0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2024-12-22 17:51:53 +00:00
bird/proto/ospf/ospf.c

1657 lines
43 KiB
C

/*
* BIRD -- OSPF
*
* (c) 1999--2004 Ondrej Filip <feela@network.cz>
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
/**
* DOC: Open Shortest Path First (OSPF)
*
* The OSPF protocol is quite complicated and its complex implemenation is
* split to many files. In |ospf.c|, you will find mainly the interface
* for communication with the core (e.g., reconfiguration hooks, shutdown
* and initialisation and so on). In |packet.c|, you will find various
* functions for sending and receiving generic OSPF packets. There are
* also routines for authentication and checksumming. File |iface.c| contains
* the interface state machine and functions for allocation and deallocation of OSPF's
* interface data structures. Source |neighbor.c| includes the neighbor state
* machine and functions for election of Designated Router and Backup
* Designated router. In |hello.c|, there are routines for sending
* and receiving of hello packets as well as functions for maintaining
* wait times and the inactivity timer. Files |lsreq.c|, |lsack.c|, |dbdes.c|
* contain functions for sending and receiving of link-state requests,
* link-state acknowledgements and database descriptions respectively.
* In |lsupd.c|, there are functions for sending and receiving
* of link-state updates and also the flooding algorithm. Source |topology.c| is
* a place where routines for searching LSAs in the link-state database,
* adding and deleting them reside, there also are functions for originating
* of various types of LSAs (router LSA, net LSA, external LSA). File |rt.c|
* contains routines for calculating the routing table. |lsalib.c| is a set
* of various functions for working with the LSAs (endianity conversions,
* calculation of checksum etc.).
*
* One instance of the protocol is able to hold LSA databases for
* multiple OSPF areas, to exchange routing information between
* multiple neighbors and to calculate the routing tables. The core
* structure is &proto_ospf to which multiple &ospf_area and
* &ospf_iface structures are connected. &ospf_area is also connected to
* &top_hash_graph which is a dynamic hashing structure that
* describes the link-state database. It allows fast search, addition
* and deletion. Each LSA is kept in two pieces: header and body. Both of them are
* kept in the endianity of the CPU.
*
* In OSPFv2 specification, it is implied that there is one IP prefix
* for each physical network/interface (unless it is an ptp link). But
* in modern systems, there might be more independent IP prefixes
* associated with an interface. To handle this situation, we have
* one &ospf_iface for each active IP prefix (instead for each active
* iface); This behaves like virtual interface for the purpose of OSPF.
* If we receive packet, we associate it with a proper virtual interface
* mainly according to its source address.
*
* OSPF keeps one socket per &ospf_iface. This allows us (compared to
* one socket approach) to evade problems with a limit of multicast
* groups per socket and with sending multicast packets to appropriate
* interface in a portable way. The socket is associated with
* underlying physical iface and should not receive packets received
* on other ifaces (unfortunately, this is not true on
* BSD). Generally, one packet can be received by more sockets (for
* example, if there are more &ospf_iface on one physical iface),
* therefore we explicitly filter received packets according to
* src/dst IP address and received iface.
*
* Vlinks are implemented using particularly degenerate form of
* &ospf_iface, which has several exceptions: it does not have its
* iface or socket (it copies these from 'parent' &ospf_iface) and it
* is present in iface list even when down (it is not freed in
* ospf_iface_down()).
*
* The heart beat of ospf is ospf_disp(). It is called at regular intervals
* (&proto_ospf->tick). It is responsible for aging and flushing of LSAs in
* the database, for routing table calculaction and it call area_disp() of every
* ospf_area.
*
* The function area_disp() is
* responsible for late originating of router LSA and network LSA
* and for cleanup before routing table calculation process in
* the area.
* To every &ospf_iface, we connect one or more
* &ospf_neighbor's -- a structure containing many timers and queues
* for building adjacency and for exchange of routing messages.
*
* BIRD's OSPF implementation respects RFC2328 in every detail, but
* some of internal algorithms do differ. The RFC recommends making a snapshot
* of the link-state database when a new adjacency is forming and sending
* the database description packets based on the information in this
* snapshot. The database can be quite large in some networks, so
* rather we walk through a &slist structure which allows us to
* continue even if the actual LSA we were working with is deleted. New
* LSAs are added at the tail of this &slist.
*
* We also don't keep a separate OSPF routing table, because the core
* helps us by being able to recognize when a route is updated
* to an identical one and it suppresses the update automatically.
* Due to this, we can flush all the routes we've recalculated and
* also those we've deleted to the core's routing table and the
* core will take care of the rest. This simplifies the process
* and conserves memory.
*/
#include <stdlib.h>
#include "ospf.h"
static int ospf_reload_routes(struct proto *p);
static void ospf_rt_notify(struct proto *p, struct rtable *table UNUSED, net * n, rte * new, rte * old UNUSED, ea_list * attrs);
static int ospf_rte_better(struct rte *new, struct rte *old);
static int ospf_rte_same(struct rte *new, struct rte *old);
static void ospf_disp(timer *timer);
static void
ospf_area_initfib(struct fib_node *fn)
{
struct area_net *an = (struct area_net *) fn;
an->hidden = 0;
an->active = -1; /* Force to regenerate summary lsa */
/* ac->oldactive will be rewritten by ospf_rt_spf() */
}
static void
add_area_nets(struct ospf_area *oa, struct ospf_area_config *ac)
{
struct proto_ospf *po = oa->po;
struct proto *p = &po->proto;
struct area_net_config *anet;
struct area_net *antmp;
fib_init(&oa->net_fib, p->pool, sizeof(struct area_net), 0, ospf_area_initfib);
