mirror of
https://gitlab.nic.cz/labs/bird.git
synced 2025-01-25 10:21:53 +00:00
2002 lines
51 KiB
C
2002 lines
51 KiB
C
/*
|
|
* BIRD -- OSPF Topological Database
|
|
*
|
|
* (c) 1999 Martin Mares <mj@ucw.cz>
|
|
* (c) 1999--2004 Ondrej Filip <feela@network.cz>
|
|
* (c) 2009--2014 Ondrej Zajicek <santiago@crfreenet.org>
|
|
* (c) 2009--2014 CZ.NIC z.s.p.o.
|
|
*
|
|
* Can be freely distributed and used under the terms of the GNU GPL.
|
|
*/
|
|
|
|
#include "nest/bird.h"
|
|
#include "lib/string.h"
|
|
|
|
#include "ospf.h"
|
|
|
|
|
|
#define HASH_DEF_ORDER 6
|
|
#define HASH_HI_MARK *4
|
|
#define HASH_HI_STEP 2
|
|
#define HASH_HI_MAX 16
|
|
#define HASH_LO_MARK /5
|
|
#define HASH_LO_STEP 2
|
|
#define HASH_LO_MIN 8
|
|
|
|
static inline void * lsab_flush(struct ospf_proto *p);
|
|
static inline void lsab_reset(struct ospf_proto *p);
|
|
|
|
|
|
/**
|
|
* ospf_install_lsa - install new LSA into database
|
|
* @p: OSPF protocol instance
|
|
* @lsa: LSA header
|
|
* @type: type of LSA
|
|
* @domain: domain of LSA
|
|
* @body: pointer to LSA body
|
|
*
|
|
* This function ensures installing new LSA received in LS update into LSA
|
|
* database. Old instance is replaced. Several actions are taken to detect if
|
|
* new routing table calculation is necessary. This is described in 13.2 of RFC
|
|
* 2328. This function is for received LSA only, locally originated LSAs are
|
|
* installed by ospf_originate_lsa().
|
|
*
|
|
* The LSA body in @body is expected to be mb_allocated by the caller and its
|
|
* ownership is transferred to the LSA entry structure.
|
|
*/
|
|
struct top_hash_entry *
|
|
ospf_install_lsa(struct ospf_proto *p, struct ospf_lsa_header *lsa, u32 type, u32 domain, void *body)
|
|
{
|
|
struct top_hash_entry *en;
|
|
int change = 0;
|
|
|
|
en = ospf_hash_get(p->gr, domain, lsa->id, lsa->rt, type);
|
|
|
|
if (!SNODE_VALID(en))
|
|
s_add_tail(&p->lsal, SNODE en);
|
|
|
|
if ((en->lsa_body == NULL) || /* No old LSA */
|
|
(en->lsa.length != lsa->length) ||
|
|
(en->lsa.type_raw != lsa->type_raw) || /* Check for OSPFv2 options */
|
|
(en->lsa.age == LSA_MAXAGE) ||
|
|
(lsa->age == LSA_MAXAGE) ||
|
|
memcmp(en->lsa_body, body, lsa->length - sizeof(struct ospf_lsa_header)))
|
|
change = 1;
|
|
|
|
if ((en->lsa.age == LSA_MAXAGE) && (lsa->age == LSA_MAXAGE))
|
|
change = 0;
|
|
|
|
mb_free(en->lsa_body);
|
|
en->lsa_body = body;
|
|
en->lsa = *lsa;
|
|
en->init_age = en->lsa.age;
|
|
en->inst_time = now;
|
|
|
|
/*
|
|
* We do not set en->mode. It is either default LSA_M_BASIC, or in a special
|
|
* case when en is local but flushed, there is postponed LSA, self-originated
|
|
* LSA is received and ospf_install_lsa() is called from ospf_advance_lse(),
|
|
* then we have en->mode from the postponed LSA origination.
|
|
*/
|
|
|
|
OSPF_TRACE(D_EVENTS, "Installing LSA: Type: %04x, Id: %R, Rt: %R, Seq: %08x, Age: %u",
|
|
en->lsa_type, en->lsa.id, en->lsa.rt, en->lsa.sn, en->lsa.age);
|
|
|
|
if (change)
|
|
ospf_schedule_rtcalc(p);
|
|
|
|
return en;
|
|
}
|
|
|
|
/**
|
|
* ospf_advance_lsa - handle received unexpected self-originated LSA
|
|
* @p: OSPF protocol instance
|
|
* @en: current LSA entry or NULL
|
|
* @lsa: new LSA header
|
|
* @type: type of LSA
|
|
* @domain: domain of LSA
|
|
* @body: pointer to LSA body
|
|
*
|
|
* This function handles received unexpected self-originated LSA (@lsa, @body)
|
|
* by either advancing sequence number of the local LSA instance (@en) and
|
|
* propagating it, or installing the received LSA and immediately flushing it
|
|
* (if there is no local LSA; i.e., @en is NULL or MaxAge).
|
|
*
|
|
* The LSA body in @body is expected to be mb_allocated by the caller and its
|
|
* ownership is transferred to the LSA entry structure or it is freed.
