down mechanism of
wired type links. Default: <cf/wired/.
<tag><label id="babel-rxcost">rxcost <m/num/</tag>
This specifies the RX cost of the interface. The route metrics will be
computed from this value with a mechanism determined by the interface
<cf/type/. Default: 96 for wired interfaces, 256 for wireless.
<tag><label id="babel-hello">hello interval <m/num/</tag>
Interval at which periodic "hello" messages are sent on this interface,
in seconds. Default: 4 seconds.
<tag><label id="babel-update">update interval <m/num/</tag>
Interval at which periodic (full) updates are sent. Default: 4 times the
hello interval.
<tag><label id="babel-port">port <m/number/</tag>
This option selects an UDP port to operate on. The default is to operate
on port 6696 as specified in the Babel RFC.
<tag><label id="babel-tx-class">tx class|dscp|priority <m/number/</tag>
These options specify the ToS/DiffServ/Traffic class/Priority of the
outgoing Babel packets. See <ref id="proto-tx-class" name="tx class"> common
option for detailed description.
<tag><label id="babel-rx-buffer">rx buffer <m/number/</tag>
This option specifies the size of buffers used for packet processing.
The buffer size should be bigger than maximal size of received packets.
The default value is the interface MTU, and the value will be clamped to a
minimum of 512 bytes + IP packet overhead.
<tag><label id="babel-tx-length">tx length <m/number/</tag>
This option specifies the maximum length of generated Babel packets. To
avoid IP fragmentation, it should not exceed the interface MTU value.
The default value is the interface MTU value, and the value will be
clamped to a minimum of 512 bytes + IP packet overhead.
<tag><label id="babel-check-link">check link <m/switch/</tag>
If set, the hardware link state (as reported by OS) is taken into
consideration. When the link disappears (e.g. an ethernet cable is
unplugged), neighbors are immediately considered unreachable and all
routes received from them are withdrawn. It is possible that some
hardware drivers or platforms do not implement this feature. Default:
yes.
</descrip>
<sect1>Attributes
<label id="babel-attr">
<p>Babel defines just one attribute: the internal babel metric of the route. It
is exposed as the <cf/babel_metric/ attribute and has range from 1 to infinity
(65535).
<sect1>Example
<label id="babel-exam">
<p><code>
protocol babel {
interface "eth*" {
type wired;
};
interface "wlan0", "wlan1" {
type wireless;
hello interval 1;
rxcost 512;
};
interface "tap0";
# This matches the default of babeld: redistribute all addresses
# configured on local interfaces, plus re-distribute all routes received
# from other babel peers.
export where (source = RTS_DEVICE) || (source = RTS_BABEL);
}
</code>
<sect>BFD
<label id="bfd">
<sect1>Introduction
<label id="bfd-intro">
<p>Bidirectional Forwarding Detection (BFD) is not a routing protocol itself, it
is an independent tool providing liveness and failure detection. Routing
protocols like OSPF and BGP use integrated periodic "hello" messages to monitor
liveness of neighbors, but detection times of these mechanisms are high (e.g. 40
seconds by default in OSPF, could be set down to several seconds). BFD offers
universal, fast and low-overhead mechanism for failure detection, which could be
attached to any routing protocol in an advisory role.
<p>BFD consists of mostly independent BFD sessions. Each session monitors an
unicast bidirectional path between two BFD-enabled routers. This is done by
periodically sending control packets in both directions. BFD does not handle
neighbor discovery, BFD sessions are created on demand by request of other
protocols (like OSPF or BGP), which supply appropriate information like IP
addresses and associated interfaces. When a session changes its state, these
protocols are notified and act accordingly (e.g. break an OSPF adjacency when
the BFD session went down).
<p>BIRD implements basic BFD behavior as defined in <rfc id="5880"> (some
advanced features like the echo mode or authentication are not implemented), IP
transport for BFD as defined in <rfc id="5881"> and <rfc id="5883"> and
interaction with client protocols as defined in <rfc id="5882">.
<p>Note that BFD implementation in BIRD is currently a new feature in
development, expect some rough edges and possible UI and configuration changes
in the future. Also note that we currently support at most one protocol instance.
<p>BFD packets are sent with a dynamic source port number. Linux systems use by
default a bit different dynamic port range than the IANA approved one
(49152-65535). If you experience problems with compatibility, please adjust
<cf>/proc/sys/net/ipv4/ip_local_port_range</cf>
<sect1>Configuration
<label id="bfd-config">
<p>BFD configuration consists mainly of multiple definitions of interfaces.
Most BFD config options are session specific. When a new session is requested
and dynamically created, it is configured from one of these definitions. For
sessions to directly connected neighbors, <cf/interface/ definitions are chosen
based on the interface associated with the session, while <cf/multihop/
definition is used for multihop sessions. If no definition is relevant, the
session is just created with the default configuration. Therefore, an empty BFD
configuration is often sufficient.
<p>Note that to use BFD for other protocols like OSPF or BGP, these protocols
also have to be configured to request BFD sessions, usually by <cf/bfd/ option.
<p>Some of BFD session options require <m/time/ value, which has to be specified
with the appropriate unit: <m/num/ <cf/s/|<cf/ms/|<cf/us/. Although microseconds
are allowed as units, practical minimum values are usually in order of tens of
milliseconds.
<code>
protocol bfd [&lt;name&gt;] {
interface &lt;interface pattern&gt; {
interval &lt;time&gt;;
min rx interval &lt;time&gt;;
min tx interval &lt;time&gt;;
idle tx interval &lt;time&gt;;
multiplier &lt;num&gt;;
passive &lt;switch&gt;;
authentication none;
authentication simple;
authentication [meticulous] keyed md5|sha1;
password "&lt;text&gt;";
password "&lt;text&gt;" {
id &lt;num&gt;;
generate from "&lt;date&gt;";
generate to "&lt;date&gt;";
accept from "&lt;date&gt;";
accept to "&lt;date&gt;";
from "&lt;date&gt;";
to "&lt;date&gt;";
};
};
multihop {
interval &lt;time&gt;;
min rx interval &lt;time&gt;;
min tx interval &lt;time&gt;;
idle tx interval &lt;time&gt;;
multiplier &lt;num&gt;;
passive &lt;switch&gt;;
};
neighbor &lt;ip&gt; [dev "&lt;interface&gt;"] [local &lt;ip&gt;] [multihop &lt;switch&gt;];
}
</code>
<descrip>
<tag><label id="bfd-iface">interface <m/pattern/ [, <m/.../] { <m/options/ }</tag>
Interface definitions allow to specify options for sessions associated
with such interfaces and also may contain interface specific options.
See <ref id="proto-iface" name="interface"> common option for a detailed
description of interface patterns. Note that contrary to the behavior of
<cf/interface/ definitions of other protocols, BFD protocol would accept
sessions (in default configuration) even on interfaces not covered by
such definitions.
<tag><label id="bfd-multihop">multihop { <m/options/ }</tag>
Multihop definitions allow to specify options for multihop BFD sessions,
in the same manner as <cf/interface/ definitions are used for directly
connected sessions. Currently only one such definition (for all multihop
sessions) could be used.
<tag><label id="bfd-neighbor">neighbor <m/ip/ [dev "<m/interface/"] [local <m/ip/] [multihop <m/switch/]</tag>
BFD sessions are usually created on demand as requested by other
protocols (like OSPF or BGP). This option allows to explicitly add
a BFD session to the specified neighbor regardless of such requests.
The session is identified by the IP address of the neighbor, with
optional specification of used interface and local IP. By default
the neighbor must be directly connected, unless the session is
configured as multihop. Note that local IP must be specified for
multihop sessions.
</descrip>
<p>Session specific options (part of <cf/interface/ and <cf/multihop/ definitions):
<descrip>
<tag><label id="bfd-interval">interval <m/time/</tag>
BFD ensures availability of the forwarding path associated with the
session by periodically sending BFD control packets in both
directions. The rate of such packets is controlled by two options,
<cf/min rx interval/ and <cf/min tx interval/ (see below). This option
is just a shorthand to set both of these options together.
<tag><label id="bfd-min-rx-interval">min rx interval <m/time/</tag>
This option specifies the minimum RX interval, which is announced to the
neighbor and used there to limit the neighbor's rate of generated BFD
control packets. Default: 10 ms.
<tag><label id="bfd-min-tx-interval">min tx interval <m/time/</tag>
This option specifies the desired TX interval, which controls the rate
of generated BFD control packets (together with <cf/min rx interval/
announced by the neighbor). Note that this value is used only if the BFD
session is up, otherwise the value of <cf/idle tx interval/ is used
instead. Default: 100 ms.
<tag><label id="bfd-idle-tx-interval">idle tx interval <m/time/</tag>
In order to limit unnecessary traffic in cases where a neighbor is not
available or not running BFD, the rate of generated BFD control packets
is lower when the BFD session is not up. This option specifies the
desired TX interval in such cases instead of <cf/min tx interval/.
Default: 1 s.
<tag><label id="bfd-multiplier">multiplier <m/num/</tag>
Failure detection time for BFD sessions is based on established rate of
BFD control packets (<cf>min rx/tx interval</cf>) multiplied by this
multiplier, which is essentially (ignoring jitter) a number of missed
packets after which the session is declared down. Note that rates and
multipliers could be different in each direction of a BFD session.
Default: 5.
<tag><label id="bfd-passive">passive <m/switch/</tag>
Generally, both BFD session endpoints try to establish the session by
sending control packets to the other side. This option allows to enable
passive mode, which means that the router does not send BFD packets
until it has received one from the other side. Default: disabled.
<tag>authentication none</tag>
No passwords are sent in BFD packets. This is the default value.
<tag>authentication simple</tag>
Every packet carries 16 bytes of password. Received packets lacking this
password are ignored. This authentication mechanism is very weak.
<tag>authentication [meticulous] keyed md5|sha1</tag>
An authentication code is appended to each packet. The cryptographic
algorithm is keyed MD5 or keyed SHA-1. Note that the algorithm is common
for all keys (on one interface), in contrast to OSPF or RIP, where it
is a per-key option. Passwords (keys) are not sent open via network.
The <cf/meticulous/ variant means that cryptographic sequence numbers
are increased for each sent packet, while in the basic variant they are
increased about once per second. Generally, the <cf/meticulous/ variant
offers better resistance to replay attacks but may require more
computation.
<tag>password "<M>text</M>"</tag>
Specifies a password used for authentication. See <ref id="proto-pass"
name="password"> common option for detailed description. Note that
password option <cf/algorithm/ is not available in BFD protocol. The
algorithm is selected by <cf/authentication/ option for all passwords.
</descrip>
<sect1>Example
<label id="bfd-exam">
<p><code>
protocol bfd {
interface "eth*" {
min rx interval 20 ms;
min tx interval 50 ms;
idle tx interval 300 ms;
};
interface "gre*" {
interval 200 ms;
multiplier 10;
passive;
};
multihop {
interval 200 ms;
multiplier 10;
};
neighbor 192.168.1.10;
neighbor 192.168.2.2 dev "eth2";
neighbor 192.168.10.1 local 192.168.1.1 multihop;
}
</code>
<sect>BGP
<label id="bgp">
<p>The Border Gateway Protocol is the routing protocol used for backbone level
routing in the today's Internet. Contrary to other protocols, its convergence
does not rely on all routers following the same rules for route selection,
making it possible to implement any routing policy at any router in the network,
the only restriction being that if a router advertises a route, it must accept
and forward packets according to it.
<p>BGP works in terms of autonomous systems (often abbreviated as AS). Each AS
is a part of the network with common management and common routing policy. It is
identified by a unique 16-bit number (ASN). Routers within each AS usually
exchange AS-internal routing information with each other using an interior
gateway protocol (IGP, such as OSPF or RIP). Boundary routers at the border of
the AS communicate global (inter-AS) network reachability information with their
neighbors in the neighboring AS'es via exterior BGP (eBGP) and redistribute
received information to other routers in the AS via interior BGP (iBGP).
<p>Each BGP router sends to its neighbors updates of the parts of its routing
table it wishes to export along with complete path information (a list of AS'es
the packet will travel through if it uses the particular route) in order to
avoid routing loops.
<p>BIRD supports all requirements of the BGP4 standard as defined in
<rfc id="4271"> It also supports the community attributes (<rfc id="1997">),
capability negotiation (<rfc id="5492">), MD5 password authentication (<rfc
id="2385">), extended communities (<rfc id="4360">), route reflectors (<rfc
id="4456">), graceful restart (<rfc id="4724">), multiprotocol extensions
(<rfc id="4760">), 4B AS numbers (<rfc id="4893">), and 4B AS numbers in
extended communities (<rfc id="5668">).
For IPv6, it uses the standard multiprotocol extensions defined in
<rfc id="4760"> and applied to IPv6 according to <rfc id="2545">.
<sect1>Route selection rules
<label id="bgp-route-select-rules">
<p>BGP doesn't have any simple metric, so the rules for selection of an optimal
route among multiple BGP routes with the same preference are a bit more complex
and they are implemented according to the following algorithm. It starts the
first rule, if there are more "best" routes, then it uses the second rule to
choose among them and so on.
<itemize>
<item>Prefer route with the highest Local Preference attribute.
<item>Prefer route with the shortest AS path.
<item>Prefer IGP origin over EGP and EGP origin over incomplete.
<item>Prefer the lowest value of the Multiple Exit Discriminator.