WALK_LIST(anet, ac->net_list)
{
antmp = (struct area_net *) fib_get(&oa->net_fib, &anet->px.addr, anet->px.len);
antmp->hidden = anet->hidden;
}
}
static int
ospf_start(struct proto *p)
{
struct proto_ospf *po = (struct proto_ospf *) p;
struct ospf_config *c = (struct ospf_config *) (p->cf);
struct ospf_area_config *ac;
struct ospf_area *oa;
int vlinks = 0;
po->router_id = proto_get_router_id(p->cf);
po->rfc1583 = c->rfc1583;
po->ebit = 0;
po->tick = c->tick;
po->disp_timer = tm_new(p->pool);
po->disp_timer->data = po;
po->disp_timer->randomize = 0;
po->disp_timer->hook = ospf_disp;
po->disp_timer->recurrent = po->tick;
tm_start(po->disp_timer, 1);
po->lsab_size = 256;
po->lsab_used = 0;
po->lsab = mb_alloc(p->pool, po->lsab_size);
init_list(&(po->iface_list));
init_list(&(po->area_list));
fib_init(&po->rtf, p->pool, sizeof(ort), 0, ospf_rt_initort);
po->areano = 0;
po->gr = ospf_top_new(p->pool);
s_init_list(&(po->lsal));
if (EMPTY_LIST(c->area_list))
{
log(L_ERR "Cannot start, no OSPF areas configured!");
return PS_DOWN;
}
WALK_LIST(ac, c->area_list)
{
oa = mb_allocz(p->pool, sizeof(struct ospf_area));
add_tail(&po->area_list, NODE oa);
po->areano++;
oa->ac = ac;
oa->stub = ac->stub;
oa->areaid = ac->areaid;
oa->rt = NULL;
oa->po = po;
add_area_nets(oa, ac);
fib_init(&oa->rtr, p->pool, sizeof(ort), 0, ospf_rt_initort);
if (oa->areaid == 0)
{
po->backbone = oa;
if (oa->stub) log(L_ERR "Backbone cannot be stub. Ignoring!");
oa->stub = 0;
}
if (!EMPTY_LIST(ac->vlink_list))
vlinks = 1;
#ifdef OSPFv2
oa->options = (oa->stub ? 0 : OPT_E);
#else /* OSPFv3 */
oa->options = OPT_R | (oa->stub ? 0 : OPT_E) | OPT_V6;
#endif
}
/* ABR is always in the backbone */
if (((po->areano > 1) || vlinks) && !po->backbone)
{
oa = mb_allocz(p->pool, sizeof(struct ospf_area));
add_tail(&po->area_list, NODE oa);
po->areano++;
oa->stub = 0;
oa->areaid = 0;
oa->rt = NULL;
oa->po = po;
fib_init(&oa->net_fib, p->pool, sizeof(struct area_net), 0, ospf_area_initfib);
fib_init(&oa->rtr, p->pool, sizeof(ort), 0, ospf_rt_initort);
po->backbone = oa;
#ifdef OSPFv2
oa->options = OPT_E;
#else /* OSPFv3 */
oa->options = OPT_R | OPT_E | OPT_V6;
#endif
}
/* Add all virtual links as interfaces */
struct ospf_iface_patt *ipatt;
WALK_LIST(ac, c->area_list)
WALK_LIST(ipatt, ac->vlink_list)
ospf_iface_new(po, NULL, NULL, ac, ipatt);
return PS_UP;
}
static void
ospf_dump(struct proto *p)
{
struct ospf_iface *ifa;
struct ospf_neighbor *n;
struct proto_ospf *po = (struct proto_ospf *) p;
OSPF_TRACE(D_EVENTS, "Area number: %d", po->areano);
WALK_LIST(ifa, po->iface_list)
{
OSPF_TRACE(D_EVENTS, "Interface: %s", (ifa->iface ? ifa->iface->name : "(null)"));
OSPF_TRACE(D_EVENTS, "state: %u", ifa->state);
OSPF_TRACE(D_EVENTS, "DR: %R", ifa->drid);
OSPF_TRACE(D_EVENTS, "BDR: %R", ifa->bdrid);
WALK_LIST(n, ifa->neigh_list)
{
OSPF_TRACE(D_EVENTS, " neighbor %R in state %u", n->rid, n->state);
}
}
/*
OSPF_TRACE(D_EVENTS, "LSA graph dump start:");
ospf_top_dump(po->gr, p);
OSPF_TRACE(D_EVENTS, "LSA graph dump finished");
*/
neigh_dump_all();
}
static struct proto *
ospf_init(struct proto_config *c)
{
struct proto *p = proto_new(c, sizeof(struct proto_ospf));
p->make_tmp_attrs = ospf_make_tmp_attrs;
p->store_tmp_attrs = ospf_store_tmp_attrs;
p->import_control = ospf_import_control;
p->reload_routes = ospf_reload_routes;
p->accept_ra_types = RA_OPTIMAL;
p->rt_notify = ospf_rt_notify;
p->if_notify = ospf_iface_notify;
p->ifa_notify = ospf_ifa_notify;
p->rte_better = ospf_rte_better;
p->rte_same = ospf_rte_same;
return p;
}
/* If new is better return 1 */
static int
ospf_rte_better(struct rte *new, struct rte *old)
{
if (new->u.ospf.metric1 == LSINFINITY)
return 0;
if(new->attrs->source < old->attrs->source) return 1;
if(new->attrs->source > old->attrs->source) return 0;
if(new->attrs->source == RTS_OSPF_EXT2)
{
if(new->u.ospf.metric2 < old->u.ospf.metric2) return 1;
if(new->u.ospf.metric2 > old->u.ospf.metric2) return 0;
}
if (new->u.ospf.metric1 < old->u.ospf.metric1)
return 1;
return 0; /* Old is shorter or same */
}
static int
ospf_rte_same(struct rte *new, struct rte *old)
{
/* new->attrs == old->attrs always */
return
new->u.ospf.metric1 == old->u.ospf.metric1 &&
new->u.ospf.metric2 == old->u.ospf.metric2 &&
new->u.ospf.tag == old->u.ospf.tag &&
new->u.ospf.router_id == old->u.ospf.router_id;
}
static ea_list *
ospf_build_attrs(ea_list * next, struct linpool *pool, u32 m1, u32 m2,
u32 tag, u32 rid)
{
struct ea_list *l =
lp_alloc(pool, sizeof(struct ea_list) + 4 * sizeof(eattr));
l->next = next;
l->flags = EALF_SORTED;
l->count = 4;
l->attrs[0].id = EA_OSPF_METRIC1;
l->attrs[0].flags = 0;
l->attrs[0].type = EAF_TYPE_INT | EAF_TEMP;
l->attrs[0].u.data = m1;
l->attrs[1].id = EA_OSPF_METRIC2;
l->attrs[1].flags = 0;
l->attrs[1].type = EAF_TYPE_INT | EAF_TEMP;
l->attrs[1].u.data = m2;
l->attrs[2].id = EA_OSPF_TAG;
l->attrs[2].flags = 0;
l->attrs[2].type = EAF_TYPE_INT | EAF_TEMP;
l->attrs[2].u.data = tag;
l->attrs[3].id = EA_OSPF_ROUTER_ID;
l->attrs[3].flags = 0;
l->attrs[3].type = EAF_TYPE_ROUTER_ID | EAF_TEMP;
l->attrs[3].u.data = rid;
return l;
}
void
schedule_net_lsa(struct ospf_iface *ifa)
{
struct proto *p = &ifa->oa->po->proto;
OSPF_TRACE(D_EVENTS, "Scheduling network-LSA origination for iface %s", ifa->iface->name);
ifa->orignet = 1;
}
#ifdef OSPFv3
void
schedule_link_lsa(struct ospf_iface *ifa)
{
struct proto *p = &ifa->oa->po->proto;
OSPF_TRACE(D_EVENTS, "Scheduling link-LSA origination for iface %s", ifa->iface->name);
ifa->origlink = 1;
}
#endif
void
schedule_rt_lsa(struct ospf_area *oa)
{
struct proto *p = &oa->po->proto;
OSPF_TRACE(D_EVENTS, "Scheduling router-LSA origination for area %R", oa->areaid);
oa->origrt = 1;
}
void
schedule_rtcalc(struct proto_ospf *po)
{
struct proto *p = &po->proto;
if (po->calcrt)
return;
OSPF_TRACE(D_EVENTS, "Scheduling routing table calculation");
po->calcrt = 1;
}
static int
ospf_reload_routes(struct proto *p)
{
struct proto_ospf *po = (struct proto_ospf *) p;
if (po->calcrt != 2)
OSPF_TRACE(D_EVENTS, "Scheduling routing table calculation with route reload");
po->calcrt = 2;
return 1;
}
/**
* area_disp - invokes origination of
* router LSA and routing table cleanup
* @oa: ospf area
*
* It invokes aging and when @ospf_area->origrt is set to 1, start
* function for origination of router, network LSAs.