|
|
*/
|
|
void
|
|
ospf_advance_lsa(struct ospf_proto *p, struct top_hash_entry *en, struct ospf_lsa_header *lsa, u32 type, u32 domain, void *body)
|
|
{
|
|
/* RFC 2328 13.4 */
|
|
|
|
if (en && (en->lsa.age < LSA_MAXAGE))
|
|
{
|
|
if (lsa->sn != LSA_MAXSEQNO)
|
|
{
|
|
/*
|
|
* We simply advance current LSA to have higher seqnum than received LSA.
|
|
* The received LSA is ignored and the advanced LSA is propagated instead.
|
|
*
|
|
* Although this is an origination of distinct LSA instance and therefore
|
|
* should be limited by MinLSInterval, we do not enforce it here. Fast
|
|
* reaction is needed and we are already limited by MinLSArrival.
|
|
*/
|
|
|
|
mb_free(body);
|
|
|
|
en->lsa.sn = lsa->sn + 1;
|
|
en->lsa.age = 0;
|
|
en->init_age = 0;
|
|
en->inst_time = now;
|
|
lsasum_calculate(&en->lsa, en->lsa_body);
|
|
|
|
OSPF_TRACE(D_EVENTS, "Advancing LSA: Type: %04x, Id: %R, Rt: %R, Seq: %08x",
|
|
en->lsa_type, en->lsa.id, en->lsa.rt, en->lsa.sn);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Received LSA has maximal sequence number, so we cannot simply override
|
|
* it. We have to install it to the database, immediately flush it to
|
|
* implement sequence number wrapping, and schedule our current LSA to be
|
|
* originated after the received instance is flushed.
|
|
*/
|
|
|
|
if (en->next_lsa_body == NULL)
|
|
{
|
|
/* Schedule current LSA */
|
|
en->next_lsa_blen = en->lsa.length - sizeof(struct ospf_lsa_header);
|
|
en->next_lsa_body = en->lsa_body;
|
|
en->next_lsa_opts = ospf_is_v2(p) ? lsa_get_options(&en->lsa) : 0;
|
|
}
|
|
else
|
|
{
|
|
/* There is already scheduled LSA, so we just free current one */
|
|
mb_free(en->lsa_body);
|
|
}
|
|
|
|
en->lsa_body = body;
|
|
en->lsa = *lsa;
|
|
en->lsa.age = LSA_MAXAGE;
|
|
en->init_age = lsa->age;
|
|
en->inst_time = now;
|
|
|
|
OSPF_TRACE(D_EVENTS, "Resetting LSA: Type: %04x, Id: %R, Rt: %R, Seq: %08x",
|
|
en->lsa_type, en->lsa.id, en->lsa.rt, en->lsa.sn);
|
|
OSPF_TRACE(D_EVENTS, "Postponing LSA: Type: %04x, Id: %R, Rt: %R",
|
|
en->lsa_type, en->lsa.id, en->lsa.rt);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* We do not have received LSA in the database. We have to flush the
|
|
* received LSA. It has to be installed in the database to secure
|
|
* retransmissions. Note that the received LSA may already be MaxAge.
|
|
* Also note that en->next_lsa_* may be defined.
|
|
*/
|
|
|
|
lsa->age = LSA_MAXAGE;
|
|
en = ospf_install_lsa(p, lsa, type, domain, body);
|
|
}
|
|
|
|
/*
|
|
* We flood the updated LSA. Although in some cases the to-be-flooded LSA is
|
|
* the same as the received LSA, and therefore we should propagate it as
|
|
* regular received LSA (send the acknowledgement instead of the update to
|
|
* the neighbor we received it from), we cheat a bit here.
|
|
*/
|
|
|
|
ospf_flood_lsa(p, en, NULL);
|
|
}
|
|
|
|
|
|
static int
|
|
ospf_do_originate_lsa(struct ospf_proto *p, struct top_hash_entry *en, void *lsa_body, u16 lsa_blen, u16 lsa_opts)
|
|
{
|
|
/* Enforce MinLSInterval */
|
|
if ((en->init_age == 0) && en->inst_time && ((en->inst_time + MINLSINTERVAL) > now))
|
|
return 0;
|
|
|
|
/* Handle wrapping sequence number */
|
|
if (en->lsa.sn == LSA_MAXSEQNO)
|
|
{
|
|
/* Prepare to flush old LSA */
|
|
if (en->lsa.age != LSA_MAXAGE)
|
|
{
|
|
OSPF_TRACE(D_EVENTS, "Resetting LSA: Type: %04x, Id: %R, Rt: %R, Seq: %08x",
|
|
en->lsa_type, en->lsa.id, en->lsa.rt, en->lsa.sn);
|
|
|
|
en->lsa.age = LSA_MAXAGE;
|
|
ospf_flood_lsa(p, en, NULL);
|
|
return 0;
|
|
}
|
|
|
|
/* Already flushing */
|
|
if ((p->padj != 0) || (en->ret_count != 0))
|
|
return 0;
|
|
|
|
/* Flush done, just clean up seqnum, lsa_body is freed below */
|
|
en->lsa.sn = LSA_ZEROSEQNO;
|
|
}
|
|
|
|
/*
|
|
* lsa.type_raw is initialized by ospf_hash_get() to OSPFv3 LSA type.