<item>Prefer routes received via eBGP over ones received via iBGP.
<item>Prefer routes with lower internal distance to a boundary router.
<item>Prefer the route with the lowest value of router ID of the
advertising router.
</itemize>
<sect1>IGP routing table
<label id="bgp-igp-routing-table">
<p>BGP is mainly concerned with global network reachability and with routes to
other autonomous systems. When such routes are redistributed to routers in the
AS via BGP, they contain IP addresses of a boundary routers (in route attribute
NEXT_HOP). BGP depends on existing IGP routing table with AS-internal routes to
determine immediate next hops for routes and to know their internal distances to
boundary routers for the purpose of BGP route selection. In BIRD, there is
usually one routing table used for both IGP routes and BGP routes.
<sect1>Configuration
<label id="bgp-config">
<p>Each instance of the BGP corresponds to one neighboring router. This allows
to set routing policy and all the other parameters differently for each neighbor
using the following configuration parameters:
<descrip>
<tag><label id="bgp-local">local [<m/ip/] as <m/number/</tag>
Define which AS we are part of. (Note that contrary to other IP routers,
BIRD is able to act as a router located in multiple AS'es simultaneously,
but in such cases you need to tweak the BGP paths manually in the filters
to get consistent behavior.) Optional <cf/ip/ argument specifies a source
address, equivalent to the <cf/source address/ option (see below). This
parameter is mandatory.
<tag><label id="bgp-neighbor">neighbor [<m/ip/] [port <m/number/] [as <m/number/]</tag>
Define neighboring router this instance will be talking to and what AS
it is located in. In case the neighbor is in the same AS as we are, we
automatically switch to iBGP. Optionally, the remote port may also be
specified. The parameter may be used multiple times with different
sub-options (e.g., both <cf/neighbor 10.0.0.1 as 65000;/ and
<cf/neighbor 10.0.0.1; neighbor as 65000;/ are valid). This parameter is
mandatory.
<tag><label id="bgp-iface">interface <m/string/</tag>
Define interface we should use for link-local BGP IPv6 sessions.
Interface can also be specified as a part of <cf/neighbor address/
(e.g., <cf/neighbor fe80::1234%eth0 as 65000;/). The option may also be
used for non link-local sessions when it is necessary to explicitly
specify an interface, but only for direct (not multihop) sessions.
<tag><label id="bgp-direct">direct</tag>
Specify that the neighbor is directly connected. The IP address of the
neighbor must be from a directly reachable IP range (i.e. associated
with one of your router's interfaces), otherwise the BGP session
wouldn't start but it would wait for such interface to appear. The
alternative is the <cf/multihop/ option. Default: enabled for eBGP.
<tag><label id="bgp-multihop">multihop [<m/number/]</tag>
Configure multihop BGP session to a neighbor that isn't directly
connected. Accurately, this option should be used if the configured
neighbor IP address does not match with any local network subnets. Such
IP address have to be reachable through system routing table. The
alternative is the <cf/direct/ option. For multihop BGP it is
recommended to explicitly configure the source address to have it
stable. Optional <cf/number/ argument can be used to specify the number
of hops (used for TTL). Note that the number of networks (edges) in a
path is counted; i.e., if two BGP speakers are separated by one router,
the number of hops is 2. Default: enabled for iBGP.
<tag><label id="bgp-source-address">source address <m/ip/</tag>
Define local address we should use for next hop calculation and as a
source address for the BGP session. Default: the address of the local
end of the interface our neighbor is connected to.
<tag><label id="bgp-next-hop-self">next hop self</tag>
Avoid calculation of the Next Hop attribute and always advertise our own
source address as a next hop. This needs to be used only occasionally to
circumvent misconfigurations of other routers. Default: disabled.
<tag><label id="bgp-next-hop-keep">next hop keep</tag>
Forward the received Next Hop attribute even in situations where the
local address should be used instead, like when the route is sent to an
interface with a different subnet. Default: disabled.
<tag><label id="bgp-missing-lladdr">missing lladdr self|drop|ignore</tag>
Next Hop attribute in BGP-IPv6 sometimes contains just the global IPv6
address, but sometimes it has to contain both global and link-local IPv6
addresses. This option specifies what to do if BIRD have to send both
addresses but does not know link-local address. This situation might
happen when routes from other protocols are exported to BGP, or when
improper updates are received from BGP peers. <cf/self/ means that BIRD
advertises its own local address instead. <cf/drop/ means that BIRD
skips that prefixes and logs error. <cf/ignore/ means that BIRD ignores
the problem and sends just the global address (and therefore forms
improper BGP update). Default: <cf/self/, unless BIRD is configured as a
route server (option <cf/rs client/), in that case default is <cf/ignore/,
because route servers usually do not forward packets themselves.
<tag><label id="bgp-gateway">gateway direct|recursive</tag>
For received routes, their <cf/gw/ (immediate next hop) attribute is
computed from received <cf/bgp_next_hop/ attribute. This option
specifies how it is computed. Direct mode means that the IP address from
<cf/bgp_next_hop/ is used if it is directly reachable, otherwise the
neighbor IP address is used. Recursive mode means that the gateway is
computed by an IGP routing table lookup for the IP address from
<cf/bgp_next_hop/. Note that there is just one level of indirection in
recursive mode - the route obtained by the lookup must not be recursive
itself, to prevent mutually recursive routes.
Recursive mode is the behavior specified by the BGP
standard. Direct mode is simpler, does not require any routes in a
routing table, and was used in older versions of BIRD, but does not
handle well nontrivial iBGP setups and multihop. Recursive mode is
incompatible with <ref id="dsc-table-sorted" name="sorted tables">. Default:
<cf/direct/ for direct sessions, <cf/recursive/ for multihop sessions.
<tag><label id="bgp-igp-table">igp table <m/name/</tag>
Specifies a table that is used as an IGP routing table. Default: the
same as the table BGP is connected to.
<tag><label id="bgp-check-link">check link <M>switch</M></tag>
BGP could use hardware link state into consideration. If enabled,
BIRD tracks the link state of the associated interface and when link
disappears (e.g. an ethernet cable is unplugged), the BGP session is
immediately shut down. Note that this option cannot be used with
multihop BGP. Default: disabled.
<tag><label id="bgp-bfd">bfd <M>switch</M></tag>
BGP could use BFD protocol as an advisory mechanism for neighbor
liveness and failure detection. If enabled, BIRD setups a BFD session
for the BGP neighbor and tracks its liveness by it. This has an
advantage of an order of magnitude lower detection times in case of
failure. Note that BFD protocol also has to be configured, see
<ref id="bfd" name="BFD"> section for details. Default: disabled.
<tag><label id="bgp-ttl-security">ttl security <m/switch/</tag>
Use GTSM (<rfc id="5082"> - the generalized TTL security mechanism). GTSM
protects against spoofed packets by ignoring received packets with a
smaller than expected TTL. To work properly, GTSM have to be enabled on
both sides of a BGP session. If both <cf/ttl security/ and
<cf/multihop/ options are enabled, <cf/multihop/ option should specify
proper hop value to compute expected TTL. Kernel support required:
Linux: 2.6.34+ (IPv4), 2.6.35+ (IPv6), BSD: since long ago, IPv4 only.
Note that full (ICMP protection, for example) <rfc id="5082"> support is
provided by Linux only. Default: disabled.
<tag><label id="bgp-pass">password <m/string/</tag>
Use this password for MD5 authentication of BGP sessions (<rfc id="2385">). When
used on BSD systems, see also <cf/setkey/ option below. Default: no
authentication.
<tag><label id="bgp-setkey">setkey <m/switch/</tag>
On BSD systems, keys for TCP MD5 authentication are stored in the global
SA/SP database, which can be accessed by external utilities (e.g.
setkey(8)). BIRD configures security associations in the SA/SP database
automatically based on <cf/password/ options (see above), this option
allows to disable automatic updates by BIRD when manual configuration by
external utilities is preferred. Note that automatic SA/SP database
updates are currently implemented only for FreeBSD. Passwords have to be
set manually by an external utility on NetBSD and OpenBSD. Default:
enabled (ignored on non-FreeBSD).
<tag><label id="bgp-passive">passive <m/switch/</tag>
Standard BGP behavior is both initiating outgoing connections and
accepting incoming connections. In passive mode, outgoing connections
are not initiated. Default: off.
<tag><label id="bgp-rr-client">rr client</tag>
Be a route reflector and treat the neighbor as a route reflection
client. Default: disabled.
<tag><label id="bgp-rr-cluster-id">rr cluster id <m/IPv4 address/</tag>
Route reflectors use cluster id to avoid route reflection loops. When
there is one route reflector in a cluster it usually uses its router id
as a cluster id, but when there are more route reflectors in a cluster,
these need to be configured (using this option) to use a common cluster
id. Clients in a cluster need not know their cluster id and this option
is not allowed for them. Default: the same as router id.
<tag><label id="bgp-rs-client">rs client</tag>
Be a route server and treat the neighbor as a route server client.
A route server is used as a replacement for full mesh EBGP routing in
Internet exchange points in a similar way to route reflectors used in
IBGP routing. BIRD does not implement obsoleted <rfc id="1863">, but
uses ad-hoc implementation, which behaves like plain EBGP but reduces
modifications to advertised route attributes to be transparent (for
example does not prepend its AS number to AS PATH attribute and
keeps MED attribute). Default: disabled.
<tag><label id="bgp-secondary">secondary <m/switch/</tag>
Usually, if an export filter rejects a selected route, no other route is
propagated for that network. This option allows to try the next route in
order until one that is accepted is found or all routes for that network
are rejected. This can be used for route servers that need to propagate
different tables to each client but do not want to have these tables
explicitly (to conserve memory). This option requires that the connected
routing table is <ref id="dsc-table-sorted" name="sorted">. Default: off.
<tag><label id="bgp-add-paths">add paths <m/switch/|rx|tx</tag>
Standard BGP can propagate only one path (route) per destination network
(usually the selected one). This option controls the add-path protocol
extension, which allows to advertise any number of paths to a
destination. Note that to be active, add-path has to be enabled on both
sides of the BGP session, but it could be enabled separately for RX and
TX direction. When active, all available routes accepted by the export
filter are advertised to the neighbor. Default: off.
<tag><label id="bgp-allow-local-pref">allow bgp_local_pref <m/switch/</tag>
A standard BGP implementation do not send the Local Preference attribute
to eBGP neighbors and ignore this attribute if received from eBGP
neighbors, as per <rfc id="4271">. When this option is enabled on an
eBGP session, this attribute will be sent to and accepted from the peer,
which is useful for example if you have a setup like in <rfc id="7938">.
The option does not affect iBGP sessions. Default: off.
<tag><label id="bgp-allow-local-as">allow local as [<m/number/]</tag>
BGP prevents routing loops by rejecting received routes with the local
AS number in the AS path. This option allows to loose or disable the
check. Optional <cf/number/ argument can be used to specify the maximum
number of local ASNs in the AS path that is allowed for received
routes. When the option is used without the argument, the check is
completely disabled and you should ensure loop-free behavior by some
other means. Default: 0 (no local AS number allowed).
<tag><label id="bgp-enable-route-refresh">enable route refresh <m/switch/</tag>
After the initial route exchange, BGP protocol uses incremental updates
to keep BGP speakers synchronized. Sometimes (e.g., if BGP speaker
changes its import filter, or if there is suspicion of inconsistency) it
is necessary to do a new complete route exchange. BGP protocol extension
Route Refresh (<rfc id="2918">) allows BGP speaker to request
re-advertisement of all routes from its neighbor. BGP protocol
extension Enhanced Route Refresh (<rfc id="7313">) specifies explicit
begin and end for such exchanges, therefore the receiver can remove
stale routes that were not advertised during the exchange. This option
specifies whether BIRD advertises these capabilities and supports
related procedures. Note that even when disabled, BIRD can send route
refresh requests. Default: on.
<tag><label id="bgp-graceful-restart">graceful restart <m/switch/|aware</tag>
When a BGP speaker restarts or crashes, neighbors will discard all
received paths from the speaker, which disrupts packet forwarding even
when the forwarding plane of the speaker remains intact. <rfc
id="4724"> specifies an optional graceful restart mechanism to
alleviate this issue. This option controls the mechanism. It has three
states: Disabled, when no support is provided. Aware, when the graceful
restart support is announced and the support for restarting neighbors
is provided, but no local graceful restart is allowed (i.e.
receiving-only role). Enabled, when the full graceful restart
support is provided (i.e. both restarting and receiving role). Note
that proper support for local graceful restart requires also
configuration of other protocols. Default: aware.
<tag><label id="bgp-graceful-restart-time">graceful restart time <m/number/</tag>
The restart time is announced in the BGP graceful restart capability
and specifies how long the neighbor would wait for the BGP session to
re-establish after a restart before deleting stale routes. Default:
120 seconds.
<tag><label id="bgp-interpret-communities">interpret communities <m/switch/</tag>
<rfc id="1997"> demands that BGP speaker should process well-known
communities like no-export (65535, 65281) or no-advertise (65535,
65282). For example, received route carrying a no-adverise community
should not be advertised to any of its neighbors. If this option is
enabled (which is by default), BIRD has such behavior automatically (it
is evaluated when a route is exported to the BGP protocol just before
the export filter). Otherwise, this integrated processing of
well-known communities is disabled. In that case, similar behavior can
be implemented in the export filter. Default: on.