*/
void
area_disp(struct ospf_area *oa)
{
struct proto_ospf *po = oa->po;
struct ospf_iface *ifa;
/* Now try to originage rt_lsa */
if (oa->origrt)
update_rt_lsa(oa);
/* Now try to originate network LSA's */
WALK_LIST(ifa, po->iface_list)
{
#ifdef OSPFv3
/* Link LSA should be originated before Network LSA */
if (ifa->origlink && (ifa->oa == oa))
update_link_lsa(ifa);
#endif
if (ifa->orignet && (ifa->oa == oa))
update_net_lsa(ifa);
}
}
/**
* ospf_disp - invokes routing table calctulation, aging and also area_disp()
* @timer: timer usually called every @proto_ospf->tick second, @timer->data
* point to @proto_ospf
*/
void
ospf_disp(timer * timer)
{
struct proto_ospf *po = timer->data;
struct ospf_area *oa;
WALK_LIST(oa, po->area_list)
area_disp(oa);
/* Age LSA DB */
ospf_age(po);
/* Calculate routing table */
if (po->calcrt)
ospf_rt_spf(po);
}
/**
* ospf_import_control - accept or reject new route from nest's routing table
* @p: current instance of protocol
* @new: the new route
* @attrs: list of attributes
* @pool: pool for allocation of attributes
*
* Its quite simple. It does not accept our own routes and leaves the decision on
* import to the filters.
*/
int
ospf_import_control(struct proto *p, rte ** new, ea_list ** attrs,
struct linpool *pool)
{
rte *e = *new;
if (p == e->attrs->proto)
return -1; /* Reject our own routes */
eattr *ea = ea_find(e->attrs->eattrs, EA_GEN_IGP_METRIC);
u32 m1 = (ea && (ea->u.data < LSINFINITY)) ? ea->u.data : LSINFINITY;
*attrs = ospf_build_attrs(*attrs, pool, m1, 10000, 0, 0);
return 0; /* Leave decision to the filters */
}
struct ea_list *
ospf_make_tmp_attrs(struct rte *rt, struct linpool *pool)
{
return ospf_build_attrs(NULL, pool, rt->u.ospf.metric1, rt->u.ospf.metric2,
rt->u.ospf.tag, rt->u.ospf.router_id);
}
void
ospf_store_tmp_attrs(struct rte *rt, struct ea_list *attrs)
{
rt->u.ospf.metric1 = ea_get_int(attrs, EA_OSPF_METRIC1, LSINFINITY);
rt->u.ospf.metric2 = ea_get_int(attrs, EA_OSPF_METRIC2, 10000);
rt->u.ospf.tag = ea_get_int(attrs, EA_OSPF_TAG, 0);
rt->u.ospf.router_id = ea_get_int(attrs, EA_OSPF_ROUTER_ID, 0);
}
/**
* ospf_shutdown - Finish of OSPF instance
* @p: current instance of protocol
*
* RFC does not define any action that should be taken before router
* shutdown. To make my neighbors react as fast as possible, I send
* them hello packet with empty neighbor list. They should start
* their neighbor state machine with event %NEIGHBOR_1WAY.
*/
static int
ospf_shutdown(struct proto *p)
{
struct proto_ospf *po = (struct proto_ospf *) p;
struct ospf_iface *ifa;
OSPF_TRACE(D_EVENTS, "Shutdown requested");
/* And send to all my neighbors 1WAY */
WALK_LIST(ifa, po->iface_list)
if (ifa->state > OSPF_IS_DOWN)
ospf_iface_shutdown(ifa);
return PS_DOWN;
}
static void
ospf_rt_notify(struct proto *p, rtable *tbl UNUSED, net * n, rte * new, rte * old UNUSED, ea_list * attrs)
{
struct proto_ospf *po = (struct proto_ospf *) p;
/* Temporarily down write anything
OSPF_TRACE(D_EVENTS, "Got route %I/%d %s", p->name, n->n.prefix,
n->n.pxlen, new ? "up" : "down");
*/
if (new) /* Got some new route */
originate_ext_lsa(n, new, po, attrs);
else
flush_ext_lsa(n, po);
}
static void
ospf_get_status(struct proto *p, byte * buf)
{
struct proto_ospf *po = (struct proto_ospf *) p;
if (p->proto_state == PS_DOWN)
buf[0] = 0;
else
{
struct ospf_iface *ifa;
struct ospf_neighbor *n;
int adj = 0;
WALK_LIST(ifa, po->iface_list)
WALK_LIST(n, ifa->neigh_list) if (n->state == NEIGHBOR_FULL)
adj = 1;
if (adj == 0)
strcpy(buf, "Alone");
else
strcpy(buf, "Running");
}
}
static void
ospf_get_route_info(rte * rte, byte * buf, ea_list * attrs UNUSED)
{
char *type = "<bug>";
switch(rte->attrs->source)
{
case RTS_OSPF:
type = "I";
break;
case RTS_OSPF_IA:
type = "IA";
break;
case RTS_OSPF_EXT1:
type = "E1";
break;
case RTS_OSPF_EXT2:
type = "E2";
break;
}
buf += bsprintf(buf, " %s", type);
buf += bsprintf(buf, " (%d/%d", rte->pref, rte->u.ospf.metric1);
if (rte->attrs->source == RTS_OSPF_EXT2)
buf += bsprintf(buf, "/%d", rte->u.ospf.metric2);
buf += bsprintf(buf, ")");
if ((rte->attrs->source == RTS_OSPF_EXT2 || rte->attrs->source == RTS_OSPF_EXT1) && rte->u.ospf.tag)
{
buf += bsprintf(buf, " [%x]", rte->u.ospf.tag);
}
if (rte->u.ospf.router_id)
buf += bsprintf(buf, " [%R]", rte->u.ospf.router_id);
}
static int
ospf_get_attr(eattr * a, byte * buf, int buflen UNUSED)
{
switch (a->id)
{
case EA_OSPF_METRIC1:
bsprintf(buf, "metric1");
return GA_NAME;
case EA_OSPF_METRIC2:
bsprintf(buf, "metric2");
return GA_NAME;
case EA_OSPF_TAG:
bsprintf(buf, "tag: 0x%08x", a->u.data);
return GA_FULL;
case EA_OSPF_ROUTER_ID:
bsprintf(buf, "router_id");
return GA_NAME;
default:
return GA_UNKNOWN;
}
}
static int
ospf_patt_compare(struct ospf_iface_patt *a, struct ospf_iface_patt *b)
{
return (a->type == b->type);
}
/**
* ospf_reconfigure - reconfiguration hook
* @p: current instance of protocol (with old configuration)
* @c: new configuration requested by user
*
* This hook tries to be a little bit intelligent. Instance of OSPF
* will survive change of many constants like hello interval,
* password change, addition or deletion of some neighbor on
* nonbroadcast network, cost of interface, etc.