|
|
* lsa_set_options() implicitly converts it to OSPFv2 LSA type, assuming that
|
|
* old type is just new type masked by 0xff. That is not universally true,
|
|
* but it holds for all OSPFv2 types currently supported by BIRD.
|
|
*/
|
|
|
|
if (ospf_is_v2(p))
|
|
lsa_set_options(&en->lsa, lsa_opts);
|
|
|
|
mb_free(en->lsa_body);
|
|
en->lsa_body = lsa_body;
|
|
en->lsa.length = sizeof(struct ospf_lsa_header) + lsa_blen;
|
|
en->lsa.sn++;
|
|
en->lsa.age = 0;
|
|
en->init_age = 0;
|
|
en->inst_time = now;
|
|
lsasum_calculate(&en->lsa, en->lsa_body);
|
|
|
|
OSPF_TRACE(D_EVENTS, "Originating LSA: Type: %04x, Id: %R, Rt: %R, Seq: %08x",
|
|
en->lsa_type, en->lsa.id, en->lsa.rt, en->lsa.sn);
|
|
|
|
ospf_flood_lsa(p, en, NULL);
|
|
|
|
if (en->mode == LSA_M_BASIC)
|
|
ospf_schedule_rtcalc(p);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* ospf_originate_lsa - originate new LSA
|
|
* @p: OSPF protocol instance
|
|
* @lsa: New LSA specification
|
|
*
|
|
* This function prepares a new LSA, installs it into the LSA database and
|
|
* floods it. If the new LSA cannot be originated now (because the old instance
|
|
* was originated within MinLSInterval, or because the LSA seqnum is currently
|
|
* wrapping), the origination is instead scheduled for later. If the new LSA is
|
|
* equivalent to the current LSA, the origination is skipped. In all cases, the
|
|
* corresponding LSA entry is returned. The new LSA is based on the LSA
|
|
* specification (@lsa) and the LSA body from lsab buffer of @p, which is
|
|
* emptied after the call. The opposite of this function is ospf_flush_lsa().
|
|
*/
|
|
struct top_hash_entry *
|
|
ospf_originate_lsa(struct ospf_proto *p, struct ospf_new_lsa *lsa)
|
|
{
|
|
struct top_hash_entry *en;
|
|
void *lsa_body = p->lsab;
|
|
u16 lsa_blen = p->lsab_used;
|
|
u16 lsa_length = sizeof(struct ospf_lsa_header) + lsa_blen;
|
|
|
|
en = ospf_hash_get(p->gr, lsa->dom, lsa->id, p->router_id, lsa->type);
|
|
|
|
if (!SNODE_VALID(en))
|
|
s_add_tail(&p->lsal, SNODE en);
|
|
|
|
if (en->lsa_body == NULL)
|
|
en->nf = lsa->nf;
|
|
|
|
if (en->nf != lsa->nf)
|
|
{
|
|
log(L_ERR "%s: LSA ID collision for %I/%d",
|
|
p->p.name, lsa->nf->fn.prefix, lsa->nf->fn.pxlen);
|
|
|
|
en = NULL;
|
|
goto drop;
|
|
}
|
|
|
|
if (en->mode != lsa->mode)
|
|
en->mode = lsa->mode;
|
|
|
|
if (en->next_lsa_body)
|
|
{
|
|
/* Ignore the new LSA if it is the same as the scheduled one */
|
|
if ((lsa_blen == en->next_lsa_blen) &&
|
|
!memcmp(lsa_body, en->next_lsa_body, lsa_blen) &&
|
|
(!ospf_is_v2(p) || (lsa->opts == en->next_lsa_opts)))
|
|
goto drop;
|
|
|
|
/* Free scheduled LSA */
|
|
mb_free(en->next_lsa_body);
|
|
en->next_lsa_body = NULL;
|
|
en->next_lsa_blen = 0;
|
|
en->next_lsa_opts = 0;
|
|
}
|
|
|
|
/* Ignore the the new LSA if is the same as the current one */
|
|
if ((en->lsa.age < LSA_MAXAGE) &&
|
|
(lsa_length == en->lsa.length) &&
|
|
!memcmp(lsa_body, en->lsa_body, lsa_blen) &&
|
|
(!ospf_is_v2(p) || (lsa->opts == lsa_get_options(&en->lsa))))
|
|
goto drop;
|
|
|
|
lsa_body = lsab_flush(p);
|
|
|
|
if (! ospf_do_originate_lsa(p, en, lsa_body, lsa_blen, lsa->opts))
|
|
{
|
|
OSPF_TRACE(D_EVENTS, "Postponing LSA: Type: %04x, Id: %R, Rt: %R",
|
|
en->lsa_type, en->lsa.id, en->lsa.rt);
|
|
|
|
en->next_lsa_body = lsa_body;
|
|
en->next_lsa_blen = lsa_blen;
|
|
en->next_lsa_opts = lsa->opts;
|
|
}
|
|
|
|
return en;
|
|
|
|
drop:
|
|
lsab_reset(p);
|
|
return en;
|
|
}
|
|
|
|
static void
|
|
ospf_originate_next_lsa(struct ospf_proto *p, struct top_hash_entry *en)
|
|
{
|
|
/* Called by ospf_update_lsadb() to handle scheduled origination */
|
|
|
|
if (! ospf_do_originate_lsa(p, en, en->next_lsa_body, en->next_lsa_blen, en->next_lsa_opts))
|
|
return;
|
|
|
|
en->next_lsa_body = NULL;
|
|
en->next_lsa_blen = 0;
|
|
en->next_lsa_opts = 0;
|
|
}
|
|
|
|
static void
|
|
ospf_refresh_lsa(struct ospf_proto *p, struct top_hash_entry *en)
|
|
{
|
|
/*
|
|
* Called by ospf_update_lsadb() for periodic LSA refresh.
