0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2024-12-22 09:41:54 +00:00
bird/lib/slab.c
Maria Matejka da8a23277e CLI: Dumping internal data structures to files, not to debug output
All the 'dump something' CLI commands now have a new mandatory
argument -- name of the file where to dump the data. This allows
for more flexible dumping even for production deployments where
the debug output is by default off.

Also the dump commands are now restricted (they weren't before)
to assure that only the appropriate users can run these time consuming
commands.
2024-12-02 06:54:54 +01:00

438 lines
8.9 KiB
C

/*
* BIRD Resource Manager -- A SLAB-like Memory Allocator
*
* Heavily inspired by the original SLAB paper by Jeff Bonwick.
*
* (c) 1998--2000 Martin Mares <mj@ucw.cz>
* (c) 2020 Maria Matejka <mq@jmq.cz>
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
/**
* DOC: Slabs
*
* Slabs are collections of memory blocks of a fixed size.
* They support very fast allocation and freeing of such blocks, prevent memory
* fragmentation and optimize L2 cache usage. Slabs have been invented by Jeff Bonwick
* and published in USENIX proceedings as `The Slab Allocator: An Object-Caching Kernel
* Memory Allocator'. Our implementation follows this article except that we don't use
* constructors and destructors.
*
* When the |DEBUGGING| switch is turned on, we automatically fill all
* newly allocated and freed blocks with a special pattern to make detection
* of use of uninitialized or already freed memory easier.
*
* Example: Nodes of a FIB are allocated from a per-FIB Slab.
*/
#include <stdlib.h>
#include <stdint.h>
#include "nest/bird.h"
#include "lib/resource.h"
#include "lib/string.h"
#include "lib/tlists.h"
#undef FAKE_SLAB /* Turn on if you want to debug memory allocations */
#ifdef DEBUGGING
#define POISON /* Poison all regions after they are freed */
#endif
static void slab_free(resource *r);
static void slab_dump(struct dump_request *dreq, resource *r);
static resource *slab_lookup(resource *r, unsigned long addr);
static struct resmem slab_memsize(resource *r);
#ifdef FAKE_SLAB
/*
* Fake version used for debugging.
*/
struct slab {
resource r;
uint size;
list objs;
};
static struct resclass sl_class = {
"FakeSlab",
sizeof(struct slab),
slab_free,
slab_dump,
NULL,
slab_memsize
};
struct sl_obj {
node n;
uintptr_t data_align[0];
byte data[0];
};
slab *
sl_new(pool *p, uint size)
{
slab *s = ralloc(p, &sl_class);
s->size = size;
init_list(&s->objs);
return s;
}
void *
sl_alloc(slab *s)
{
struct sl_obj *o = xmalloc(sizeof(struct sl_obj) + s->size);
add_tail(&s->objs, &o->n);
return o->data;
}
void *
sl_allocz(slab *s)
{
void *obj = sl_alloc(s);
memset(obj, 0, s->size);
return obj;
}
void
sl_free(void *oo)
{
struct sl_obj *o = SKIP_BACK(struct sl_obj, data, oo);
rem_node(&o->n);
xfree(o);
}
static void
slab_free(resource *r)
{
slab *s = (slab *) r;
struct sl_obj *o, *p;
for(o = HEAD(s->objs); p = (struct sl_obj *) o->n.next; o = p)
xfree(o);
}
static void
slab_dump(resource *r)
{
slab *s = (slab *) r;
int cnt = 0;
struct sl_obj *o;
WALK_LIST(o, s->objs)
cnt++;
debug("(%d objects per %d bytes)\n", cnt, s->size);
}
static struct resmem
slab_memsize(resource *r)
{
slab *s = (slab *) r;
size_t cnt = 0;
struct sl_obj *o;
WALK_LIST(o, s->objs)
cnt++;
return (struct resmem) {
.effective = cnt * s->size,
.overhead = ALLOC_OVERHEAD + sizeof(struct slab) + cnt * ALLOC_OVERHEAD,
};
}
#else
/*
* Real efficient version.
*/
#define MAX_EMPTY_HEADS 1
enum sl_head_state {
slh_empty = 2,
slh_partial = 0,
slh_full = 1,
} PACKED;
struct sl_head {
struct slab *slab;
TLIST_NODE(sl_head, struct sl_head) n;
u16 num_full;
enum sl_head_state state;
u32 used_bits[0];
};
struct sl_alignment { /* Magic structure for testing of alignment */
byte data;
int x[0];
};
#define TLIST_PREFIX sl_head
#define TLIST_TYPE struct sl_head
#define TLIST_ITEM n
#define TLIST_WANT_WALK
#define TLIST_WANT_ADD_HEAD
#include "lib/tlists.h"
struct slab {
resource r;
uint obj_size, head_size, head_bitfield_len;
uint objs_per_slab, num_empty_heads, data_size;
struct sl_head_list empty_heads, partial_heads, full_heads;
};
static struct resclass sl_class = {
"Slab",
sizeof(struct slab),
slab_free,
slab_dump,
slab_lookup,
slab_memsize
};
#define SL_GET_HEAD(x) ((struct sl_head *) (((uintptr_t) (x)) & ~(page_size-1)))
#define SL_HEAD_CHANGE_STATE(_s, _h, _from, _to) ({ \
ASSERT_DIE(_h->state == slh_##_from); \
sl_head_rem_node(&_s->_from##_heads, _h); \