*/
static int
ospf_reconfigure(struct proto *p, struct proto_config *c)
{
struct ospf_config *old = (struct ospf_config *) (p->cf);
struct ospf_config *new = (struct ospf_config *) c;
struct ospf_area_config *oldac, *newac;
struct proto_ospf *po = (struct proto_ospf *) p;
struct ospf_iface_patt *oldip, *newip;
struct ospf_iface *ifa;
struct nbma_node *nb1, *nb2, *nbnx;
struct ospf_area *oa = NULL;
int found, olddead, newdead;
if (po->rfc1583 != new->rfc1583)
return 0;
schedule_rtcalc(po);
po->tick = new->tick;
po->disp_timer->recurrent = po->tick;
tm_start(po->disp_timer, 1);
oldac = HEAD(old->area_list);
newac = HEAD(new->area_list);
/* I should get it in the same order */
while (((NODE(oldac))->next != NULL) && ((NODE(newac))->next != NULL))
{
if (oldac->areaid != newac->areaid)
return 0;
WALK_LIST(oa, po->area_list)
if (oa->areaid == newac->areaid)
break;
if (!oa)
return 0;
oa->ac = newac;
oa->stub = newac->stub;
if (newac->stub && (oa->areaid == 0)) oa->stub = 0;
/* Check stubnet_list */
struct ospf_stubnet_config *oldsn = HEAD(oldac->stubnet_list);
struct ospf_stubnet_config *newsn = HEAD(newac->stubnet_list);
while (((NODE(oldsn))->next != NULL) && ((NODE(newsn))->next != NULL))
{
if (!ipa_equal(oldsn->px.addr, newsn->px.addr) ||
(oldsn->px.len != newsn->px.len) ||
(oldsn->hidden != newsn->hidden) ||
(oldsn->summary != newsn->summary) ||
(oldsn->cost != newsn->cost))
break;
oldsn = (struct ospf_stubnet_config *)(NODE(oldsn))->next;
newsn = (struct ospf_stubnet_config *)(NODE(newsn))->next;
}
/* If there is no change, both pointers should be NULL */
if (((NODE(oldsn))->next) != ((NODE(newsn))->next))
schedule_rt_lsa(oa);
/* Change net_list */
fib_free(&oa->net_fib);
add_area_nets(oa, newac);
if (!iface_patts_equal(&oldac->patt_list, &newac->patt_list,
(void *) ospf_patt_compare))
return 0;
WALK_LIST(ifa, po->iface_list)
{
/* FIXME: better handling of vlinks */
if (ifa->iface == NULL)
continue;
/* FIXME: better matching of interface_id in OSPFv3 */
if (oldip = (struct ospf_iface_patt *)
iface_patt_find(&oldac->patt_list, ifa->iface, ifa->addr))
{
/* Now reconfigure interface */
if (!(newip = (struct ospf_iface_patt *)
iface_patt_find(&newac->patt_list, ifa->iface, ifa->addr)))
return 0;
/* HELLO TIMER */
if (oldip->helloint != newip->helloint)
{
ifa->helloint = newip->helloint;
ifa->hello_timer->recurrent = ifa->helloint;
tm_start(ifa->hello_timer, ifa->helloint);
OSPF_TRACE(D_EVENTS,
"Changing hello interval on interface %s from %d to %d",
ifa->iface->name, oldip->helloint, newip->helloint);
}
/* POLL TIMER */
if (oldip->pollint != newip->pollint)
{
ifa->pollint = newip->helloint;
ifa->poll_timer->recurrent = ifa->pollint;
tm_start(ifa->poll_timer, ifa->pollint);
OSPF_TRACE(D_EVENTS,
"Changing poll interval on interface %s from %d to %d",
ifa->iface->name, oldip->pollint, newip->pollint);
}
/* COST */
if (oldip->cost != newip->cost)
{
ifa->cost = newip->cost;
OSPF_TRACE(D_EVENTS,
"Changing cost interface %s from %d to %d",
ifa->iface->name, oldip->cost, newip->cost);
schedule_rt_lsa(ifa->oa);
}
/* RX BUFF */
if (oldip->rxbuf != newip->rxbuf)
{
ifa->rxbuf = newip->rxbuf;
OSPF_TRACE(D_EVENTS,
"Changing rxbuf interface %s from %d to %d",
ifa->iface->name, oldip->rxbuf, newip->rxbuf);
ospf_iface_change_mtu(po, ifa);
}
/* strict nbma */
if ((oldip->strictnbma == 0) && (newip->strictnbma != 0))
{
ifa->strictnbma = newip->strictnbma;
OSPF_TRACE(D_EVENTS,
"Interface %s is now strict NBMA.", ifa->iface->name);
}
if ((oldip->strictnbma != 0) && (newip->strictnbma == 0))
{
ifa->strictnbma = newip->strictnbma;
OSPF_TRACE(D_EVENTS,
"Interface %s is no longer strict NBMA.",
ifa->iface->name);
}
/* stub */
int old_stub = ospf_iface_stubby(oldip, ifa->addr);
int new_stub = ospf_iface_stubby(newip, ifa->addr);
if (!old_stub && new_stub)
{
ifa->stub = 1;
OSPF_TRACE(D_EVENTS, "Interface %s is now stub.", ifa->iface->name);
}
if (old_stub && !new_stub && (ifa->ioprob == OSPF_I_OK))
{
ifa->stub = 0;
OSPF_TRACE(D_EVENTS, "Interface %s is no longer stub.", ifa->iface->name);
}
#ifdef OSPFv2
/* AUTHENTICATION */
if (oldip->autype != newip->autype)
{
ifa->autype = newip->autype;
OSPF_TRACE(D_EVENTS,
"Changing authentication type on interface %s",
ifa->iface->name);
}
/* Add *passwords */
ifa->passwords = newip->passwords;
#endif
/* priority */
if (oldip->priority != newip->priority)
{
ifa->priority = newip->priority;
OSPF_TRACE(D_EVENTS,
"Changing priority on interface %s from %d to %d",
ifa->iface->name, oldip->priority, newip->priority);
}
/* RXMT */
if (oldip->rxmtint != newip->rxmtint)
{
ifa->rxmtint = newip->rxmtint;
OSPF_TRACE(D_EVENTS,
"Changing retransmit interval on interface %s from %d to %d",
ifa->iface->name, oldip->rxmtint, newip->rxmtint);
}
/* WAIT */
if (oldip->waitint != newip->waitint)
{
ifa->waitint = newip->waitint;
if (ifa->wait_timer->expires != 0)