|
|
*
|
|
* We know that lsa.age < LSA_MAXAGE and lsa.rt is our router ID. We can also
|
|
* assume that there is no scheduled LSA, because inst_time is deep in past,
|
|
* therefore ospf_originate_next_lsa() called before would either succeed or
|
|
* switched lsa.age to LSA_MAXAGE.
|
|
*/
|
|
|
|
OSPF_TRACE(D_EVENTS, "Refreshing LSA: Type: %04x, Id: %R, Rt: %R, Seq: %08x",
|
|
en->lsa_type, en->lsa.id, en->lsa.rt, en->lsa.sn);
|
|
|
|
ASSERT(en->next_lsa_body == NULL);
|
|
|
|
/* Handle wrapping sequence number */
|
|
if (en->lsa.sn == LSA_MAXSEQNO)
|
|
{
|
|
/* Copy LSA body as next LSA to get automatic origination after flush is finished */
|
|
en->next_lsa_blen = en->lsa.length - sizeof(struct ospf_lsa_header);
|
|
en->next_lsa_body = mb_alloc(p->p.pool, en->next_lsa_blen);
|
|
memcpy(en->next_lsa_body, en->lsa_body, en->next_lsa_blen);
|
|
en->next_lsa_opts = ospf_is_v2(p) ? lsa_get_options(&en->lsa) : 0;
|
|
|
|
en->lsa.age = LSA_MAXAGE;
|
|
ospf_flood_lsa(p, en, NULL);
|
|
return;
|
|
}
|
|
|
|
en->lsa.sn++;
|
|
en->lsa.age = 0;
|
|
en->init_age = 0;
|
|
en->inst_time = now;
|
|
lsasum_calculate(&en->lsa, en->lsa_body);
|
|
ospf_flood_lsa(p, en, NULL);
|
|
}
|
|
|
|
/**
|
|
* ospf_flush_lsa - flush LSA from OSPF domain
|
|
* @p: OSPF protocol instance
|
|
* @en: LSA entry to flush
|
|
*
|
|
* This function flushes @en from the OSPF domain by setting its age to
|
|
* %LSA_MAXAGE and flooding it. That also triggers subsequent events in LSA
|
|
* lifecycle leading to removal of the LSA from the LSA database (e.g. the LSA
|
|
* content is freed when flushing is acknowledged by neighbors). The function
|
|
* does nothing if the LSA is already being flushed. LSA entries are not
|
|
* immediately removed when being flushed, the caller may assume that @en still
|
|
* exists after the call. The function is the opposite of ospf_originate_lsa()
|
|
* and is supposed to do the right thing even in cases of postponed
|
|
* origination.
|
|
*/
|
|
void
|
|
ospf_flush_lsa(struct ospf_proto *p, struct top_hash_entry *en)
|
|
{
|
|
if (en->next_lsa_body)
|
|
{
|
|
mb_free(en->next_lsa_body);
|
|
en->next_lsa_body = NULL;
|
|
en->next_lsa_blen = 0;
|
|
en->next_lsa_opts = 0;
|
|
}
|
|
|
|
if (en->lsa.age == LSA_MAXAGE)
|
|
return;
|
|
|
|
OSPF_TRACE(D_EVENTS, "Flushing LSA: Type: %04x, Id: %R, Rt: %R, Seq: %08x",
|
|
en->lsa_type, en->lsa.id, en->lsa.rt, en->lsa.sn);
|
|
|
|
en->lsa.age = LSA_MAXAGE;
|
|
ospf_flood_lsa(p, en, NULL);
|
|
|
|
if (en->mode == LSA_M_BASIC)
|
|
ospf_schedule_rtcalc(p);
|
|
|
|
en->mode = LSA_M_BASIC;
|
|
}
|
|
|
|
static void
|
|
ospf_clear_lsa(struct ospf_proto *p, struct top_hash_entry *en)
|
|
{
|
|
/*
|
|
* Called by ospf_update_lsadb() as part of LSA flushing process.
|
|
* Flushed LSA was acknowledged by neighbors and we can free its content.
|
|
* The log message is for 'remove' - we hide empty LSAs from users.