<tag><label id="bgp-enable-as4">enable as4 <m/switch/</tag>
BGP protocol was designed to use 2B AS numbers and was extended later to
allow 4B AS number. BIRD supports 4B AS extension, but by disabling this
option it can be persuaded not to advertise it and to maintain old-style
sessions with its neighbors. This might be useful for circumventing bugs
in neighbor's implementation of 4B AS extension. Even when disabled
(off), BIRD behaves internally as AS4-aware BGP router. Default: on.
<tag><label id="bgp-enable-extended-messages">enable extended messages <m/switch/</tag>
The BGP protocol uses maximum message length of 4096 bytes. This option
provides an extension to allow extended messages with length up
to 65535 bytes. Default: off.
<tag><label id="bgp-capabilities">capabilities <m/switch/</tag>
Use capability advertisement to advertise optional capabilities. This is
standard behavior for newer BGP implementations, but there might be some
older BGP implementations that reject such connection attempts. When
disabled (off), features that request it (4B AS support) are also
disabled. Default: on, with automatic fallback to off when received
capability-related error.
<tag><label id="bgp-advertise-ipv4">advertise ipv4 <m/switch/</tag>
Advertise IPv4 multiprotocol capability. This is not a correct behavior
according to the strict interpretation of <rfc id="4760">, but it is
widespread and required by some BGP implementations (Cisco and Quagga).
This option is relevant to IPv4 mode with enabled capability
advertisement only. Default: on.
<tag><label id="bgp-route-limit">route limit <m/number/</tag>
The maximal number of routes that may be imported from the protocol. If
the route limit is exceeded, the connection is closed with an error.
Limit is currently implemented as <cf>import limit <m/number/ action
restart</cf>. This option is obsolete and it is replaced by
<ref id="proto-import-limit" name="import limit option">. Default: no limit.
<tag><label id="bgp-disable-after-error">disable after error <m/switch/</tag>
When an error is encountered (either locally or by the other side),
disable the instance automatically and wait for an administrator to fix
the problem manually. Default: off.
<tag><label id="bgp-hold-time">hold time <m/number/</tag>
Time in seconds to wait for a Keepalive message from the other side
before considering the connection stale. Default: depends on agreement
with the neighboring router, we prefer 240 seconds if the other side is
willing to accept it.
<tag><label id="bgp-startup-hold-time">startup hold time <m/number/</tag>
Value of the hold timer used before the routers have a chance to exchange
open messages and agree on the real value. Default: 240 seconds.
<tag><label id="bgp-keepalive-time">keepalive time <m/number/</tag>
Delay in seconds between sending of two consecutive Keepalive messages.
Default: One third of the hold time.
<tag><label id="bgp-connect-delay-time">connect delay time <m/number/</tag>
Delay in seconds between protocol startup and the first attempt to
connect. Default: 5 seconds.
<tag><label id="bgp-connect-retry-time">connect retry time <m/number/</tag>
Time in seconds to wait before retrying a failed attempt to connect.
Default: 120 seconds.
<tag><label id="bgp-error-wait-time">error wait time <m/number/,<m/number/</tag>
Minimum and maximum delay in seconds between a protocol failure (either
local or reported by the peer) and automatic restart. Doesn't apply
when <cf/disable after error/ is configured. If consecutive errors
happen, the delay is increased exponentially until it reaches the
maximum. Default: 60, 300.
<tag><label id="bgp-error-forget-time">error forget time <m/number/</tag>
Maximum time in seconds between two protocol failures to treat them as a
error sequence which makes <cf/error wait time/ increase exponentially.
Default: 300 seconds.
<tag><label id="bgp-path-metric">path metric <m/switch/</tag>
Enable comparison of path lengths when deciding which BGP route is the
best one. Default: on.
<tag><label id="bgp-med-metric">med metric <m/switch/</tag>
Enable comparison of MED attributes (during best route selection) even
between routes received from different ASes. This may be useful if all
MED attributes contain some consistent metric, perhaps enforced in
import filters of AS boundary routers. If this option is disabled, MED
attributes are compared only if routes are received from the same AS
(which is the standard behavior). Default: off.
<tag><label id="bgp-deterministic-med">deterministic med <m/switch/</tag>
BGP route selection algorithm is often viewed as a comparison between
individual routes (e.g. if a new route appears and is better than the
current best one, it is chosen as the new best one). But the proper
route selection, as specified by <rfc id="4271">, cannot be fully
implemented in that way. The problem is mainly in handling the MED
attribute. BIRD, by default, uses an simplification based on individual
route comparison, which in some cases may lead to temporally dependent
behavior (i.e. the selection is dependent on the order in which routes
appeared). This option enables a different (and slower) algorithm
implementing proper <rfc id="4271"> route selection, which is
deterministic. Alternative way how to get deterministic behavior is to
use <cf/med metric/ option. This option is incompatible with <ref
id="dsc-table-sorted" name="sorted tables">. Default: off.
<tag><label id="bgp-igp-metric">igp metric <m/switch/</tag>
Enable comparison of internal distances to boundary routers during best
route selection. Default: on.
<tag><label id="bgp-prefer-older">prefer older <m/switch/</tag>
Standard route selection algorithm breaks ties by comparing router IDs.
This changes the behavior to prefer older routes (when both are external
and from different peer). For details, see <rfc id="5004">. Default: off.
<tag><label id="bgp-default-med">default bgp_med <m/number/</tag>
Value of the Multiple Exit Discriminator to be used during route
selection when the MED attribute is missing. Default: 0.
<tag><label id="bgp-default-local-pref">default bgp_local_pref <m/number/</tag>
A default value for the Local Preference attribute. It is used when
a new Local Preference attribute is attached to a route by the BGP
protocol itself (for example, if a route is received through eBGP and
therefore does not have such attribute). Default: 100 (0 in pre-1.2.0
versions of BIRD).
</descrip>
<sect1>Attributes
<label id="bgp-attr">
<p>BGP defines several route attributes. Some of them (those marked with
`<tt/I/' in the table below) are available on internal BGP connections only,
some of them (marked with `<tt/O/') are optional.
<descrip>
<tag><label id="rta-bgp-path">bgppath bgp_path/</tag>
Sequence of AS numbers describing the AS path the packet will travel
through when forwarded according to the particular route. In case of
internal BGP it doesn't contain the number of the local AS.
<tag><label id="rta-bgp-local-pref">int bgp_local_pref/ [I]</tag>
Local preference value used for selection among multiple BGP routes (see
the selection rules above). It's used as an additional metric which is
propagated through the whole local AS.
<tag><label id="rta-bgp-med">int bgp_med/ [O]</tag>
The Multiple Exit Discriminator of the route is an optional attribute
which is used on external (inter-AS) links to convey to an adjacent AS
the optimal entry point into the local AS. The received attribute is
also propagated over internal BGP links. The attribute value is zeroed
when a route is exported to an external BGP instance to ensure that the
attribute received from a neighboring AS is not propagated to other
neighboring ASes. A new value might be set in the export filter of an
external BGP instance. See <rfc id="4451"> for further discussion of
BGP MED attribute.
<tag><label id="rta-bgp-origin">enum bgp_origin/</tag>
Origin of the route: either <cf/ORIGIN_IGP/ if the route has originated
in an interior routing protocol or <cf/ORIGIN_EGP/ if it's been imported
from the <tt>EGP</tt> protocol (nowadays it seems to be obsolete) or
<cf/ORIGIN_INCOMPLETE/ if the origin is unknown.
<tag><label id="rta-bgp-next-hop">ip bgp_next_hop/</tag>
Next hop to be used for forwarding of packets to this destination. On
internal BGP connections, it's an address of the originating router if
it's inside the local AS or a boundary router the packet will leave the
AS through if it's an exterior route, so each BGP speaker within the AS
has a chance to use the shortest interior path possible to this point.
<tag><label id="rta-bgp-atomic-aggr">void bgp_atomic_aggr/ [O]</tag>
This is an optional attribute which carries no value, but the sole
presence of which indicates that the route has been aggregated from
multiple routes by some router on the path from the originator.
<!-- we don't handle aggregators right since they are of a very obscure type
<tag>bgp_aggregator</tag>
-->
<tag><label id="rta-bgp-community">clist bgp_community/ [O]</tag>
List of community values associated with the route. Each such value is a
pair (represented as a <cf/pair/ data type inside the filters) of 16-bit
integers, the first of them containing the number of the AS which
defines the community and the second one being a per-AS identifier.
There are lots of uses of the community mechanism, but generally they
are used to carry policy information like "don't export to USA peers".
As each AS can define its own routing policy, it also has a complete
freedom about which community attributes it defines and what will their
semantics be.
<tag><label id="rta-bgp-ext-community">eclist bgp_ext_community/ [O]</tag>
List of extended community values associated with the route. Extended
communities have similar usage as plain communities, but they have an
extended range (to allow 4B ASNs) and a nontrivial structure with a type
field. Individual community values are represented using an <cf/ec/ data
type inside the filters.
<tag><label id="rta-bgp-large-community">lclist <cf/bgp_large_community/ [O]</tag>
List of large community values associated with the route. Large BGP
communities is another variant of communities, but contrary to extended
communities they behave very much the same way as regular communities,
just larger -- they are uniform untyped triplets of 32bit numbers.
Individual community values are represented using an <cf/lc/ data type
inside the filters.
<tag><label id="rta-bgp-originator-id">quad bgp_originator_id/ [I, O]</tag>
This attribute is created by the route reflector when reflecting the
route and contains the router ID of the originator of the route in the
local AS.
<tag><label id="rta-bgp-cluster-list">clist bgp_cluster_list/ [I, O]</tag>
This attribute contains a list of cluster IDs of route reflectors. Each
route reflector prepends its cluster ID when reflecting the route.
</descrip>
<sect1>Example
<label id="bgp-exam">
<p><code>
protocol bgp {
local as 65000; # Use a private AS number
neighbor 198.51.100.130 as 64496; # Our neighbor ...
multihop; # ... which is connected indirectly
export filter { # We use non-trivial export rules
if source = RTS_STATIC then { # Export only static routes
# Assign our community
bgp_community.add((65000,64501));
# Artificially increase path length
# by advertising local AS number twice
if bgp_path ~ [= 65000 =] then
bgp_path.prepend(65000);
accept;
}
reject;
};
import all;
source address 198.51.100.14; # Use a non-standard source address
}
</code>
<sect>Device
<label id="device">
<p>The Device protocol is not a real routing protocol. It doesn't generate any
routes and it only serves as a module for getting information about network
interfaces from the kernel.
<p>Except for very unusual circumstances, you probably should include this
protocol in the configuration since almost all other protocols require network
interfaces to be defined for them to work with.
<sect1>Configuration
<label id="device-config">
<p><descrip>
<tag><label id="device-scan-time">scan time <m/number/</tag>
Time in seconds between two scans of the network interface list. On
systems where we are notified about interface status changes
asynchronously (such as newer versions of Linux), we need to scan the
list only in order to avoid confusion by lost notification messages,
so the default time is set to a large value.
<tag><label id="device-primary">primary [ "<m/mask/" ] <m/prefix/</tag>
If a network interface has more than one network address, BIRD has to
choose one of them as a primary one. By default, BIRD chooses the
lexicographically smallest address as the primary one.
This option allows to specify which network address should be chosen as
a primary one. Network addresses that match <m/prefix/ are preferred to
non-matching addresses. If more <cf/primary/ options are used, the first
one has the highest preference. If "<m/mask/" is specified, then such
<cf/primary/ option is relevant only to matching network interfaces.
In all cases, an address marked by operating system as secondary cannot
be chosen as the primary one.
</descrip>
<p>As the Device protocol doesn't generate any routes, it cannot have
any attributes. Example configuration looks like this:
<p><code>
protocol device {
scan time 10; # Scan the interfaces often
primary "eth0" 192.168.1.1;
primary 192.168.0.0/16;
}
</code>
<sect>Direct
<label id="direct">
<p>The Direct protocol is a simple generator of device routes for all the
directly connected networks according to the list of interfaces provided by the
kernel via the Device protocol.
<p>The question is whether it is a good idea to have such device routes in BIRD
routing table. OS kernel usually handles device routes for directly connected
networks by itself so we don't need (and don't want) to export these routes to
the kernel protocol. OSPF protocol creates device routes for its interfaces
itself and BGP protocol is usually used for exporting aggregate routes. Although
there are some use cases that use the direct protocol (like abusing eBGP as an
IGP routing protocol), in most cases it is not needed to have these device
routes in BIRD routing table and to use the direct protocol.
<p>There is one notable case when you definitely want to use the direct protocol
-- running BIRD on BSD systems. Having high priority device routes for directly
connected networks from the direct protocol protects kernel device routes from
being overwritten or removed by IGP routes during some transient network
conditions, because a lower priority IGP route for the same network is not
exported to the kernel routing table. This is an issue on BSD systems only, as
on Linux systems BIRD cannot change non-BIRD route in the kernel routing table.
<p>There are just few configuration options for the Direct protocol:
<p><descrip>
<tag><label id="direct-iface">interface <m/pattern/ [, <m/.../]</tag>
By default, the Direct protocol will generate device routes for all the
interfaces available. If you want to restrict it to some subset of
interfaces or addresses (e.g. if you're using multiple routing tables
for policy routing and some of the policy domains don't contain all
interfaces), just use this clause. See <ref id="proto-iface" name="interface">
common option for detailed description. The Direct protocol uses
extended interface clauses.