sl_head_add_head(&_s->_to##_heads, _h); \
_h->state = slh_##_to; \
})
/**
* sl_new - create a new Slab
* @p: resource pool
* @size: block size
*
* This function creates a new Slab resource from which
* objects of size @size can be allocated.
*/
slab *
sl_new(pool *p, uint size)
{
slab *s = ralloc(p, &sl_class);
uint align = sizeof(struct sl_alignment);
if (align < sizeof(void *))
align = sizeof(void *);
s->data_size = size;
size = (size + align - 1) / align * align;
s->obj_size = size;
s->head_size = sizeof(struct sl_head);
do {
s->objs_per_slab = (page_size - s->head_size) / size;
s->head_bitfield_len = (s->objs_per_slab + 31) / 32;
s->head_size = (
sizeof(struct sl_head)
+ sizeof(u32) * s->head_bitfield_len
+ align - 1)
/ align * align;
} while (s->objs_per_slab * size + s->head_size > page_size);
if (!s->objs_per_slab)
bug("Slab: object too large");
s->num_empty_heads = 0;
return s;
}
/**
* sl_alloc - allocate an object from Slab
* @s: slab
*
* sl_alloc() allocates space for a single object from the
* Slab and returns a pointer to the object.
*/
void *
sl_alloc(slab *s)
{
struct sl_head *h;
redo:
if (!(h = s->partial_heads.first))
goto no_partial;
okay:
for (uint i=0; i<s->head_bitfield_len; i++)
if (~h->used_bits[i])
{
uint pos = u32_ctz(~h->used_bits[i]);
if (i * 32 + pos >= s->objs_per_slab)
break;
h->used_bits[i] |= 1 << pos;
h->num_full++;
void *out = ((void *) h) + s->head_size + (i * 32 + pos) * s->obj_size;
#ifdef POISON
memset(out, 0xcd, s->data_size);
#endif
return out;
}
SL_HEAD_CHANGE_STATE(s, h, partial, full);
goto redo;
no_partial:
if (h = s->empty_heads.first)
{
SL_HEAD_CHANGE_STATE(s, h, empty, partial);
s->num_empty_heads--;
goto okay;
}
h = alloc_page();
ASSERT_DIE(SL_GET_HEAD(h) == h);
#ifdef POISON
memset(h, 0xba, page_size);
#endif
memset(h, 0, s->head_size);
h->slab = s;
sl_head_add_head(&s->partial_heads, h);
goto okay;
}
/**
* sl_allocz - allocate an object from Slab and zero it
* @s: slab
*
* sl_allocz() allocates space for a single object from the
* Slab and returns a pointer to the object after zeroing out
* the object memory.
*/
void *
sl_allocz(slab *s)
{
void *obj = sl_alloc(s);
memset(obj, 0, s->data_size);
return obj;
}
/**
* sl_free - return a free object back to a Slab
* @s: slab
* @oo: object returned by sl_alloc()
*
* This function frees memory associated with the object @oo
* and returns it back to the Slab @s.
*/
void
sl_free(void *oo)
{
struct sl_head *h = SL_GET_HEAD(oo);
struct slab *s = h->slab;
#ifdef POISON
memset(oo, 0xdb, s->data_size);
#endif
uint offset = oo - ((void *) h) - s->head_size;
ASSERT_DIE(offset % s->obj_size == 0);
uint pos = offset / s->obj_size;
ASSERT_DIE(pos < s->objs_per_slab);
h->used_bits[pos / 32] &= ~(1 << (pos % 32));
if ((h->num_full-- == s->objs_per_slab) && (h->state == slh_full))
SL_HEAD_CHANGE_STATE(s, h, full, partial);
else if (!h->num_full)
{
sl_head_rem_node(&s->partial_heads, h);
if (s->num_empty_heads >= MAX_EMPTY_HEADS)
{
#ifdef POISON
memset(h, 0xde, page_size);
#endif
free_page(h);
}
else
{
sl_head_add_head(&s->empty_heads, h);
h->state = slh_empty;
s->num_empty_heads++;
}
}
}
static void
slab_free(resource *r)
{
slab *s = (slab *) r;
WALK_TLIST_DELSAFE(sl_head, h, &s->empty_heads)
free_page(h);
WALK_TLIST_DELSAFE(sl_head, h, &s->partial_heads)
free_page(h);
WALK_TLIST_DELSAFE(sl_head, h, &s->full_heads)
free_page(h);
}
static void
slab_dump(struct dump_request *dreq, resource *r)
{
slab *s = (slab *) r;
int ec=0, pc=0, fc=0;
WALK_TLIST(sl_head, h, &s->empty_heads)
ec++;
WALK_TLIST(sl_head, h, &s->partial_heads)
pc++;
WALK_TLIST(sl_head, h, &s->full_heads)
fc++;
RDUMP("(%de+%dp+%df blocks per %d objs per %d bytes)\n", ec, pc, fc, s->objs_per_slab, s->obj_size);
}
static struct resmem
slab_memsize(resource *r)
{
slab *s = (slab *) r;
size_t heads = 0;
WALK_TLIST(sl_head, h, &s->full_heads)
heads++;
size_t items = heads * s->objs_per_slab;
WALK_TLIST(sl_head, h, &s->partial_heads)
{
heads++;
items += h->num_full;
}
WALK_TLIST(sl_head, h, &s->empty_heads)
heads++;
size_t eff = items * s->data_size;
return (struct resmem) {
.effective = eff,
.overhead = ALLOC_OVERHEAD + sizeof(struct slab) + heads * page_size - eff,
};
}
static resource *
slab_lookup(resource *r, unsigned long a)
{
slab *s = (slab *) r;
WALK_TLIST(sl_head, h, &s->partial_heads)
if ((unsigned long) h < a && (unsigned long) h + page_size < a)
return r;
WALK_TLIST(sl_head, h, &s->full_heads)
if ((unsigned long) h < a && (unsigned long) h + page_size < a)
return r;
return NULL;
}
#endif