|
|
*/
|
|
|
|
OSPF_TRACE(D_EVENTS, "Removing LSA: Type: %04x, Id: %R, Rt: %R, Seq: %08x",
|
|
en->lsa_type, en->lsa.id, en->lsa.rt, en->lsa.sn);
|
|
|
|
if (en->lsa.sn == LSA_MAXSEQNO)
|
|
en->lsa.sn = LSA_ZEROSEQNO;
|
|
|
|
mb_free(en->lsa_body);
|
|
en->lsa_body = NULL;
|
|
}
|
|
|
|
static void
|
|
ospf_remove_lsa(struct ospf_proto *p, struct top_hash_entry *en)
|
|
{
|
|
/*
|
|
* Called by ospf_update_lsadb() as part of LSA flushing process.
|
|
* Both lsa_body and next_lsa_body are NULL.
|
|
*/
|
|
|
|
s_rem_node(SNODE en);
|
|
ospf_hash_delete(p->gr, en);
|
|
}
|
|
|
|
/**
|
|
* ospf_update_lsadb - update LSA database
|
|
* @p: OSPF protocol instance
|
|
*
|
|
* This function is periodicaly invoked from ospf_disp(). It does some periodic
|
|
* or postponed processing related to LSA entries. It originates postponed LSAs
|
|
* scheduled by ospf_originate_lsa(), It continues in flushing processes started
|
|
* by ospf_flush_lsa(). It also periodically refreshs locally originated LSAs --
|
|
* when the current instance is older %LSREFRESHTIME, a new instance is originated.
|
|
* Finally, it also ages stored LSAs and flushes ones that reached %LSA_MAXAGE.
|
|
*
|
|
* The RFC 2328 says that a router should periodically check checksums of all
|
|
* stored LSAs to detect hardware problems. This is not implemented.
|
|
*/
|
|
void
|
|
ospf_update_lsadb(struct ospf_proto *p)
|
|
{
|
|
struct top_hash_entry *en, *nxt;
|
|
bird_clock_t real_age;
|
|
|
|
WALK_SLIST_DELSAFE(en, nxt, p->lsal)
|
|
{
|
|
if (en->next_lsa_body)
|
|
ospf_originate_next_lsa(p, en);
|
|
|
|
real_age = en->init_age + (now - en->inst_time);
|
|
|
|
if (en->lsa.age == LSA_MAXAGE)
|
|
{
|
|
if (en->lsa_body && (p->padj == 0) && (en->ret_count == 0))
|
|
ospf_clear_lsa(p, en);
|
|
|
|
if ((en->lsa_body == NULL) && (en->next_lsa_body == NULL) &&
|
|
((en->lsa.rt != p->router_id) || (real_age >= LSA_MAXAGE)))
|
|
ospf_remove_lsa(p, en);
|
|
|
|
continue;
|
|
}
|
|
|
|
if ((en->lsa.rt == p->router_id) && (real_age >= LSREFRESHTIME))
|
|
{
|
|
ospf_refresh_lsa(p, en);
|
|
continue;
|
|
}
|
|
|
|
if (real_age >= LSA_MAXAGE)
|
|
{
|
|
ospf_flush_lsa(p, en);
|
|
continue;
|
|
}
|
|
|
|
en->lsa.age = real_age;
|
|
}
|
|
}
|
|
|
|
|
|
static inline u32
|
|
ort_to_lsaid(struct ospf_proto *p, ort *nf)
|
|
{
|
|
/*
|
|
* In OSPFv2, We have to map IP prefixes to u32 in such manner that resulting
|
|
* u32 interpreted as IP address is a member of given prefix. Therefore, /32
|
|
* prefix have to be mapped on itself. All received prefixes have to be
|
|
* mapped on different u32s.
|
|
*
|
|
* We have an assumption that if there is nontrivial (non-/32) network prefix,
|
|
* then there is not /32 prefix for the first and the last IP address of the
|
|
* network (these are usually reserved, therefore it is not an important
|
|
* restriction). The network prefix is mapped to the first or the last IP
|
|
* address in the manner that disallow collisions - we use the IP address that
|
|
* cannot be used by the parent prefix.
|
|
*
|
|
* For example:
|
|
* 192.168.0.0/24 maps to 192.168.0.255
|
|
* 192.168.1.0/24 maps to 192.168.1.0
|
|
* because 192.168.0.0 and 192.168.1.255 might be used by 192.168.0.0/23 .
|
|
*
|
|
* Appendig E of RFC 2328 suggests different algorithm, that tries to maximize
|
|
* both compatibility and subnetting. But as it is not possible to have both
|
|
* reliably and the suggested algorithm was unnecessary complicated and it
|
|
* does crazy things like changing LSA ID for a network because different
|
|
* network appeared, we choose a different way.
|
|
*
|
|
* In OSPFv3, it is simpler. There is not a requirement for membership of the
|
|
* result in the input network, so we just use a hash-based unique ID of a
|
|
* routing table entry for a route that originated given LSA. For ext-LSA, it
|
|
* is an imported route in the nest's routing table (p->table). For summary-LSA,
|
|
* it is a 'source' route in the protocol internal routing table (p->rtf).