<tag><label id="direct-check-link">check link <m/switch/</tag>
If enabled, a hardware link state (reported by OS) is taken into
consideration. Routes for directly connected networks are generated only
if link up is reported and they are withdrawn when link disappears
(e.g., an ethernet cable is unplugged). Default value is no.
</descrip>
<p>Direct device routes don't contain any specific attributes.
<p>Example config might look like this:
<p><code>
protocol direct {
interface "-arc*", "*"; # Exclude the ARCnets
}
</code>
<sect>Kernel
<label id="krt">
<p>The Kernel protocol is not a real routing protocol. Instead of communicating
with other routers in the network, it performs synchronization of BIRD's routing
tables with the OS kernel. Basically, it sends all routing table updates to the
kernel and from time to time it scans the kernel tables to see whether some
routes have disappeared (for example due to unnoticed up/down transition of an
interface) or whether an `alien' route has been added by someone else (depending
on the <cf/learn/ switch, such routes are either ignored or accepted to our
table).
<p>Unfortunately, there is one thing that makes the routing table synchronization
a bit more complicated. In the kernel routing table there are also device routes
for directly connected networks. These routes are usually managed by OS itself
(as a part of IP address configuration) and we don't want to touch that. They
are completely ignored during the scan of the kernel tables and also the export
of device routes from BIRD tables to kernel routing tables is restricted to
prevent accidental interference. This restriction can be disabled using
<cf/device routes/ switch.
<p>If your OS supports only a single routing table, you can configure only one
instance of the Kernel protocol. If it supports multiple tables (in order to
allow policy routing; such an OS is for example Linux), you can run as many
instances as you want, but each of them must be connected to a different BIRD
routing table and to a different kernel table.
<p>Because the kernel protocol is partially integrated with the connected
routing table, there are two limitations - it is not possible to connect more
kernel protocols to the same routing table and changing route destination
(gateway) in an export filter of a kernel protocol does not work. Both
limitations can be overcome using another routing table and the pipe protocol.
<sect1>Configuration
<label id="krt-config">
<p><descrip>
<tag><label id="krt-persist">persist <m/switch/</tag>
Tell BIRD to leave all its routes in the routing tables when it exits
(instead of cleaning them up).
<tag><label id="krt-scan-time">scan time <m/number/</tag>
Time in seconds between two consecutive scans of the kernel routing
table.
<tag><label id="krt-learn">learn <m/switch/</tag>
Enable learning of routes added to the kernel routing tables by other
routing daemons or by the system administrator. This is possible only on
systems which support identification of route authorship.
<tag><label id="krt-device-routes">device routes <m/switch/</tag>
Enable export of device routes to the kernel routing table. By default,
such routes are rejected (with the exception of explicitly configured
device routes from the static protocol) regardless of the export filter
to protect device routes in kernel routing table (managed by OS itself)
from accidental overwriting or erasing.
<tag><label id="krt-kernel-table">kernel table <m/number/</tag>
Select which kernel table should this particular instance of the Kernel
protocol work with. Available only on systems supporting multiple
routing tables.
<tag><label id="krt-metric">metric <m/number/</tag> (Linux)
Use specified value as a kernel metric (priority) for all routes sent to
the kernel. When multiple routes for the same network are in the kernel
routing table, the Linux kernel chooses one with lower metric. Also,
routes with different metrics do not clash with each other, therefore
using dedicated metric value is a reliable way to avoid overwriting
routes from other sources (e.g. kernel device routes). Metric 0 has a
special meaning of undefined metric, in which either OS default is used,
or per-route metric can be set using <cf/krt_metric/ attribute. Default:
0 (undefined).
<tag><label id="krt-graceful-restart">graceful restart <m/switch/</tag>
Participate in graceful restart recovery. If this option is enabled and
a graceful restart recovery is active, the Kernel protocol will defer
synchronization of routing tables until the end of the recovery. Note
that import of kernel routes to BIRD is not affected.
<tag><label id="krt-merge-paths">merge paths <M>switch</M> [limit <M>number</M>]</tag>
Usually, only best routes are exported to the kernel protocol. With path
merging enabled, both best routes and equivalent non-best routes are
merged during export to generate one ECMP (equal-cost multipath) route
for each network. This is useful e.g. for BGP multipath. Note that best
routes are still pivotal for route export (responsible for most
properties of resulting ECMP routes), while exported non-best routes are
responsible just for additional multipath next hops. This option also
allows to specify a limit on maximal number of nexthops in one route. By
default, multipath merging is disabled. If enabled, default value of the
limit is 16.
</descrip>
<sect1>Attributes
<label id="krt-attr">
<p>The Kernel protocol defines several attributes. These attributes are
translated to appropriate system (and OS-specific) route attributes. We support
these attributes:
<descrip>
<tag><label id="rta-krt-source">int krt_source/</tag>
The original source of the imported kernel route. The value is
system-dependent. On Linux, it is a value of the protocol field of the
route. See /etc/iproute2/rt_protos for common values. On BSD, it is
based on STATIC and PROTOx flags. The attribute is read-only.
<tag><label id="rta-krt-metric">int krt_metric/</tag> (Linux)
The kernel metric of the route. When multiple same routes are in a
kernel routing table, the Linux kernel chooses one with lower metric.
Note that preferred way to set kernel metric is to use protocol option
<cf/metric/, unless per-route metric values are needed.
<tag><label id="rta-krt-prefsrc">ip krt_prefsrc/</tag> (Linux)
The preferred source address. Used in source address selection for
outgoing packets. Has to be one of the IP addresses of the router.
<tag><label id="rta-krt-realm">int krt_realm/</tag> (Linux)
The realm of the route. Can be used for traffic classification.
<tag><label id="rta-krt-scope">int krt_scope/</tag> (Linux IPv4)
The scope of the route. Valid values are 0-254, although Linux kernel
may reject some values depending on route type and nexthop. It is
supposed to represent `indirectness' of the route, where nexthops of
routes are resolved through routes with a higher scope, but in current
kernels anything below <it/link/ (253) is treated as <it/global/ (0).
When not present, global scope is implied for all routes except device
routes, where link scope is used by default.
</descrip>
<p>In Linux, there is also a plenty of obscure route attributes mostly focused
on tuning TCP performance of local connections. BIRD supports most of these
attributes, see Linux or iproute2 documentation for their meaning. Attributes
<cf/krt_lock_*/ and <cf/krt_feature_*/ have type bool, others have type int.
Supported attributes are:
<cf/krt_mtu/, <cf/krt_lock_mtu/, <cf/krt_window/, <cf/krt_lock_window/,
<cf/krt_rtt/, <cf/krt_lock_rtt/, <cf/krt_rttvar/, <cf/krt_lock_rttvar/,
<cf/krt_sstresh/, <cf/krt_lock_sstresh/, <cf/krt_cwnd/, <cf/krt_lock_cwnd/,
<cf/krt_advmss/, <cf/krt_lock_advmss/, <cf/krt_reordering/, <cf/krt_lock_reordering/,
<cf/krt_hoplimit/, <cf/krt_lock_hoplimit/, <cf/krt_rto_min/, <cf/krt_lock_rto_min/,
<cf/krt_initcwnd/, <cf/krt_initrwnd/, <cf/krt_quickack/,
<cf/krt_feature_ecn/, <cf/krt_feature_allfrag/
<sect1>Example
<label id="krt-exam">
<p>A simple configuration can look this way:
<p><code>
protocol kernel {
export all;
}
</code>
<p>Or for a system with two routing tables:
<p><code>
protocol kernel { # Primary routing table
learn; # Learn alien routes from the kernel
persist; # Don't remove routes on bird shutdown
scan time 10; # Scan kernel routing table every 10 seconds
import all;
export all;
}
protocol kernel { # Secondary routing table
table auxtable;
kernel table 100;
export all;
}
</code>
<sect>OSPF
<label id="ospf">
<sect1>Introduction
<label id="ospf-intro">
<p>Open Shortest Path First (OSPF) is a quite complex interior gateway
protocol. The current IPv4 version (OSPFv2) is defined in <rfc id="2328"> and
the current IPv6 version (OSPFv3) is defined in <rfc id="5340"> It's a link
state (a.k.a. shortest path first) protocol -- each router maintains a database
describing the autonomous system's topology. Each participating router has an
identical copy of the database and all routers run the same algorithm
calculating a shortest path tree with themselves as a root. OSPF chooses the
least cost path as the best path.
<p>In OSPF, the autonomous system can be split to several areas in order to
reduce the amount of resources consumed for exchanging the routing information
and to protect the other areas from incorrect routing data. Topology of the area
is hidden to the rest of the autonomous system.
<p>Another very important feature of OSPF is that it can keep routing information
from other protocols (like Static or BGP) in its link state database as external
routes. Each external route can be tagged by the advertising router, making it
possible to pass additional information between routers on the boundary of the
autonomous system.
<p>OSPF quickly detects topological changes in the autonomous system (such as
router interface failures) and calculates new loop-free routes after a short
period of convergence. Only a minimal amount of routing traffic is involved.
<p>Each router participating in OSPF routing periodically sends Hello messages
to all its interfaces. This allows neighbors to be discovered dynamically. Then
the neighbors exchange theirs parts of the link state database and keep it
identical by flooding updates. The flooding process is reliable and ensures that
each router detects all changes.
<sect1>Configuration
<label id="ospf-config">
<p>In the main part of configuration, there can be multiple definitions of OSPF
areas, each with a different id. These definitions includes many other switches
and multiple definitions of interfaces. Definition of interface may contain many
switches and constant definitions and list of neighbors on nonbroadcast
networks.
<code>
protocol ospf &lt;name&gt; {
rfc1583compat &lt;switch&gt;;
instance id &lt;num&gt;;
stub router &lt;switch&gt;;
tick &lt;num&gt;;
ecmp &lt;switch&gt; [limit &lt;num&gt;];
merge external &lt;switch&gt;;
area &lt;id&gt; {
stub;
nssa;
summary &lt;switch&gt;;
default nssa &lt;switch&gt;;
default cost &lt;num&gt;;
default cost2 &lt;num&gt;;
translator &lt;switch&gt;;
translator stability &lt;num&gt;;
networks {
&lt;prefix&gt;;
&lt;prefix&gt; hidden;
}
external {
&lt;prefix&gt;;
&lt;prefix&gt; hidden;
&lt;prefix&gt; tag &lt;num&gt;;
}
stubnet &lt;prefix&gt;;
stubnet &lt;prefix&gt; {
hidden &lt;switch&gt;;
summary &lt;switch&gt;;
cost &lt;num&gt;;
}
interface &lt;interface pattern&gt; [instance &lt;num&gt;] {
cost &lt;num&gt;;
stub &lt;switch&gt;;
hello &lt;num&gt;;
poll &lt;num&gt;;
retransmit &lt;num&gt;;
priority &lt;num&gt;;
wait &lt;num&gt;;
dead count &lt;num&gt;;
dead &lt;num&gt;;
secondary &lt;switch&gt;;
rx buffer [normal|large|&lt;num&gt;];
tx length &lt;num&gt;;
type [broadcast|bcast|pointopoint|ptp|
nonbroadcast|nbma|pointomultipoint|ptmp];
link lsa suppression &lt;switch&gt;;
strict nonbroadcast &lt;switch&gt;;
real broadcast &lt;switch&gt;;
ptp netmask &lt;switch&gt;;
check link &lt;switch&gt;;
bfd &lt;switch&gt;;
ecmp weight &lt;num&gt;;
ttl security [&lt;switch&gt;; | tx only]
tx class|dscp &lt;num&gt;;
tx priority &lt;num&gt;;
authentication none|simple|cryptographic;
password "&lt;text&gt;";
password "&lt;text&gt;" {
id &lt;num&gt;;
generate from "&lt;date&gt;";
generate to "&lt;date&gt;";
accept from "&lt;date&gt;";
accept to "&lt;date&gt;";
from "&lt;date&gt;";
to "&lt;date&gt;";
algorithm ( keyed md5 | keyed sha1 | hmac sha1 | hmac sha256 | hmac sha384 | hmac sha512 );
};
neighbors {
&lt;ip&gt;;
&lt;ip&gt; eligible;
};
};
virtual link &lt;id&gt; [instance &lt;num&gt;] {
hello &lt;num&gt;;
retransmit &lt;num&gt;;
wait &lt;num&gt;;
dead count &lt;num&gt;;
dead &lt;num&gt;;
authentication none|simple|cryptographic;
password "&lt;text&gt;";
password "&lt;text&gt;" {
id &lt;num&gt;;
generate from "&lt;date&gt;";
generate to "&lt;date&gt;";
accept from "&lt;date&gt;";
accept to "&lt;date&gt;";
from "&lt;date&gt;";
to "&lt;date&gt;";
algorithm ( keyed md5 | keyed sha1 | hmac sha1 | hmac sha256 | hmac sha384 | hmac sha512 );
};
};
};
}
</code>
<descrip>
<tag><label id="ospf-rfc1583compat">rfc1583compat <M>switch</M></tag>
This option controls compatibility of routing table calculation with
<rfc id="1583">. Default value is no.