tm_start(ifa->wait_timer, ifa->waitint);
OSPF_TRACE(D_EVENTS,
"Changing wait interval on interface %s from %d to %d",
ifa->iface->name, oldip->waitint, newip->waitint);
}
/* INFTRANS */
if (oldip->inftransdelay != newip->inftransdelay)
{
ifa->inftransdelay = newip->inftransdelay;
OSPF_TRACE(D_EVENTS,
"Changing transmit delay on interface %s from %d to %d",
ifa->iface->name, oldip->inftransdelay,
newip->inftransdelay);
}
/* DEAD */
olddead = (oldip->dead == 0) ? oldip->deadc * oldip->helloint : oldip->dead;
newdead = (newip->dead == 0) ? newip->deadc * newip->helloint : newip->dead;
if (olddead != newdead)
{
ifa->dead = newdead;
OSPF_TRACE(D_EVENTS,
"Changing dead interval on interface %s from %d to %d",
ifa->iface->name, olddead, newdead);
}
/* NBMA LIST */
/* First remove old */
WALK_LIST_DELSAFE(nb1, nbnx, ifa->nbma_list)
{
found = 0;
WALK_LIST(nb2, newip->nbma_list)
if (ipa_equal(nb1->ip, nb2->ip))
{
found = 1;
if (nb1->eligible != nb2->eligible)
OSPF_TRACE(D_EVENTS,
"Changing neighbor eligibility %I on interface %s",
nb1->ip, ifa->iface->name);
break;
}
if (!found)
{
OSPF_TRACE(D_EVENTS,
"Removing NBMA neighbor %I on interface %s",
nb1->ip, ifa->iface->name);
rem_node(NODE nb1);
mb_free(nb1);
}
}
/* And then add new */
WALK_LIST(nb2, newip->nbma_list)
{
if (!ipa_in_net(nb2->ip, ifa->addr->prefix, ifa->addr->pxlen))
continue;
found = 0;
WALK_LIST(nb1, ifa->nbma_list)
if (ipa_equal(nb1->ip, nb2->ip))
{
found = 1;
break;
}
if (!found)
{
nb1 = mb_alloc(p->pool, sizeof(struct nbma_node));
nb1->ip = nb2->ip;
nb1->eligible = nb2->eligible;
add_tail(&ifa->nbma_list, NODE nb1);
OSPF_TRACE(D_EVENTS,
"Adding NBMA neighbor %I on interface %s",
nb1->ip, ifa->iface->name);
}
}
}
}
oldac = (struct ospf_area_config *)(NODE(oldac))->next;
newac = (struct ospf_area_config *)(NODE(newac))->next;
}
if (((NODE(oldac))->next) != ((NODE(newac))->next))
return 0; /* One is not null */
return 1; /* Everything OK :-) */
}
void
ospf_sh_neigh(struct proto *p, char *iff)
{
struct ospf_iface *ifa = NULL;
struct ospf_neighbor *n;
struct proto_ospf *po = (struct proto_ospf *) p;
if (p->proto_state != PS_UP)
{
cli_msg(-1013, "%s: is not up", p->name);
cli_msg(0, "");
return;
}
cli_msg(-1013, "%s:", p->name);
cli_msg(-1013, "%-12s\t%3s\t%-15s\t%-5s\t%-10s %-12s", "Router ID", "Pri",
" State", "DTime", "Interface", "Router IP");
WALK_LIST(ifa, po->iface_list)
if ((iff == NULL) || patmatch(iff, ifa->iface->name))
WALK_LIST(n, ifa->neigh_list)
ospf_sh_neigh_info(n);
cli_msg(0, "");
}
void
ospf_sh(struct proto *p)
{
struct ospf_area *oa;
struct proto_ospf *po = (struct proto_ospf *) p;
struct ospf_iface *ifa;
struct ospf_neighbor *n;
int ifano, nno, adjno, firstfib;
struct area_net *anet;
if (p->proto_state != PS_UP)
{
cli_msg(-1014, "%s: is not up", p->name);
cli_msg(0, "");
return;
}
cli_msg(-1014, "%s:", p->name);
cli_msg(-1014, "RFC1583 compatibility: %s", (po->rfc1583 ? "enable" : "disabled"));
cli_msg(-1014, "RT scheduler tick: %d", po->tick);
cli_msg(-1014, "Number of areas: %u", po->areano);
cli_msg(-1014, "Number of LSAs in DB:\t%u", po->gr->hash_entries);
WALK_LIST(oa, po->area_list)
{
cli_msg(-1014, "\tArea: %R (%u) %s", oa->areaid, oa->areaid,
oa->areaid == 0 ? "[BACKBONE]" : "");
ifano = 0;
nno = 0;
adjno = 0;
WALK_LIST(ifa, po->iface_list)
{
if (oa == ifa->oa)
{
ifano++;
WALK_LIST(n, ifa->neigh_list)
{
nno++;
if (n->state == NEIGHBOR_FULL)
adjno++;
}
}
}
cli_msg(-1014, "\t\tStub:\t%s", oa->stub ? "Yes" : "No");
cli_msg(-1014, "\t\tTransit:\t%s", oa->trcap ? "Yes" : "No");
cli_msg(-1014, "\t\tNumber of interfaces:\t%u", ifano);
cli_msg(-1014, "\t\tNumber of neighbors:\t%u", nno);
cli_msg(-1014, "\t\tNumber of adjacent neighbors:\t%u", adjno);
firstfib = 1;
FIB_WALK(&oa->net_fib, nftmp)
{
anet = (struct area_net *) nftmp;
if(firstfib)
{
cli_msg(-1014, "\t\tArea networks:");
firstfib = 0;
}
cli_msg(-1014, "\t\t\t%1I/%u\t%s\t%s", anet->fn.prefix, anet->fn.pxlen,
anet->hidden ? "Hidden" : "Advertise", anet->active ? "Active" : "");
}
FIB_WALK_END;
}
cli_msg(0, "");
}
void
ospf_sh_iface(struct proto *p, char *iff)
{
struct proto_ospf *po = (struct proto_ospf *) p;
struct ospf_iface *ifa = NULL;
if (p->proto_state != PS_UP)
{
cli_msg(-1015, "%s: is not up", p->name);
cli_msg(0, "");
return;
}
cli_msg(-1015, "%s:", p->name);
WALK_LIST(ifa, po->iface_list)
if ((iff == NULL) || patmatch(iff, ifa->iface->name))
ospf_iface_info(ifa);
cli_msg(0, "");
}
/* lsa_compare_for_state() - Compare function for 'show ospf state'
*
* First we want to separate network-LSAs and other LSAs (because network-LSAs
* will be presented as network nodes and other LSAs together as router nodes)
* Network-LSAs are sorted according to network prefix, other LSAs are sorted
* according to originating router id (to get all LSA needed to represent one
* router node together). Then, according to LSA type, ID and age.