|
|
*/
|
|
|
|
if (ospf_is_v3(p))
|
|
return nf->fn.uid;
|
|
|
|
u32 id = ipa_to_u32(nf->fn.prefix);
|
|
int pxlen = nf->fn.pxlen;
|
|
|
|
if ((pxlen == 0) || (pxlen == 32))
|
|
return id;
|
|
|
|
if (id & (1 << (32 - pxlen)))
|
|
return id;
|
|
else
|
|
return id | ~u32_mkmask(pxlen);
|
|
}
|
|
|
|
|
|
static void *
|
|
lsab_alloc(struct ospf_proto *p, uint size)
|
|
{
|
|
uint offset = p->lsab_used;
|
|
p->lsab_used += size;
|
|
if (p->lsab_used > p->lsab_size)
|
|
{
|
|
p->lsab_size = MAX(p->lsab_used, 2 * p->lsab_size);
|
|
p->lsab = p->lsab ? mb_realloc(p->lsab, p->lsab_size):
|
|
mb_alloc(p->p.pool, p->lsab_size);
|
|
}
|
|
return ((byte *) p->lsab) + offset;
|
|
}
|
|
|
|
static inline void *
|
|
lsab_allocz(struct ospf_proto *p, uint size)
|
|
{
|
|
void *r = lsab_alloc(p, size);
|
|
bzero(r, size);
|
|
return r;
|
|
}
|
|
|
|
static inline void *
|
|
lsab_flush(struct ospf_proto *p)
|
|
{
|
|
void *r = mb_alloc(p->p.pool, p->lsab_used);
|
|
memcpy(r, p->lsab, p->lsab_used);
|
|
p->lsab_used = 0;
|
|
return r;
|
|
}
|
|
|
|
static inline void
|
|
lsab_reset(struct ospf_proto *p)
|
|
{
|
|
p->lsab_used = 0;
|
|
}
|
|
|
|
static inline void *
|
|
lsab_offset(struct ospf_proto *p, uint offset)
|
|
{
|
|
return ((byte *) p->lsab) + offset;
|
|
}
|
|
|
|
static inline void *
|
|
lsab_end(struct ospf_proto *p)
|
|
{
|
|
return ((byte *) p->lsab) + p->lsab_used;
|
|
}
|
|
|
|
|
|
/*
|
|
* Router-LSA handling
|
|
* Type = LSA_T_RT
|
|
*/
|
|
|
|
static int
|
|
configured_stubnet(struct ospf_area *oa, struct ifa *a)
|
|
{
|
|
/* Does not work for IA_PEER addresses, but it is not called on these */
|
|
struct ospf_stubnet_config *sn;
|
|
WALK_LIST(sn, oa->ac->stubnet_list)
|
|
{
|
|
if (sn->summary)
|
|
{
|
|
if (ipa_in_net(a->prefix, sn->px.addr, sn->px.len) && (a->pxlen >= sn->px.len))
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
if (ipa_equal(a->prefix, sn->px.addr) && (a->pxlen == sn->px.len))
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bcast_net_active(struct ospf_iface *ifa)
|
|
{
|
|
struct ospf_neighbor *neigh;
|
|
|
|
if (ifa->state == OSPF_IS_WAITING)
|
|
return 0;
|
|
|
|
WALK_LIST(neigh, ifa->neigh_list)
|
|
{
|
|
if (neigh->state == NEIGHBOR_FULL)
|
|
{
|
|
if (neigh->rid == ifa->drid)
|
|
return 1;
|
|
|
|
if (ifa->state == OSPF_IS_DR)
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline u32
|
|
get_rt_options(struct ospf_proto *p, struct ospf_area *oa, int bitv)
|
|
{
|
|
u32 opts = 0;
|
|
|
|
if (p->areano > 1)
|
|
opts |= OPT_RT_B;
|
|
|
|
if ((p->areano > 1) && oa_is_nssa(oa) && oa->ac->translator)
|
|
opts |= OPT_RT_NT;
|
|
|
|
if (p->asbr && !oa_is_stub(oa))
|
|
opts |= OPT_RT_E;
|
|
|
|
if (bitv)
|
|
opts |= OPT_RT_V;
|
|
|
|
return opts;
|
|
}
|
|
|
|
static inline void
|
|
add_rt2_lsa_link(struct ospf_proto *p, u8 type, u32 id, u32 data, u16 metric)
|
|
{
|
|
struct ospf_lsa_rt2_link *ln = lsab_alloc(p, sizeof(struct ospf_lsa_rt2_link));
|
|
ln->type = type;
|
|
ln->id = id;
|
|
ln->data = data;
|
|
ln->metric = metric;
|
|
ln->no_tos = 0;
|
|
}
|
|
|
|
static void
|
|
prepare_rt2_lsa_body(struct ospf_proto *p, struct ospf_area *oa)
|
|
{
|
|