<tag><label id="ospf-instance-id">instance id <m/num/</tag>
When multiple OSPF protocol instances are active on the same links, they
should use different instance IDs to distinguish their packets. Although
it could be done on per-interface basis, it is often preferred to set
one instance ID to whole OSPF domain/topology (e.g., when multiple
instances are used to represent separate logical topologies on the same
physical network). This option specifies the default instance ID for all
interfaces of the OSPF instance. Note that this option, if used, must
precede interface definitions. Default value is 0.
<tag><label id="ospf-stub-router">stub router <M>switch</M></tag>
This option configures the router to be a stub router, i.e., a router
that participates in the OSPF topology but does not allow transit
traffic. In OSPFv2, this is implemented by advertising maximum metric
for outgoing links. In OSPFv3, the stub router behavior is announced by
clearing the R-bit in the router LSA. See <rfc id="6987"> for details.
Default value is no.
<tag><label id="ospf-tick">tick <M>num</M></tag>
The routing table calculation and clean-up of areas' databases is not
performed when a single link state change arrives. To lower the CPU
utilization, it's processed later at periodical intervals of <m/num/
seconds. The default value is 1.
<tag><label id="ospf-ecmp">ecmp <M>switch</M> [limit <M>number</M>]</tag>
This option specifies whether OSPF is allowed to generate ECMP
(equal-cost multipath) routes. Such routes are used when there are
several directions to the destination, each with the same (computed)
cost. This option also allows to specify a limit on maximum number of
nexthops in one route. By default, ECMP is disabled. If enabled,
default value of the limit is 16.
<tag><label id="ospf-merge-external">merge external <M>switch</M></tag>
This option specifies whether OSPF should merge external routes from
different routers/LSAs for the same destination. When enabled together
with <cf/ecmp/, equal-cost external routes will be combined to multipath
routes in the same way as regular routes. When disabled, external routes
from different LSAs are treated as separate even if they represents the
same destination. Default value is no.
<tag><label id="ospf-area">area <M>id</M></tag>
This defines an OSPF area with given area ID (an integer or an IPv4
address, similarly to a router ID). The most important area is the
backbone (ID 0) to which every other area must be connected.
<tag><label id="ospf-stub">stub</tag>
This option configures the area to be a stub area. External routes are
not flooded into stub areas. Also summary LSAs can be limited in stub
areas (see option <cf/summary/). By default, the area is not a stub
area.
<tag><label id="ospf-nssa">nssa</tag>
This option configures the area to be a NSSA (Not-So-Stubby Area). NSSA
is a variant of a stub area which allows a limited way of external route
propagation. Global external routes are not propagated into a NSSA, but
an external route can be imported into NSSA as a (area-wide) NSSA-LSA
(and possibly translated and/or aggregated on area boundary). By
default, the area is not NSSA.
<tag><label id="ospf-summary">summary <M>switch</M></tag>
This option controls propagation of summary LSAs into stub or NSSA
areas. If enabled, summary LSAs are propagated as usual, otherwise just
the default summary route (0.0.0.0/0) is propagated (this is sometimes
called totally stubby area). If a stub area has more area boundary
routers, propagating summary LSAs could lead to more efficient routing
at the cost of larger link state database. Default value is no.
<tag><label id="ospf-default-nssa">default nssa <M>switch</M></tag>
When <cf/summary/ option is enabled, default summary route is no longer
propagated to the NSSA. In that case, this option allows to originate
default route as NSSA-LSA to the NSSA. Default value is no.
<tag><label id="ospf-default-cost">default cost <M>num</M></tag>
This option controls the cost of a default route propagated to stub and
NSSA areas. Default value is 1000.
<tag><label id="ospf-default-cost2">default cost2 <M>num</M></tag>
When a default route is originated as NSSA-LSA, its cost can use either
type 1 or type 2 metric. This option allows to specify the cost of a
default route in type 2 metric. By default, type 1 metric (option
<cf/default cost/) is used.
<tag><label id="ospf-translator">translator <M>switch</M></tag>
This option controls translation of NSSA-LSAs into external LSAs. By
default, one translator per NSSA is automatically elected from area
boundary routers. If enabled, this area boundary router would
unconditionally translate all NSSA-LSAs regardless of translator
election. Default value is no.
<tag><label id="ospf-translator-stability">translator stability <M>num</M></tag>
This option controls the translator stability interval (in seconds).
When the new translator is elected, the old one keeps translating until
the interval is over. Default value is 40.
<tag><label id="ospf-networks">networks { <m/set/ }</tag>
Definition of area IP ranges. This is used in summary LSA origination.
Hidden networks are not propagated into other areas.
<tag><label id="ospf-external">external { <m/set/ }</tag>
Definition of external area IP ranges for NSSAs. This is used for
NSSA-LSA translation. Hidden networks are not translated into external
LSAs. Networks can have configured route tag.
<tag><label id="ospf-stubnet">stubnet <m/prefix/ { <m/options/ }</tag>
Stub networks are networks that are not transit networks between OSPF
routers. They are also propagated through an OSPF area as a part of a
link state database. By default, BIRD generates a stub network record
for each primary network address on each OSPF interface that does not
have any OSPF neighbors, and also for each non-primary network address
on each OSPF interface. This option allows to alter a set of stub
networks propagated by this router.
Each instance of this option adds a stub network with given network
prefix to the set of propagated stub network, unless option <cf/hidden/
is used. It also suppresses default stub networks for given network
prefix. When option <cf/summary/ is used, also default stub networks
that are subnetworks of given stub network are suppressed. This might be
used, for example, to aggregate generated stub networks.
<tag><label id="ospf-iface">interface <M>pattern</M> [instance <m/num/]</tag>
Defines that the specified interfaces belong to the area being defined.
See <ref id="proto-iface" name="interface"> common option for detailed
description. In OSPFv2, extended interface clauses are used, because
each network prefix is handled as a separate virtual interface.
You can specify alternative instance ID for the interface definition,
therefore it is possible to have several instances of that interface
with different options or even in different areas. For OSPFv2, instance
ID support is an extension (<rfc id="6549">) and is supposed to be set
per-protocol. For OSPFv3, it is an integral feature.
<tag><label id="ospf-virtual-link">virtual link <M>id</M> [instance <m/num/]</tag>
Virtual link to router with the router id. Virtual link acts as a
point-to-point interface belonging to backbone. The actual area is used
as a transport area. This item cannot be in the backbone. Like with
<cf/interface/ option, you could also use several virtual links to one
destination with different instance IDs.
<tag><label id="ospf-cost">cost <M>num</M></tag>
Specifies output cost (metric) of an interface. Default value is 10.
<tag><label id="ospf-stub-iface">stub <M>switch</M></tag>
If set to interface it does not listen to any packet and does not send
any hello. Default value is no.
<tag><label id="ospf-hello">hello <M>num</M></tag>
Specifies interval in seconds between sending of Hello messages. Beware,
all routers on the same network need to have the same hello interval.
Default value is 10.
<tag><label id="ospf-poll">poll <M>num</M></tag>
Specifies interval in seconds between sending of Hello messages for some
neighbors on NBMA network. Default value is 20.
<tag><label id="ospf-retransmit">retransmit <M>num</M></tag>
Specifies interval in seconds between retransmissions of unacknowledged
updates. Default value is 5.
<tag><label id="ospf-priority">priority <M>num</M></tag>
On every multiple access network (e.g., the Ethernet) Designated Router
and Backup Designated router are elected. These routers have some special
functions in the flooding process. Higher priority increases preferences
in this election. Routers with priority 0 are not eligible. Default
value is 1.
<tag><label id="ospf-wait">wait <M>num</M></tag>
After start, router waits for the specified number of seconds between
starting election and building adjacency. Default value is 4*<m/hello/.
<tag><label id="ospf-dead-count">dead count <M>num</M></tag>
When the router does not receive any messages from a neighbor in
<m/dead count/*<m/hello/ seconds, it will consider the neighbor down.
<tag><label id="ospf-dead">dead <M>num</M></tag>
When the router does not receive any messages from a neighbor in
<m/dead/ seconds, it will consider the neighbor down. If both directives
<cf/dead count/ and <cf/dead/ are used, <cf/dead/ has precedence.
<tag><label id="ospf-secondary">secondary <M>switch</M></tag>
On BSD systems, older versions of BIRD supported OSPFv2 only for the
primary IP address of an interface, other IP ranges on the interface
were handled as stub networks. Since v1.4.1, regular operation on
secondary IP addresses is supported, but disabled by default for
compatibility. This option allows to enable it. The option is a
transitional measure, will be removed in the next major release as the
behavior will be changed. On Linux systems, the option is irrelevant, as
operation on non-primary addresses is already the regular behavior.
<tag><label id="ospf-rx-buffer">rx buffer <M>num</M></tag>
This option allows to specify the size of buffers used for packet
processing. The buffer size should be bigger than maximal size of any
packets. By default, buffers are dynamically resized as needed, but a
fixed value could be specified. Value <cf/large/ means maximal allowed
packet size - 65535.
<tag><label id="ospf-tx-length">tx length <M>num</M></tag>
Transmitted OSPF messages that contain large amount of information are
segmented to separate OSPF packets to avoid IP fragmentation. This
option specifies the soft ceiling for the length of generated OSPF
packets. Default value is the MTU of the network interface. Note that
larger OSPF packets may still be generated if underlying OSPF messages
cannot be splitted (e.g. when one large LSA is propagated).
<tag><label id="ospf-type-bcast">type broadcast|bcast</tag>
BIRD detects a type of a connected network automatically, but sometimes
it's convenient to force use of a different type manually. On broadcast
networks (like ethernet), flooding and Hello messages are sent using
multicasts (a single packet for all the neighbors). A designated router
is elected and it is responsible for synchronizing the link-state
databases and originating network LSAs. This network type cannot be used
on physically NBMA networks and on unnumbered networks (networks without
proper IP prefix).
<tag><label id="ospf-type-ptp">type pointopoint|ptp</tag>
Point-to-point networks connect just 2 routers together. No election is
performed and no network LSA is originated, which makes it simpler and
faster to establish. This network type is useful not only for physically
PtP ifaces (like PPP or tunnels), but also for broadcast networks used
as PtP links. This network type cannot be used on physically NBMA
networks.
<tag><label id="ospf-type-nbma">type nonbroadcast|nbma</tag>
On NBMA networks, the packets are sent to each neighbor separately
because of lack of multicast capabilities. Like on broadcast networks,
a designated router is elected, which plays a central role in propagation
of LSAs. This network type cannot be used on unnumbered networks.
<tag><label id="ospf-type-ptmp">type pointomultipoint|ptmp</tag>
This is another network type designed to handle NBMA networks. In this
case the NBMA network is treated as a collection of PtP links. This is
useful if not every pair of routers on the NBMA network has direct
communication, or if the NBMA network is used as an (possibly
unnumbered) PtP link.
<tag><label id="ospf-link-lsa-suppression">link lsa suppression <m/switch/</tag>
In OSPFv3, link LSAs are generated for each link, announcing link-local
IPv6 address of the router to its local neighbors. These are useless on
PtP or PtMP networks and this option allows to suppress the link LSA
origination for such interfaces. The option is ignored on other than PtP
or PtMP interfaces. Default value is no.
<tag><label id="ospf-strict-nonbroadcast">strict nonbroadcast <m/switch/</tag>
If set, don't send hello to any undefined neighbor. This switch is
ignored on other than NBMA or PtMP interfaces. Default value is no.
<tag><label id="ospf-real-broadcast">real broadcast <m/switch/</tag>
In <cf/type broadcast/ or <cf/type ptp/ network configuration, OSPF
packets are sent as IP multicast packets. This option changes the
behavior to using old-fashioned IP broadcast packets. This may be useful
as a workaround if IP multicast for some reason does not work or does
not work reliably. This is a non-standard option and probably is not
interoperable with other OSPF implementations. Default value is no.
<tag><label id="ospf-ptp-netmask">ptp netmask <m/switch/</tag>
In <cf/type ptp/ network configurations, OSPFv2 implementations should
ignore received netmask field in hello packets and should send hello
packets with zero netmask field on unnumbered PtP links. But some OSPFv2
implementations perform netmask checking even for PtP links. This option
specifies whether real netmask will be used in hello packets on <cf/type
ptp/ interfaces. You should ignore this option unless you meet some
compatibility problems related to this issue. Default value is no for
unnumbered PtP links, yes otherwise.
<tag><label id="ospf-check-link">check link <M>switch</M></tag>
If set, a hardware link state (reported by OS) is taken into consideration.
When a link disappears (e.g. an ethernet cable is unplugged), neighbors
are immediately considered unreachable and only the address of the iface
(instead of whole network prefix) is propagated. It is possible that
some hardware drivers or platforms do not implement this feature.
Default value is no.
<tag><label id="ospf-bfd">bfd <M>switch</M></tag>
OSPF could use BFD protocol as an advisory mechanism for neighbor
liveness and failure detection. If enabled, BIRD setups a BFD session
for each OSPF neighbor and tracks its liveness by it. This has an
advantage of an order of magnitude lower detection times in case of
failure. Note that BFD protocol also has to be configured, see
<ref id="bfd" name="BFD"> section for details. Default value is no.
<tag><label id="ospf-ttl-security">ttl security [<m/switch/ | tx only]</tag>
TTL security is a feature that protects routing protocols from remote
spoofed packets by using TTL 255 instead of TTL 1 for protocol packets
destined to neighbors. Because TTL is decremented when packets are
forwarded, it is non-trivial to spoof packets with TTL 255 from remote
locations. Note that this option would interfere with OSPF virtual
links.