*
* For OSPFv3, we have to handle also Prefix-LSAs. We would like to put each
* immediately after the referenced LSA. We will make faked LSA based on ref_
* values
*/
#ifdef OSPFv3
static struct ospf_lsa_header *
fake_lsa_from_prefix_lsa(struct ospf_lsa_header *dst, struct ospf_lsa_header *src,
struct ospf_lsa_prefix *px)
{
dst->age = src->age;
dst->type = px->ref_type;
dst->id = px->ref_id;
dst->rt = px->ref_rt;
dst->sn = src->sn;
return dst;
}
#endif
static int
lsa_compare_for_state(const void *p1, const void *p2)
{
struct top_hash_entry * he1 = * (struct top_hash_entry **) p1;
struct top_hash_entry * he2 = * (struct top_hash_entry **) p2;
struct ospf_lsa_header *lsa1 = &(he1->lsa);
struct ospf_lsa_header *lsa2 = &(he2->lsa);
if (he1->domain != he2->domain)
return he1->domain - he2->domain;
#ifdef OSPFv3
struct ospf_lsa_header lsatmp1, lsatmp2;
int px1 = (lsa1->type == LSA_T_PREFIX);
int px2 = (lsa2->type == LSA_T_PREFIX);
if (px1)
lsa1 = fake_lsa_from_prefix_lsa(&lsatmp1, lsa1, he1->lsa_body);
if (px2)
lsa2 = fake_lsa_from_prefix_lsa(&lsatmp2, lsa2, he2->lsa_body);
#endif
int nt1 = (lsa1->type == LSA_T_NET);
int nt2 = (lsa2->type == LSA_T_NET);
if (nt1 != nt2)
return nt1 - nt2;
if (nt1)
{
#ifdef OSPFv3
/* In OSPFv3, neworks are named base on ID of DR */
if (lsa1->rt != lsa2->rt)
return lsa1->rt - lsa2->rt;
#endif
/* For OSPFv2, this is IP of the network,
for OSPFv3, this is interface ID */
if (lsa1->id != lsa2->id)
return lsa1->id - lsa2->id;
#ifdef OSPFv3
if (px1 != px2)
return px1 - px2;
#endif
return lsa1->sn - lsa2->sn;
}
else
{
if (lsa1->rt != lsa2->rt)
return lsa1->rt - lsa2->rt;
if (lsa1->type != lsa2->type)
return lsa1->type - lsa2->type;
if (lsa1->id != lsa2->id)
return lsa1->id - lsa2->id;
#ifdef OSPFv3
if (px1 != px2)
return px1 - px2;
#endif
return lsa1->sn - lsa2->sn;
}
}
static int
ext_compare_for_state(const void *p1, const void *p2)
{
struct top_hash_entry * he1 = * (struct top_hash_entry **) p1;
struct top_hash_entry * he2 = * (struct top_hash_entry **) p2;
struct ospf_lsa_header *lsa1 = &(he1->lsa);
struct ospf_lsa_header *lsa2 = &(he2->lsa);
if (lsa1->rt != lsa2->rt)
return lsa1->rt - lsa2->rt;
if (lsa1->id != lsa2->id)
return lsa1->id - lsa2->id;
return lsa1->sn - lsa2->sn;
}
static inline void
show_lsa_distance(struct top_hash_entry *he)
{
if (he->color == INSPF)
cli_msg(-1016, "\t\tdistance %u", he->dist);
else
cli_msg(-1016, "\t\tunreachable");
}
static inline void
show_lsa_router(struct proto_ospf *po, struct top_hash_entry *he, int first, int verbose)
{
struct ospf_lsa_header *lsa = &(he->lsa);
struct ospf_lsa_rt *rt = he->lsa_body;
struct ospf_lsa_rt_link *rr = (struct ospf_lsa_rt_link *) (rt + 1);
int max = lsa_rt_count(lsa);
int i;
if (first)
{
cli_msg(-1016, "");
cli_msg(-1016, "\trouter %R", he->lsa.rt);
show_lsa_distance(he);
}
for (i = 0; i < max; i++)
if (rr[i].type == LSART_VLNK)
cli_msg(-1016, "\t\tvlink %R metric %u", rr[i].id, rr[i].metric);
for (i = 0; i < max; i++)
if (rr[i].type == LSART_PTP)
cli_msg(-1016, "\t\trouter %R metric %u", rr[i].id, rr[i].metric);
for (i = 0; i < max; i++)
if (rr[i].type == LSART_NET)
{
#ifdef OSPFv2
struct top_hash_entry *net_he = ospf_hash_find_net(po->gr, he->domain, rr[i].id);
if (net_he)
{
struct ospf_lsa_header *net_lsa = &(net_he->lsa);
struct ospf_lsa_net *net_ln = net_he->lsa_body;
cli_msg(-1016, "\t\tnetwork %I/%d metric %u",
ipa_and(ipa_from_u32(net_lsa->id), net_ln->netmask),
ipa_mklen(net_ln->netmask), rr[i].metric);
}
else
cli_msg(-1016, "\t\tnetwork [%R] metric %u", rr[i].id, rr[i].metric);
#else /* OSPFv3 */
cli_msg(-1016, "\t\tnetwork [%R-%u] metric %u", rr[i].id, rr[i].nif, rr[i].metric);
#endif
}
#ifdef OSPFv2
if (!verbose)
return;
for (i = 0; i < max; i++)
if (rr[i].type == LSART_STUB)
cli_msg(-1016, "\t\tstubnet %I/%d metric %u", ipa_from_u32(rr[i].id),
ipa_mklen(ipa_from_u32(rr[i].data)), rr[i].metric);
#endif
}
static inline void
show_lsa_network(struct top_hash_entry *he)
{
struct ospf_lsa_header *lsa = &(he->lsa);
struct ospf_lsa_net *ln = he->lsa_body;
u32 i;
#ifdef OSPFv2
cli_msg(-1016, "");
cli_msg(-1016, "\tnetwork %I/%d", ipa_and(ipa_from_u32(lsa->id), ln->netmask), ipa_mklen(ln->netmask));
cli_msg(-1016, "\t\tdr %R", lsa->rt);
#else /* OSPFv3 */
cli_msg(-1016, "");
cli_msg(-1016, "\tnetwork [%R-%u]", lsa->rt, lsa->id);
#endif
show_lsa_distance(he);