struct ospf_iface *ifa;
|
|
int i = 0, bitv = 0;
|
|
struct ospf_neighbor *neigh;
|
|
|
|
ASSERT(p->lsab_used == 0);
|
|
lsab_allocz(p, sizeof(struct ospf_lsa_rt));
|
|
/* ospf_lsa_rt header will be filled later */
|
|
|
|
WALK_LIST(ifa, p->iface_list)
|
|
{
|
|
int net_lsa = 0;
|
|
u32 link_cost = p->stub_router ? 0xffff : ifa->cost;
|
|
|
|
if ((ifa->type == OSPF_IT_VLINK) && (ifa->voa == oa) &&
|
|
(!EMPTY_LIST(ifa->neigh_list)))
|
|
{
|
|
neigh = (struct ospf_neighbor *) HEAD(ifa->neigh_list);
|
|
if ((neigh->state == NEIGHBOR_FULL) && (ifa->cost <= 0xffff))
|
|
bitv = 1;
|
|
}
|
|
|
|
if ((ifa->oa != oa) || (ifa->state == OSPF_IS_DOWN))
|
|
continue;
|
|
|
|
ifa->rt_pos_beg = i;
|
|
|
|
/* RFC 2328 - 12.4.1.1-4 */
|
|
switch (ifa->type)
|
|
{
|
|
case OSPF_IT_PTP:
|
|
case OSPF_IT_PTMP:
|
|
WALK_LIST(neigh, ifa->neigh_list)
|
|
if (neigh->state == NEIGHBOR_FULL)
|
|
{
|
|
/*
|
|
* ln->data should be ifa->iface_id in case of no/ptp
|
|
* address (ifa->addr->flags & IA_PEER) on PTP link (see
|
|
* RFC 2328 12.4.1.1.), but the iface ID value has no use,
|
|
* while using IP address even in this case is here for
|
|
* compatibility with some broken implementations that use
|
|
* this address as a next-hop.
|
|
*/
|
|
add_rt2_lsa_link(p, LSART_PTP, neigh->rid, ipa_to_u32(ifa->addr->ip), link_cost);
|
|
i++;
|
|
}
|
|
break;
|
|
|
|
case OSPF_IT_BCAST:
|
|
case OSPF_IT_NBMA:
|
|
if (bcast_net_active(ifa))
|
|
{
|
|
add_rt2_lsa_link(p, LSART_NET, ipa_to_u32(ifa->drip), ipa_to_u32(ifa->addr->ip), link_cost);
|
|
i++;
|
|
net_lsa = 1;
|
|
}
|
|
break;
|
|
|
|
case OSPF_IT_VLINK:
|
|
neigh = (struct ospf_neighbor *) HEAD(ifa->neigh_list);
|
|
if ((!EMPTY_LIST(ifa->neigh_list)) && (neigh->state == NEIGHBOR_FULL) && (ifa->cost <= 0xffff))
|
|
add_rt2_lsa_link(p, LSART_VLNK, neigh->rid, ipa_to_u32(ifa->addr->ip), link_cost), i++;
|
|
break;
|
|
|
|
default:
|
|
log(L_BUG "OSPF: Unknown interface type");
|
|
break;
|
|
}
|
|
|
|
ifa->rt_pos_end = i;
|
|
|
|
/* Now we will originate stub area if there is no primary */
|
|
if (net_lsa ||
|
|
(ifa->type == OSPF_IT_VLINK) ||
|
|
((ifa->addr->flags & IA_PEER) && ! ifa->cf->stub) ||
|
|
configured_stubnet(oa, ifa->addr))
|
|
continue;
|
|
|
|
/* Host or network stub entry */
|
|
if ((ifa->addr->flags & IA_HOST) ||
|
|
(ifa->state == OSPF_IS_LOOP) ||
|
|
(ifa->type == OSPF_IT_PTMP))
|
|
add_rt2_lsa_link(p, LSART_STUB, ipa_to_u32(ifa->addr->ip), 0xffffffff, 0);
|
|
else
|
|
add_rt2_lsa_link(p, LSART_STUB, ipa_to_u32(ifa->addr->prefix), u32_mkmask(ifa->addr->pxlen), ifa->cost);
|
|
i++;
|
|
|
|
ifa->rt_pos_end = i;
|
|
}
|
|
|
|
struct ospf_stubnet_config *sn;
|
|
WALK_LIST(sn, oa->ac->stubnet_list)
|
|
if (!sn->hidden)
|
|
add_rt2_lsa_link(p, LSART_STUB, ipa_to_u32(sn->px.addr), u32_mkmask(sn->px.len), sn->cost), i++;
|
|
|
|
struct ospf_lsa_rt *rt = p->lsab;
|
|
/* Store number of links in lower half of options */
|
|
rt->options = get_rt_options(p, oa, bitv) | (u16) i;
|
|
}
|
|
|
|
static inline void
|
|
add_rt3_lsa_link(struct ospf_proto *p, u8 type, struct ospf_iface *ifa, u32 nif, u32 id)
|
|
{
|
|
struct ospf_lsa_rt3_link *ln = lsab_alloc(p, sizeof(struct ospf_lsa_rt3_link));