If this option is enabled, the router will send OSPF packets with TTL
255 and drop received packets with TTL less than 255. If this option si
set to <cf/tx only/, TTL 255 is used for sent packets, but is not
checked for received packets. Default value is no.
<tag><label id="ospf-tx-class">tx class|dscp|priority <m/num/</tag>
These options specify the ToS/DiffServ/Traffic class/Priority of the
outgoing OSPF packets. See <ref id="proto-tx-class" name="tx class"> common
option for detailed description.
<tag><label id="ospf-ecmp-weight">ecmp weight <M>num</M></tag>
When ECMP (multipath) routes are allowed, this value specifies a
relative weight used for nexthops going through the iface. Allowed
values are 1-256. Default value is 1.
<tag><label id="ospf-auth-none">authentication none</tag>
No passwords are sent in OSPF packets. This is the default value.
<tag><label id="ospf-auth-simple">authentication simple</tag>
Every packet carries 8 bytes of password. Received packets lacking this
password are ignored. This authentication mechanism is very weak.
This option is not available in OSPFv3.
<tag><label id="ospf-auth-cryptographic">authentication cryptographic</tag>
An authentication code is appended to every packet. The specific
cryptographic algorithm is selected by option <cf/algorithm/ for each
key. The default cryptographic algorithm for OSPFv2 keys is Keyed-MD5
and for OSPFv3 keys is HMAC-SHA-256. Passwords are not sent open via
network, so this mechanism is quite secure. Packets can still be read by
an attacker.
<tag><label id="ospf-pass">password "<M>text</M>"</tag>
Specifies a password used for authentication. See
<ref id="proto-pass" name="password"> common option for detailed
description.
<tag><label id="ospf-neighbors">neighbors { <m/set/ } </tag>
A set of neighbors to which Hello messages on NBMA or PtMP networks are
to be sent. For NBMA networks, some of them could be marked as eligible.
In OSPFv3, link-local addresses should be used, using global ones is
possible, but it is nonstandard and might be problematic. And definitely,
link-local and global addresses should not be mixed.
</descrip>
<sect1>Attributes
<label id="ospf-attr">
<p>OSPF defines four route attributes. Each internal route has a <cf/metric/.
<p>Metric is ranging from 1 to infinity (65535). External routes use
<cf/metric type 1/ or <cf/metric type 2/. A <cf/metric of type 1/ is comparable
with internal <cf/metric/, a <cf/metric of type 2/ is always longer than any
<cf/metric of type 1/ or any <cf/internal metric/. <cf/Internal metric/ or
<cf/metric of type 1/ is stored in attribute <cf/ospf_metric1/, <cf/metric type
2/ is stored in attribute <cf/ospf_metric2/. If you specify both metrics only
metric1 is used.
<p>Each external route can also carry attribute <cf/ospf_tag/ which is a 32-bit
integer which is used when exporting routes to other protocols; otherwise, it
doesn't affect routing inside the OSPF domain at all. The fourth attribute
<cf/ospf_router_id/ is a router ID of the router advertising that route /
network. This attribute is read-only. Default is <cf/ospf_metric2 = 10000/ and
<cf/ospf_tag = 0/.
<sect1>Example
<label id="ospf-exam">
<p><code>
protocol ospf MyOSPF {
rfc1583compat yes;
tick 2;
export filter {
if source = RTS_BGP then {
ospf_metric1 = 100;
accept;
}
reject;
};
area 0.0.0.0 {
interface "eth*" {
cost 11;
hello 15;
priority 100;
retransmit 7;
authentication simple;
password "aaa";
};
interface "ppp*" {
cost 100;
authentication cryptographic;
password "abc" {
id 1;
generate to "22-04-2003 11:00:06";
accept from "17-01-2001 12:01:05";
algorithm hmac sha384;
};
password "def" {
id 2;
generate to "22-07-2005 17:03:21";
accept from "22-02-2001 11:34:06";
algorithm hmac sha512;
};
};
interface "arc0" {
cost 10;
stub yes;
};
interface "arc1";
};
area 120 {
stub yes;
networks {
172.16.1.0/24;
172.16.2.0/24 hidden;
}
interface "-arc0" , "arc*" {
type nonbroadcast;
authentication none;
strict nonbroadcast yes;
wait 120;
poll 40;
dead count 8;
neighbors {
192.168.120.1 eligible;
192.168.120.2;
192.168.120.10;
};
};
};
}
</code>
<sect>Pipe
<label id="pipe">
<sect1>Introduction
<label id="pipe-intro">
<p>The Pipe protocol serves as a link between two routing tables, allowing
routes to be passed from a table declared as primary (i.e., the one the pipe is
connected to using the <cf/table/ configuration keyword) to the secondary one
(declared using <cf/peer table/) and vice versa, depending on what's allowed by
the filters. Export filters control export of routes from the primary table to
the secondary one, import filters control the opposite direction.
<p>The Pipe protocol may work in the transparent mode mode or in the opaque
mode. In the transparent mode, the Pipe protocol retransmits all routes from
one table to the other table, retaining their original source and attributes.
If import and export filters are set to accept, then both tables would have
the same content. The transparent mode is the default mode.
<p>In the opaque mode, the Pipe protocol retransmits optimal route from one
table to the other table in a similar way like other protocols send and receive
routes. Retransmitted route will have the source set to the Pipe protocol, which
may limit access to protocol specific route attributes. This mode is mainly for
compatibility, it is not suggested for new configs. The mode can be changed by
<tt/mode/ option.
<p>The primary use of multiple routing tables and the Pipe protocol is for
policy routing, where handling of a single packet doesn't depend only on its
destination address, but also on its source address, source interface, protocol
type and other similar parameters. In many systems (Linux being a good example),
the kernel allows to enforce routing policies by defining routing rules which
choose one of several routing tables to be used for a packet according to its
parameters. Setting of these rules is outside the scope of BIRD's work (on
Linux, you can use the <tt/ip/ command), but you can create several routing
tables in BIRD, connect them to the kernel ones, use filters to control which
routes appear in which tables and also you can employ the Pipe protocol for
exporting a selected subset of one table to another one.
<sect1>Configuration
<label id="pipe-config">
<p><descrip>
<tag><label id="pipe-peer-table">peer table <m/table/</tag>
Defines secondary routing table to connect to. The primary one is
selected by the <cf/table/ keyword.
<tag><label id="pipe-mode">mode opaque|transparent</tag>
Specifies the mode for the pipe to work in. Default is transparent.
</descrip>
<sect1>Attributes
<label id="pipe-attr">
<p>The Pipe protocol doesn't define any route attributes.
<sect1>Example
<label id="pipe-exam">
<p>Let's consider a router which serves as a boundary router of two different
autonomous systems, each of them connected to a subset of interfaces of the
router, having its own exterior connectivity and wishing to use the other AS as
a backup connectivity in case of outage of its own exterior line.
<p>Probably the simplest solution to this situation is to use two routing tables
(we'll call them <cf/as1/ and <cf/as2/) and set up kernel routing rules, so that
packets having arrived from interfaces belonging to the first AS will be routed
according to <cf/as1/ and similarly for the second AS. Thus we have split our
router to two logical routers, each one acting on its own routing table, having
its own routing protocols on its own interfaces. In order to use the other AS's
routes for backup purposes, we can pass the routes between the tables through a
Pipe protocol while decreasing their preferences and correcting their BGP paths
to reflect the AS boundary crossing.
<code>
table as1; # Define the tables
table as2;
protocol kernel kern1 { # Synchronize them with the kernel
table as1;
kernel table 1;
}
protocol kernel kern2 {
table as2;
kernel table 2;
}
protocol bgp bgp1 { # The outside connections
table as1;
local as 1;
neighbor 192.168.0.1 as 1001;
export all;
import all;
}
protocol bgp bgp2 {
table as2;
local as 2;
neighbor 10.0.0.1 as 1002;
export all;
import all;
}
protocol pipe { # The Pipe
table as1;
peer table as2;
export filter {
if net ~ [ 1.0.0.0/8+] then { # Only AS1 networks
if preference>10 then preference = preference-10;
if source=RTS_BGP then bgp_path.prepend(1);
accept;
}
reject;
};
import filter {
if net ~ [ 2.0.0.0/8+] then { # Only AS2 networks
if preference>10 then preference = preference-10;
if source=RTS_BGP then bgp_path.prepend(2);
accept;
}
reject;
};
}
</code>
<sect>RAdv
<label id="radv">
<sect1>Introduction
<label id="radv-intro">
<p>The RAdv protocol is an implementation of Router Advertisements, which are
used in the IPv6 stateless autoconfiguration. IPv6 routers send (in irregular
time intervals or as an answer to a request) advertisement packets to connected
networks. These packets contain basic information about a local network (e.g. a
list of network prefixes), which allows network hosts to autoconfigure network
addresses and choose a default route. BIRD implements router behavior as defined
in <rfc id="4861">, router preferences and specific routes (<rfc id="4191">),
and DNS extensions (<rfc id="6106">).
<sect1>Configuration
<label id="radv-config">
<p>There are several classes of definitions in RAdv configuration -- interface
definitions, prefix definitions and DNS definitions:
<descrip>
<tag><label id="radv-iface">interface <m/pattern/ [, <m/.../] { <m/options/ }</tag>
Interface definitions specify a set of interfaces on which the
protocol is activated and contain interface specific options.
See <ref id="proto-iface" name="interface"> common options for
detailed description.
<tag><label id="radv-prefix">prefix <m/prefix/ { <m/options/ }</tag>
Prefix definitions allow to modify a list of advertised prefixes. By
default, the advertised prefixes are the same as the network prefixes
assigned to the interface. For each network prefix, the matching prefix
definition is found and its options are used. If no matching prefix
definition is found, the prefix is used with default options.
Prefix definitions can be either global or interface-specific. The
second ones are part of interface options. The prefix definition
matching is done in the first-match style, when interface-specific
definitions are processed before global definitions. As expected, the
prefix definition is matching if the network prefix is a subnet of the
prefix in prefix definition.
<tag><label id="radv-rdnss">rdnss { <m/options/ }</tag>
RDNSS definitions allow to specify a list of advertised recursive DNS
servers together with their options. As options are seldom necessary,
there is also a short variant <cf>rdnss <m/address/</cf> that just
specifies one DNS server. Multiple definitions are cumulative. RDNSS
definitions may also be interface-specific when used inside interface
options. By default, interface uses both global and interface-specific
options, but that can be changed by <cf/rdnss local/ option.
<tag><label id="radv-dnssl">dnssl { <m/options/ }</tag>
DNSSL definitions allow to specify a list of advertised DNS search
domains together with their options. Like <cf/rdnss/ above, multiple
definitions are cumulative, they can be used also as interface-specific
options and there is a short variant <cf>dnssl <m/domain/</cf> that just
specifies one DNS search domain.
<tag><label id="radv-trigger">trigger <m/prefix/</tag>
RAdv protocol could be configured to change its behavior based on
availability of routes. When this option is used, the protocol waits in
suppressed state until a <it/trigger route/ (for the specified network)
is exported to the protocol, the protocol also returnsd to suppressed
state if the <it/trigger route/ disappears. Note that route export
depends on specified export filter, as usual. This option could be used,
e.g., for handling failover in multihoming scenarios.
During suppressed state, router advertisements are generated, but with
some fields zeroed. Exact behavior depends on which fields are zeroed,
this can be configured by <cf/sensitive/ option for appropriate
fields. By default, just <cf/default lifetime/ (also called <cf/router
lifetime/) is zeroed, which means hosts cannot use the router as a
default router. <cf/preferred lifetime/ and <cf/valid lifetime/ could
also be configured as <cf/sensitive/ for a prefix, which would cause
autoconfigured IPs to be deprecated or even removed.
<tag><label id="radv-propagate-routes">propagate routes <m/switch/</tag>
This option controls propagation of more specific routes, as defined in
<rfc id="4191">. If enabled, all routes exported to the RAdv protocol,
with the exception of the trigger prefix, are added to advertisments as
additional options. The lifetime and preference of advertised routes can
be set individually by <cf/ra_lifetime/ and <cf/ra_preference/ route
attributes, or per interface by <cf/route lifetime/ and
<cf/route preference/ options. Default: disabled.
Note that the RFC discourages from sending more than 17 routes and
recommends the routes to be configured manually.
</descrip>
<p>Interface specific options:
<descrip>
<tag><label id="radv-iface-max-ra-interval">max ra interval <m/expr/</tag>
Unsolicited router advertisements are sent in irregular time intervals.
This option specifies the maximum length of these intervals, in seconds.
Valid values are 4-1800. Default: 600
<tag><label id="radv-iface-min-ra-interval">min ra interval <m/expr/</tag>
This option specifies the minimum length of that intervals, in seconds.
Must be at least 3 and at most 3/4 * <cf/max ra interval/. Default:
about 1/3 * <cf/max ra interval/.