for (i = 0; i < lsa_net_count(lsa); i++)
cli_msg(-1016, "\t\trouter %R", ln->routers[i]);
}
static inline void
show_lsa_sum_net(struct top_hash_entry *he)
{
ip_addr ip;
int pxlen;
#ifdef OSPFv2
struct ospf_lsa_sum *ls = he->lsa_body;
pxlen = ipa_mklen(ls->netmask);
ip = ipa_and(ipa_from_u32(he->lsa.id), ls->netmask);
#else /* OSPFv3 */
u8 pxopts;
u16 rest;
struct ospf_lsa_sum_net *ls = he->lsa_body;
lsa_get_ipv6_prefix(ls->prefix, &ip, &pxlen, &pxopts, &rest);
#endif
cli_msg(-1016, "\t\txnetwork %I/%d metric %u", ip, pxlen, ls->metric);
}
static inline void
show_lsa_sum_rt(struct top_hash_entry *he)
{
u32 dst_rid, options;
#ifdef OSPFv2
struct ospf_lsa_sum *ls = he->lsa_body;
dst_rid = he->lsa.id;
options = 0;
#else /* OSPFv3 */
struct ospf_lsa_sum_rt *ls = he->lsa_body;
dst_rid = ls->drid;
options = ls->options & OPTIONS_MASK;
#endif
cli_msg(-1016, "\t\txrouter %R metric %u", dst_rid, ls->metric);
}
static inline void
show_lsa_external(struct top_hash_entry *he)
{
struct ospf_lsa_ext *ext = he->lsa_body;
char str_via[STD_ADDRESS_P_LENGTH + 8] = "";
char str_tag[16] = "";
ip_addr ip, rt_fwaddr;
int pxlen, ebit, rt_fwaddr_valid;
u32 rt_tag, rt_metric;
he->domain = 0; /* Unmark the LSA */
rt_metric = ext->metric & METRIC_MASK;
ebit = ext->metric & LSA_EXT_EBIT;
#ifdef OSPFv2
ip = ipa_and(ipa_from_u32(he->lsa.id), ext->netmask);
pxlen = ipa_mklen(ext->netmask);
rt_fwaddr = ext->fwaddr;
rt_fwaddr_valid = !ipa_equal(rt_fwaddr, IPA_NONE);
rt_tag = ext->tag;
#else /* OSPFv3 */
u8 pxopts;
u16 rest;
u32 *buf = ext->rest;
buf = lsa_get_ipv6_prefix(buf, &ip, &pxlen, &pxopts, &rest);
rt_fwaddr_valid = ext->metric & LSA_EXT_FBIT;
if (rt_fwaddr_valid)
buf = lsa_get_ipv6_addr(buf, &rt_fwaddr);
else
rt_fwaddr = IPA_NONE;
if (ext->metric & LSA_EXT_TBIT)
rt_tag = *buf++;
else
rt_tag = 0;
#endif
if (rt_fwaddr_valid)
bsprintf(str_via, " via %I", rt_fwaddr);
if (rt_tag)
bsprintf(str_tag, " tag %08x", rt_tag);
cli_msg(-1016, "\t\texternal %I/%d metric%s %u%s%s", ip, pxlen,
ebit ? "2" : "", rt_metric, str_via, str_tag);
}
#ifdef OSPFv3
static inline void
show_lsa_prefix(struct top_hash_entry *he, struct ospf_lsa_header *cnode)
{
struct ospf_lsa_prefix *px = he->lsa_body;
ip_addr pxa;
int pxlen;
u8 pxopts;
u16 metric;
u32 *buf;
int i;
/* We check whether given prefix-LSA is related to the current node */
if ((px->ref_type != cnode->type) || (px->ref_rt != cnode->rt))
return;
if ((px->ref_type == LSA_T_RT) && (px->ref_id != 0))
return;
if ((px->ref_type == LSA_T_NET) && (px->ref_id != cnode->id))
return;
buf = px->rest;
for (i = 0; i < px->pxcount; i++)
{
buf = lsa_get_ipv6_prefix(buf, &pxa, &pxlen, &pxopts, &metric);
if (px->ref_type == LSA_T_RT)
cli_msg(-1016, "\t\tstubnet %I/%d metric %u", pxa, pxlen, metric);
else
cli_msg(-1016, "\t\taddress %I/%d", pxa, pxlen);
}
}
#endif
void
ospf_sh_state(struct proto *p, int verbose, int reachable)
{
struct proto_ospf *po = (struct proto_ospf *) p;
struct ospf_lsa_header *cnode = NULL;
int num = po->gr->hash_entries;
unsigned int i, ix, j1, j2, jx;
u32 last_area = 0xFFFFFFFF;
if (p->proto_state != PS_UP)
{
cli_msg(-1016, "%s: is not up", p->name);
cli_msg(0, "");
return;
}
/* We store interesting area-scoped LSAs in array hea and
global-scoped (LSA_T_EXT) LSAs in array hex */
struct top_hash_entry *hea[num];
struct top_hash_entry *hex[verbose ? num : 0];
struct top_hash_entry *he;
j1 = j2 = jx = 0;
WALK_SLIST(he, po->lsal)
{
int accept;
switch (he->lsa.type)
{
case LSA_T_RT:
case LSA_T_NET:
accept = 1;
break;
case LSA_T_SUM_NET:
case LSA_T_SUM_RT:
#ifdef OSPFv3
case LSA_T_PREFIX:
#endif
accept = verbose;
break;
case LSA_T_EXT:
if (verbose)
{
he->domain = 1; /* Abuse domain field to mark the LSA */
hex[jx++] = he;
}
default:
accept = 0;
}
if (accept)
hea[j1++] = he;
else
j2++;
}
if ((j1 + j2) != num)
die("Fatal mismatch");
qsort(hea, j1, sizeof(struct top_hash_entry *), lsa_compare_for_state);
qsort(hex, jx, sizeof(struct top_hash_entry *), ext_compare_for_state);
/*
* This code is a bit tricky, we have a primary LSAs (router and
* network) that are presented as a node, and secondary LSAs that
* are presented as a part of a primary node. cnode represents an
* currently opened node (whose header was presented). The LSAs are
* sorted to get secondary LSAs just after related primary LSA (if
* available). We present secondary LSAs only when related primary
* LSA is opened.