<tag><label id="radv-iface-min-delay">min delay <m/expr/</tag>
The minimum delay between two consecutive router advertisements, in
seconds. Default: 3
<tag><label id="radv-iface-managed">managed <m/switch/</tag>
This option specifies whether hosts should use DHCPv6 for IP address
configuration. Default: no
<tag><label id="radv-iface-other-config">other config <m/switch/</tag>
This option specifies whether hosts should use DHCPv6 to receive other
configuration information. Default: no
<tag><label id="radv-iface-link-mtu">link mtu <m/expr/</tag>
This option specifies which value of MTU should be used by hosts. 0
means unspecified. Default: 0
<tag><label id="radv-iface-reachable-time">reachable time <m/expr/</tag>
This option specifies the time (in milliseconds) how long hosts should
assume a neighbor is reachable (from the last confirmation). Maximum is
3600000, 0 means unspecified. Default 0.
<tag><label id="radv-iface-retrans-timer">retrans timer <m/expr/</tag>
This option specifies the time (in milliseconds) how long hosts should
wait before retransmitting Neighbor Solicitation messages. 0 means
unspecified. Default 0.
<tag><label id="radv-iface-current-hop-limit">current hop limit <m/expr/</tag>
This option specifies which value of Hop Limit should be used by
hosts. Valid values are 0-255, 0 means unspecified. Default: 64
<tag><label id="radv-iface-default-lifetime">default lifetime <m/expr/ [sensitive <m/switch/]</tag>
This option specifies the time (in seconds) how long (since the receipt
of RA) hosts may use the router as a default router. 0 means do not use
as a default router. For <cf/sensitive/ option, see <ref id="radv-trigger" name="trigger">.
Default: 3 * <cf/max ra interval/, <cf/sensitive/ yes.
<tag><label id="radv-iface-default-preference">default preference low|medium|high</tag>
This option specifies the Default Router Preference value to advertise
to hosts. Default: medium.
<tag><label id="radv-iface-route-lifetime">route lifetime <m/expr/ [sensitive <m/switch/]</tag>
This option specifies the default value of advertised lifetime for
specific routes; i.e., the time (in seconds) for how long (since the
receipt of RA) hosts should consider these routes valid. A special value
0xffffffff represents infinity. The lifetime can be overriden on a per
route basis by the <ref id="rta-ra-lifetime" name="ra_lifetime"> route
attribute. Default: 3 * <cf/max ra interval/, <cf/sensitive/ no.
For the <cf/sensitive/ option, see <ref id="radv-trigger" name="trigger">.
If <cf/sensitive/ is enabled, even the routes with the <cf/ra_lifetime/
attribute become sensitive to the trigger.
<tag><label id="radv-iface-route-preference">route preference low|medium|high</tag>
This option specifies the default value of advertised route preference
for specific routes. The value can be overriden on a per route basis by
the <ref id="rta-ra-preference" name="ra_preference"> route attribute.
Default: medium.
<tag><label id="radv-prefix-linger-time">prefix linger time <m/expr/</tag>
When a prefix or a route disappears, it is advertised for some time with
zero lifetime, to inform clients it is no longer valid. This option
specifies the time (in seconds) for how long prefixes are advertised
that way. Default: 3 * <cf/max ra interval/.
<tag><label id="radv-route-linger-time">route linger time <m/expr/</tag>
When a prefix or a route disappears, it is advertised for some time with
zero lifetime, to inform clients it is no longer valid. This option
specifies the time (in seconds) for how long routes are advertised
that way. Default: 3 * <cf/max ra interval/.
<tag><label id="radv-iface-rdnss-local">rdnss local <m/switch/</tag>
Use only local (interface-specific) RDNSS definitions for this
interface. Otherwise, both global and local definitions are used. Could
also be used to disable RDNSS for given interface if no local definitons
are specified. Default: no.
<tag><label id="radv-iface-dnssl-local">dnssl local <m/switch/</tag>
Use only local DNSSL definitions for this interface. See <cf/rdnss local/
option above. Default: no.
</descrip>
<p>Prefix specific options
<descrip>
<tag><label id="radv-prefix-skip">skip <m/switch/</tag>
This option allows to specify that given prefix should not be
advertised. This is useful for making exceptions from a default policy
of advertising all prefixes. Note that for withdrawing an already
advertised prefix it is more useful to advertise it with zero valid
lifetime. Default: no
<tag><label id="radv-prefix-onlink">onlink <m/switch/</tag>
This option specifies whether hosts may use the advertised prefix for
onlink determination. Default: yes
<tag><label id="radv-prefix-autonomous">autonomous <m/switch/</tag>
This option specifies whether hosts may use the advertised prefix for
stateless autoconfiguration. Default: yes
<tag><label id="radv-prefix-valid-lifetime">valid lifetime <m/expr/ [sensitive <m/switch/]</tag>
This option specifies the time (in seconds) how long (after the
receipt of RA) the prefix information is valid, i.e., autoconfigured
IP addresses can be assigned and hosts with that IP addresses are
considered directly reachable. 0 means the prefix is no longer
valid. For <cf/sensitive/ option, see <ref id="radv-trigger" name="trigger">.
Default: 86400 (1 day), <cf/sensitive/ no.
<tag><label id="radv-prefix-preferred-lifetime">preferred lifetime <m/expr/ [sensitive <m/switch/]</tag>
This option specifies the time (in seconds) how long (after the
receipt of RA) IP addresses generated from the prefix using stateless
autoconfiguration remain preferred. For <cf/sensitive/ option,
see <ref id="radv-trigger" name="trigger">. Default: 14400 (4 hours),
<cf/sensitive/ no.
</descrip>
<p>RDNSS specific options:
<descrip>
<tag><label id="radv-rdnss-ns">ns <m/address/</tag>
This option specifies one recursive DNS server. Can be used multiple
times for multiple servers. It is mandatory to have at least one
<cf/ns/ option in <cf/rdnss/ definition.
<tag><label id="radv-rdnss-lifetime">lifetime [mult] <m/expr/</tag>
This option specifies the time how long the RDNSS information may be
used by clients after the receipt of RA. It is expressed either in
seconds or (when <cf/mult/ is used) in multiples of <cf/max ra
interval/. Note that RDNSS information is also invalidated when
<cf/default lifetime/ expires. 0 means these addresses are no longer
valid DNS servers. Default: 3 * <cf/max ra interval/.
</descrip>
<p>DNSSL specific options:
<descrip>
<tag><label id="radv-dnssl-domain">domain <m/address/</tag>
This option specifies one DNS search domain. Can be used multiple times
for multiple domains. It is mandatory to have at least one <cf/domain/
option in <cf/dnssl/ definition.
<tag><label id="radv-dnssl-lifetime">lifetime [mult] <m/expr/</tag>
This option specifies the time how long the DNSSL information may be
used by clients after the receipt of RA. Details are the same as for
RDNSS <cf/lifetime/ option above. Default: 3 * <cf/max ra interval/.
</descrip>
<sect1>Attributes
<label id="radv-attr">
<p>RAdv defines two route attributes:
<descrip>
<tag><label id="rta-ra-preference">enum ra_preference/</tag>
The preference of the route. The value can be <it/RA_PREF_LOW/,
<it/RA_PREF_MEDIUM/ or <it/RA_PREF_HIGH/. If the attribute is not set,
the <ref id="radv-iface-route-preference" name="route preference">
option is used.
<tag><label id="rta-ra-lifetime">int ra_lifetime/</tag>
The advertised lifetime of the route, in seconds. The special value of
0xffffffff represents infinity. If the attribute is not set, the
<ref id="radv-iface-route-lifetime" name="route lifetime">
option is used.
</descrip>
<sect1>Example
<label id="radv-exam">
<p><code>
table radv_routes; # Manually configured routes go here
protocol static {
table radv_routes;
route 2001:0DB8:4000::/48 unreachable;
route 2001:0DB8:4010::/48 unreachable;
route 2001:0DB8:4020::/48 unreachable {
ra_preference = RA_PREF_HIGH;
ra_lifetime = 3600;
};
}
protocol radv {
propagate routes yes; # Propagate the routes from the radv_routes table
table radv_routes;
export all;
interface "eth2" {
max ra interval 5; # Fast failover with more routers
managed yes; # Using DHCPv6 on eth2
prefix ::/0 {
autonomous off; # So do not autoconfigure any IP
};
};
interface "eth*"; # No need for any other options
prefix 2001:0DB8:1234::/48 {
preferred lifetime 0; # Deprecated address range
};
prefix 2001:0DB8:2000::/48 {
autonomous off; # Do not autoconfigure
};
rdnss 2001:0DB8:1234::10; # Short form of RDNSS
rdnss {
lifetime mult 10;
ns 2001:0DB8:1234::11;
ns 2001:0DB8:1234::12;
};
dnssl {
lifetime 3600;
domain "abc.com";
domain "xyz.com";
};
}
</code>
<sect>RIP
<label id="rip">
<sect1>Introduction
<label id="rip-intro">
<p>The RIP protocol (also sometimes called Rest In Pieces) is a simple protocol,
where each router broadcasts (to all its neighbors) distances to all networks it
can reach. When a router hears distance to another network, it increments it and
broadcasts it back. Broadcasts are done in regular intervals. Therefore, if some
network goes unreachable, routers keep telling each other that its distance is
the original distance plus 1 (actually, plus interface metric, which is usually
one). After some time, the distance reaches infinity (that's 15 in RIP) and all
routers know that network is unreachable. RIP tries to minimize situations where
counting to infinity is necessary, because it is slow. Due to infinity being 16,
you can't use RIP on networks where maximal distance is higher than 15
hosts.
<p>BIRD supports RIPv1 (<rfc id="1058">), RIPv2 (<rfc id="2453">), RIPng (<rfc
id="2080">), and RIP cryptographic authentication (<rfc id="4822">).
<p>RIP is a very simple protocol, and it has a lot of shortcomings. Slow
convergence, big network load and inability to handle larger networks makes it
pretty much obsolete. It is still usable on very small networks.
<sect1>Configuration
<label id="rip-config">
<p>RIP configuration consists mainly of common protocol options and interface
definitions, most RIP options are interface specific.
<code>
protocol rip [&lt;name&gt;] {
infinity &lt;number&gt;;
ecmp &lt;switch&gt; [limit &lt;number&gt;];
interface &lt;interface pattern&gt; {
metric &lt;number&gt;;
mode multicast|broadcast;
passive &lt;switch&gt;;
address &lt;ip&gt;;
port &lt;number&gt;;
version 1|2;
split horizon &lt;switch&gt;;
poison reverse &lt;switch&gt;;
check zero &lt;switch&gt;;
update time &lt;number&gt;;
timeout time &lt;number&gt;;
garbage time &lt;number&gt;;
ecmp weight &lt;number&gt;;
ttl security &lt;switch&gt;; | tx only;
tx class|dscp &lt;number&gt;;
tx priority &lt;number&gt;;
rx buffer &lt;number&gt;;
tx length &lt;number&gt;;
check link &lt;switch&gt;;
authentication none|plaintext|cryptographic;
password "&lt;text&gt;";
password "&lt;text&gt;" {
id &lt;num&gt;;
generate from "&lt;date&gt;";
generate to "&lt;date&gt;";
accept from "&lt;date&gt;";
accept to "&lt;date&gt;";
from "&lt;date&gt;";
to "&lt;date&gt;";
algorithm ( keyed md5 | keyed sha1 | hmac sha1 | hmac sha256 | hmac sha384 | hmac sha512 );
};
};
}
</code>
<descrip>
<tag><label id="rip-infinity">infinity <M>number</M></tag>
Selects the distance of infinity. Bigger values will make
protocol convergence even slower. The default value is 16.
<tag><label id="rip-ecmp">ecmp <M>switch</M> [limit <M>number</M>]</tag>
This option specifies whether RIP is allowed to generate ECMP
(equal-cost multipath) routes. Such routes are used when there are
several directions to the destination, each with the same (computed)
cost. This option also allows to specify a limit on maximum number of
nexthops in one route. By default, ECMP is disabled. If enabled,
default value of the limit is 16.
<tag><label id="rip-iface">interface <m/pattern/ [, <m/.../] { <m/options/ }</tag>
Interface definitions specify a set of interfaces on which the
protocol is activated and contain interface specific options.
See <ref id="proto-iface" name="interface"> common options for
detailed description.
</descrip>
<p>Interface specific options:
<descrip>
<tag><label id="rip-iface-metric">metric <m/num/</tag>
This option specifies the metric of the interface. When a route is
received from the interface, its metric is increased by this value
before further processing. Valid values are 1-255, but values higher
than infinity has no further meaning. Default: 1.
<tag><label id="rip-iface-mode">mode multicast|broadcast</tag>
This option selects the mode for RIP to use on the interface. The
default is multicast mode for RIPv2 and broadcast mode for RIPv1.
RIPng always uses the multicast mode.
<tag><label id="rip-iface-passive">passive <m/switch/</tag>
Passive interfaces receive routing updates but do not transmit any
messages. Default: no.
<tag><label id="rip-iface-address">address <m/ip/</tag>
This option specifies a destination address used for multicast or
broadcast messages, the default is the official RIP (224.0.0.9) or RIPng
(ff02::9) multicast address, or an appropriate broadcast address in the
broadcast mode.
<tag><label id="rip-iface-port">port <m/number/</tag>
This option selects an UDP port to operate on, the default is the
official RIP (520) or RIPng (521) port.
<tag><label id="rip-iface-version">version 1|2</tag>
This option selects the version of RIP used on the interface. For RIPv1,
automatic subnet aggregation is not implemented, only classful network
routes and host routes are propagated. Note that BIRD allows RIPv1 to be
configured with features that are defined for RIPv2 only, like
authentication or using multicast sockets. The default is RIPv2 for IPv4
RIP, the option is not supported for RIPng, as no further versions are
defined.