*
* AS-external LSAs are stored separately as they might be presented
* several times (for each area when related ASBR is opened). When
* the node is closed, related external routes are presented. We
* also have to take into account that in OSPFv3, there might be
* more router-LSAs and only the first should be considered as a
* primary. This is handled by not closing old router-LSA when next
* one is processed (which is not opened because there is already
* one opened).
*/
ix = 0;
for (i = 0; i < j1; i++)
{
he = hea[i];
/* If there is no opened node, we open the LSA (if appropriate) or skip to the next one */
if (!cnode)
{
if (((he->lsa.type == LSA_T_RT) || (he->lsa.type == LSA_T_NET))
&& ((he->color == INSPF) || !reachable))
{
cnode = &(he->lsa);
if (he->domain != last_area)
{
cli_msg(-1016, "");
cli_msg(-1016, "area %R", he->domain);
last_area = he->domain;
ix = 0;
}
}
else
continue;
}
ASSERT(cnode && (he->domain == last_area) && (he->lsa.rt == cnode->rt));
switch (he->lsa.type)
{
case LSA_T_RT:
show_lsa_router(po, he, he->lsa.id == cnode->id, verbose);
break;
case LSA_T_NET:
show_lsa_network(he);
break;
case LSA_T_SUM_NET:
if (cnode->type == LSA_T_RT)
show_lsa_sum_net(he);
break;
case LSA_T_SUM_RT:
if (cnode->type == LSA_T_RT)
show_lsa_sum_rt(he);
break;
#ifdef OSPFv3
case LSA_T_PREFIX:
show_lsa_prefix(he, cnode);
break;
#endif
case LSA_T_EXT:
show_lsa_external(he);
break;
}
/* In these cases, we close the current node */
if ((i+1 == j1)
|| (hea[i+1]->domain != last_area)
|| (hea[i+1]->lsa.rt != cnode->rt)
|| (hea[i+1]->lsa.type == LSA_T_NET))
{
while ((ix < jx) && (hex[ix]->lsa.rt < cnode->rt))
ix++;
while ((ix < jx) && (hex[ix]->lsa.rt == cnode->rt))
show_lsa_external(hex[ix++]);
cnode = NULL;
}
}
int hdr = 0;
u32 last_rt = 0xFFFFFFFF;
for (ix = 0; ix < jx; ix++)
{
he = hex[ix];
/* If it is still marked, we show it now. */
if (he->domain)
{
he->domain = 0;
if ((he->color != INSPF) && reachable)
continue;
if (!hdr)
{
cli_msg(-1016, "");
cli_msg(-1016, "other ASBRs");
hdr = 1;
}
if (he->lsa.rt != last_rt)
{
cli_msg(-1016, "");
cli_msg(-1016, "\trouter %R", he->lsa.rt);
last_rt = he->lsa.rt;
}
show_lsa_external(he);
}
}
cli_msg(0, "");
}
static int
lsa_compare_for_lsadb(const void *p1, const void *p2)
{
struct top_hash_entry * he1 = * (struct top_hash_entry **) p1;
struct top_hash_entry * he2 = * (struct top_hash_entry **) p2;
struct ospf_lsa_header *lsa1 = &(he1->lsa);
struct ospf_lsa_header *lsa2 = &(he2->lsa);
int sc1 = LSA_SCOPE(lsa1);
int sc2 = LSA_SCOPE(lsa2);
if (sc1 != sc2)
return sc2 - sc1;
if (he1->domain != he2->domain)
return he1->domain - he2->domain;
if (lsa1->rt != lsa2->rt)
return lsa1->rt - lsa2->rt;
if (lsa1->id != lsa2->id)
return lsa1->id - lsa2->id;
if (lsa1->type != lsa2->type)
return lsa1->type - lsa2->type;
return lsa1->sn - lsa2->sn;
}
void
ospf_sh_lsadb(struct proto *p)
{
struct proto_ospf *po = (struct proto_ospf *) p;
int num = po->gr->hash_entries;
unsigned int i, j;
int last_dscope = -1;
u32 last_domain = 0;
if (p->proto_state != PS_UP)
{
cli_msg(-1017, "%s: is not up", p->name);
cli_msg(0, "");
return;
}
struct top_hash_entry *hea[num];
struct top_hash_entry *he;
j = 0;
WALK_SLIST(he, po->lsal)
hea[j++] = he;
if (j != num)
die("Fatal mismatch");
qsort(hea, j, sizeof(struct top_hash_entry *), lsa_compare_for_lsadb);
for (i = 0; i < j; i++)
{
struct ospf_lsa_header *lsa = &(hea[i]->lsa);
int dscope = LSA_SCOPE(lsa);
if ((dscope != last_dscope) || (hea[i]->domain != last_domain))
{
cli_msg(-1017, "");
switch (dscope)
{
case LSA_SCOPE_AS:
cli_msg(-1017, "Global");
break;
case LSA_SCOPE_AREA:
cli_msg(-1017, "Area %R", hea[i]->domain);
break;
#ifdef OSPFv3
case LSA_SCOPE_LINK:
{
struct iface *ifa = if_find_by_index(hea[i]->domain);
cli_msg(-1017, "Link %s", (ifa != NULL) ? ifa->name : "?");
}
break;
#endif
}
cli_msg(-1017, "");
cli_msg(-1017," Type LS ID Router Age Sequence Checksum");
last_dscope = dscope;
last_domain = hea[i]->domain;
}
cli_msg(-1017," %04x %-15R %-15R %5u %08x %04x",
lsa->type, lsa->id, lsa->rt, lsa->age, lsa->sn, lsa->checksum);
}
cli_msg(0, "");
}
struct protocol proto_ospf = {
name: "OSPF",
template: "ospf%d",
attr_class: EAP_OSPF,
init: ospf_init,
dump: ospf_dump,
start: ospf_start,
shutdown: ospf_shutdown,
reconfigure: ospf_reconfigure,
get_status: ospf_get_status,
get_attr: ospf_get_attr,
get_route_info: ospf_get_route_info
// show_proto_info: ospf_sh
};