<tag><label id="rip-iface-version-only">version only <m/switch/</tag>
Regardless of RIP version configured for the interface, BIRD accepts
incoming packets of any RIP version. This option restrict accepted
packets to the configured version. Default: no.
<tag><label id="rip-iface-split-horizon">split horizon <m/switch/</tag>
Split horizon is a scheme for preventing routing loops. When split
horizon is active, routes are not regularly propagated back to the
interface from which they were received. They are either not propagated
back at all (plain split horizon) or propagated back with an infinity
metric (split horizon with poisoned reverse). Therefore, other routers
on the interface will not consider the router as a part of an
independent path to the destination of the route. Default: yes.
<tag><label id="rip-iface-poison-reverse">poison reverse <m/switch/</tag>
When split horizon is active, this option specifies whether the poisoned
reverse variant (propagating routes back with an infinity metric) is
used. The poisoned reverse has some advantages in faster convergence,
but uses more network traffic. Default: yes.
<tag><label id="rip-iface-check-zero">check zero <m/switch/</tag>
Received RIPv1 packets with non-zero values in reserved fields should
be discarded. This option specifies whether the check is performed or
such packets are just processed as usual. Default: yes.
<tag><label id="rip-iface-update-time">update time <m/number/</tag>
Specifies the number of seconds between periodic updates. A lower number
will mean faster convergence but bigger network load. Default: 30.
<tag><label id="rip-iface-timeout-time">timeout time <m/number/</tag>
Specifies the time interval (in seconds) between the last received route
announcement and the route expiration. After that, the network is
considered unreachable, but still is propagated with infinity distance.
Default: 180.
<tag><label id="rip-iface-garbage-time">garbage time <m/number/</tag>
Specifies the time interval (in seconds) between the route expiration
and the removal of the unreachable network entry. The garbage interval,
when a route with infinity metric is propagated, is used for both
internal (after expiration) and external (after withdrawal) routes.
Default: 120.
<tag><label id="rip-iface-ecmp-weight">ecmp weight <m/number/</tag>
When ECMP (multipath) routes are allowed, this value specifies a
relative weight used for nexthops going through the iface. Valid
values are 1-256. Default value is 1.
<tag><label id="rip-iface-auth">authentication none|plaintext|cryptographic</tag>
Selects authentication method to be used. <cf/none/ means that packets
are not authenticated at all, <cf/plaintext/ means that a plaintext
password is embedded into each packet, and <cf/cryptographic/ means that
packets are authenticated using some cryptographic hash function
selected by option <cf/algorithm/ for each key. The default
cryptographic algorithm for RIP keys is Keyed-MD5. If you set
authentication to not-none, it is a good idea to add <cf>password</cf>
section. Default: none.
<tag><label id="rip-iface-pass">password "<m/text/"</tag>
Specifies a password used for authentication. See <ref id="proto-pass"
name="password"> common option for detailed description.
<tag><label id="rip-iface-ttl-security">ttl security [<m/switch/ | tx only]</tag>
TTL security is a feature that protects routing protocols from remote
spoofed packets by using TTL 255 instead of TTL 1 for protocol packets
destined to neighbors. Because TTL is decremented when packets are
forwarded, it is non-trivial to spoof packets with TTL 255 from remote
locations.
If this option is enabled, the router will send RIP packets with TTL 255
and drop received packets with TTL less than 255. If this option si set
to <cf/tx only/, TTL 255 is used for sent packets, but is not checked
for received packets. Such setting does not offer protection, but offers
compatibility with neighbors regardless of whether they use ttl
security.
For RIPng, TTL security is a standard behavior (required by <rfc
id="2080">) and therefore default value is yes. For IPv4 RIP, default
value is no.
<tag><label id="rip-iface-tx-class">tx class|dscp|priority <m/number/</tag>
These options specify the ToS/DiffServ/Traffic class/Priority of the
outgoing RIP packets. See <ref id="proto-tx-class" name="tx class"> common
option for detailed description.
<tag><label id="rip-iface-rx-buffer">rx buffer <m/number/</tag>
This option specifies the size of buffers used for packet processing.
The buffer size should be bigger than maximal size of received packets.
The default value is 532 for IPv4 RIP and interface MTU value for RIPng.
<tag><label id="rip-iface-tx-length">tx length <m/number/</tag>
This option specifies the maximum length of generated RIP packets. To
avoid IP fragmentation, it should not exceed the interface MTU value.
The default value is 532 for IPv4 RIP and interface MTU value for RIPng.
<tag><label id="rip-iface-check-link">check link <m/switch/</tag>
If set, the hardware link state (as reported by OS) is taken into
consideration. When the link disappears (e.g. an ethernet cable is
unplugged), neighbors are immediately considered unreachable and all
routes received from them are withdrawn. It is possible that some
hardware drivers or platforms do not implement this feature.
Default: no.
</descrip>
<sect1>Attributes
<label id="rip-attr">
<p>RIP defines two route attributes:
<descrip>
<tag><label id="rta-rip-metric">int rip_metric/</tag>
RIP metric of the route (ranging from 0 to <cf/infinity/). When routes
from different RIP instances are available and all of them have the same
preference, BIRD prefers the route with lowest <cf/rip_metric/. When a
non-RIP route is exported to RIP, the default metric is 1.
<tag><label id="rta-rip-tag">int rip_tag/</tag>
RIP route tag: a 16-bit number which can be used to carry additional
information with the route (for example, an originating AS number in
case of external routes). When a non-RIP route is exported to RIP, the
default tag is 0.
</descrip>
<sect1>Example
<label id="rip-exam">
<p><code>
protocol rip {
import all;
export all;
interface "eth*" {
metric 2;
port 1520;
mode multicast;
update time 12;
timeout time 60;
authentication cryptographic;
password "secret" { algorithm hmac sha256; };
};
}
</code>
<sect>Static
<label id="static">
<p>The Static protocol doesn't communicate with other routers in the network,
but instead it allows you to define routes manually. This is often used for
specifying how to forward packets to parts of the network which don't use
dynamic routing at all and also for defining sink routes (i.e., those telling to
return packets as undeliverable if they are in your IP block, you don't have any
specific destination for them and you don't want to send them out through the
default route to prevent routing loops).
<p>There are five types of static routes: `classical' routes telling to forward
packets to a neighboring router, multipath routes specifying several (possibly
weighted) neighboring routers, device routes specifying forwarding to hosts on a
directly connected network, recursive routes computing their nexthops by doing
route table lookups for a given IP, and special routes (sink, blackhole etc.)
which specify a special action to be done instead of forwarding the packet.
<p>When the particular destination is not available (the interface is down or
the next hop of the route is not a neighbor at the moment), Static just
uninstalls the route from the table it is connected to and adds it again as soon
as the destination becomes adjacent again.
<p>There are three classes of definitions in Static protocol configuration --
global options, static route definitions, and per-route options. Usually, the
definition of the protocol contains mainly a list of static routes.
<p>Global options:
<descrip>
<tag><label id="static-check-link">check link <m/switch/</tag>
If set, hardware link states of network interfaces are taken into
consideration. When link disappears (e.g. ethernet cable is unplugged),
static routes directing to that interface are removed. It is possible
that some hardware drivers or platforms do not implement this feature.
Default: off.
<tag><label id="static-igp-table">igp table <m/name/</tag>
Specifies a table that is used for route table lookups of recursive
routes. Default: the same table as the protocol is connected to.
</descrip>
<p>Route definitions (each may also contain a block of per-route options):
<descrip>
<tag><label id="static-route-via-ip">route <m/prefix/ via <m/ip/</tag>
Static route through a neighboring router. For link-local next hops,
interface can be specified as a part of the address (e.g.,
<cf/via fe80::1234%eth0/).
<tag><label id="static-route-via-mpath">route <m/prefix/ multipath via <m/ip/ [weight <m/num/] [bfd <m/switch/] [via <m/.../]</tag>
Static multipath route. Contains several nexthops (gateways), possibly
with their weights.
<tag><label id="static-route-via-iface">route <m/prefix/ via <m/"interface"/</tag>
Static device route through an interface to hosts on a directly
connected network.
<tag><label id="static-route-recursive">route <m/prefix/ recursive <m/ip/</tag>
Static recursive route, its nexthop depends on a route table lookup for
given IP address.
<tag><label id="static-route-drop">route <m/prefix/ blackhole|unreachable|prohibit</tag>
Special routes specifying to silently drop the packet, return it as
unreachable or return it as administratively prohibited. First two
targets are also known as <cf/drop/ and <cf/reject/.
</descrip>
<p>Per-route options:
<descrip>
<tag><label id="static-route-bfd">bfd <m/switch/</tag>
The Static protocol could use BFD protocol for next hop liveness
detection. If enabled, a BFD session to the route next hop is created
and the static route is BFD-controlled -- the static route is announced
only if the next hop liveness is confirmed by BFD. If the BFD session
fails, the static route is removed. Note that this is a bit different
compared to other protocols, which may use BFD as an advisory mechanism
for fast failure detection but ignores it if a BFD session is not even
established.
This option can be used for static routes with a direct next hop, or
also for for individual next hops in a static multipath route (see
above). Note that BFD protocol also has to be configured, see
<ref id="bfd" name="BFD"> section for details. Default value is no.
<tag><label id="static-route-filter"><m/filter expression/</tag>
This is a special option that allows filter expressions to be configured
on per-route basis. Can be used multiple times. These expressions are
evaluated when the route is originated, similarly to the import filter
of the static protocol. This is especially useful for configuring route
attributes, e.g., <cf/ospf_metric1 = 100;/ for a route that will be
exported to the OSPF protocol.
</descrip>
<p>Static routes have no specific attributes.
<p>Example static config might look like this:
<p><code>
protocol static {
table testable; # Connect to a non-default routing table
check link; # Advertise routes only if link is up
route 0.0.0.0/0 via 198.51.100.130; # Default route
route 10.0.0.0/8 multipath # Multipath route
via 198.51.100.10 weight 2
via 198.51.100.20 bfd # BFD-controlled next hop
via 192.0.2.1;
route 203.0.113.0/24 unreachable; # Sink route
route 10.2.0.0/24 via "arc0"; # Secondary network
route 192.168.10.0/24 via 198.51.100.100 {
ospf_metric1 = 20; # Set extended attribute
}
route 192.168.10.0/24 via 198.51.100.100 {
ospf_metric2 = 100; # Set extended attribute
ospf_tag = 2; # Set extended attribute
bfd; # BFD-controlled route
}
}
</code>
<chapt>Conclusions
<label id="conclusion">
<sect>Future work
<label id="future-work">
<p>Although BIRD supports all the commonly used routing protocols, there are
still some features which would surely deserve to be implemented in future
versions of BIRD:
<itemize>
<item>Opaque LSA's
<item>Route aggregation and flap dampening
<item>Multipath routes
<item>Multicast routing protocols
<item>Ports to other systems
</itemize>
<sect>Getting more help
<label id="help">
<p>If you use BIRD, you're welcome to join the bird-users mailing list
(<HTMLURL URL="mailto:bird-users@network.cz" name="bird-users@network.cz">)
where you can share your experiences with the other users and consult
your problems with the authors. To subscribe to the list, visit
<HTMLURL URL="http://bird.network.cz/?m_list" name="http://bird.network.cz/?m_list">.
The home page of BIRD can be found at <HTMLURL URL="http://bird.network.cz/" name="http://bird.network.cz/">.
<p>BIRD is a relatively young system and it probably contains some bugs. You can
report any problems to the bird-users list and the authors will be glad to solve
them, but before you do so, please make sure you have read the available
documentation and that you are running the latest version (available at
<HTMLURL URL="ftp://bird.network.cz/pub/bird" name="bird.network.cz:/pub/bird">).
(Of course, a patch which fixes the bug is always welcome as an attachment.)
<p>If you want to understand what is going inside, Internet standards are a good
and interesting reading. You can get them from
<HTMLURL URL="ftp://ftp.rfc-editor.org/" name="ftp.rfc-editor.org"> (or a
nicely sorted version from <HTMLURL URL="ftp://atrey.karlin.mff.cuni.cz/pub/rfc"
name="atrey.karlin.mff.cuni.cz:/pub/rfc">).
<p><it/Good luck!/
</book>
<!--
LocalWords: GPL IPv GateD BGPv RIPv OSPFv Linux sgml html dvi sgmltools Pavel
LocalWords: linuxdoc dtd descrip config conf syslog stderr auth ospf bgp Mbps
LocalWords: router's eval expr num birdc ctl UNIX if's enums bool int ip GCC
LocalWords: len ipaddress pxlen netmask enum bgppath bgpmask clist gw md eth
LocalWords: RTS printn quitbird iBGP AS'es eBGP RFC multiprotocol IGP Machek
LocalWords: EGP misconfigurations keepalive pref aggr aggregator BIRD's RTC
LocalWords: OS'es AS's multicast nolisten misconfigured UID blackhole MRTD MTU
LocalWords: uninstalls ethernets IP binutils ANYCAST anycast dest RTD ICMP rfc
LocalWords: compat multicasts nonbroadcast pointopoint loopback sym stats
LocalWords: Perl SIGHUP dd mm yy HH MM SS EXT IA UNICAST multihop Discriminator txt
LocalWords: proto wildcard Ondrej Filip
-->