|
|
ln->type = type;
|
|
ln->padding = 0;
|
|
ln->metric = ifa->cost;
|
|
ln->lif = ifa->iface_id;
|
|
ln->nif = nif;
|
|
ln->id = id;
|
|
}
|
|
|
|
static void
|
|
prepare_rt3_lsa_body(struct ospf_proto *p, struct ospf_area *oa)
|
|
{
|
|
struct ospf_iface *ifa;
|
|
struct ospf_neighbor *neigh;
|
|
int bitv = 0;
|
|
int i = 0;
|
|
|
|
ASSERT(p->lsab_used == 0);
|
|
lsab_allocz(p, sizeof(struct ospf_lsa_rt));
|
|
/* ospf_lsa_rt header will be filled later */
|
|
|
|
WALK_LIST(ifa, p->iface_list)
|
|
{
|
|
if ((ifa->type == OSPF_IT_VLINK) && (ifa->voa == oa) &&
|
|
(!EMPTY_LIST(ifa->neigh_list)))
|
|
{
|
|
neigh = (struct ospf_neighbor *) HEAD(ifa->neigh_list);
|
|
if ((neigh->state == NEIGHBOR_FULL) && (ifa->cost <= 0xffff))
|
|
bitv = 1;
|
|
}
|
|
|
|
if ((ifa->oa != oa) || (ifa->state == OSPF_IS_DOWN))
|
|
continue;
|
|
|
|
ifa->rt_pos_beg = i;
|
|
|
|
/* RFC 5340 - 4.4.3.2 */
|
|
switch (ifa->type)
|
|
{
|
|
case OSPF_IT_PTP:
|
|
case OSPF_IT_PTMP:
|
|
WALK_LIST(neigh, ifa->neigh_list)
|
|
if (neigh->state == NEIGHBOR_FULL)
|
|
add_rt3_lsa_link(p, LSART_PTP, ifa, neigh->iface_id, neigh->rid), i++;
|
|
break;
|
|
|
|
case OSPF_IT_BCAST:
|
|
case OSPF_IT_NBMA:
|
|
if (bcast_net_active(ifa))
|
|
add_rt3_lsa_link(p, LSART_NET, ifa, ifa->dr_iface_id, ifa->drid), i++;
|
|
break;
|
|
|
|
case OSPF_IT_VLINK:
|
|
neigh = (struct ospf_neighbor *) HEAD(ifa->neigh_list);
|
|
if ((!EMPTY_LIST(ifa->neigh_list)) && (neigh->state == NEIGHBOR_FULL) && (ifa->cost <= 0xffff))
|
|
add_rt3_lsa_link(p, LSART_VLNK, ifa, neigh->iface_id, neigh->rid), i++;
|
|
break;
|
|
|
|
default:
|
|
log(L_BUG "OSPF: Unknown interface type");
|
|
break;
|
|
}
|
|
|
|
ifa->rt_pos_end = i;
|
|
}
|
|
|
|
struct ospf_lsa_rt *rt = p->lsab;
|
|
rt->options = get_rt_options(p, oa, bitv) | (oa->options & LSA_OPTIONS_MASK);
|
|
}
|
|
|
|
static void
|
|
ospf_originate_rt_lsa(struct ospf_proto *p, struct ospf_area *oa)
|
|
{
|
|
struct ospf_new_lsa lsa = {
|
|
.type = LSA_T_RT,
|
|
.dom = oa->areaid,
|
|
.id = ospf_is_v2(p) ? p->router_id : 0,
|
|
.opts = oa->options
|
|
};
|
|
|
|
OSPF_TRACE(D_EVENTS, "Updating router state for area %R", oa->areaid);
|
|
|
|
if (ospf_is_v2(p))
|
|
prepare_rt2_lsa_body(p, oa);
|
|
else
|
|
prepare_rt3_lsa_body(p, oa);
|
|
|
|
oa->rt = ospf_originate_lsa(p, &lsa);
|
|
}
|
|
|
|
|
|
/*
|
|
* Net-LSA handling
|
|
* Type = LSA_T_NET
|
|
*/
|
|
|
|
static void
|
|
prepare_net2_lsa_body(struct ospf_proto *p, struct ospf_iface *ifa)
|
|
{
|
|
struct ospf_lsa_net *net;
|
|
struct ospf_neighbor *n;
|
|
int nodes = ifa->fadj + 1;
|
|
u16 i = 1;
|
|
|
|
ASSERT(p->lsab_used == 0);
|
|
net = lsab_alloc(p, sizeof(struct ospf_lsa_net) + 4 * nodes);
|
|
|
|
net->optx = u32_mkmask(ifa->addr->pxlen);
|
|
net->routers[0] = p->router_id;
|
|
|
|
WALK_LIST(n, ifa->neigh_list)
|
|
{
|
|
if (n->state == NEIGHBOR_FULL)
|
|
{
|
|
net->routers[i] = n->rid;
|
|
i++;
|
|
}
|
|
}
|
|
ASSERT(i == nodes);
|
|
}
|
|
|
|
static void
|
|
prepare_net3_lsa_body(struct ospf_proto *p, struct ospf_iface *ifa)
|
|
{
|
|
struct ospf_lsa_net *net;
|
|
int nodes = ifa->fadj + 1;
|
|
u32 options = 0;
|
|
u16 i = 1;
|
|
|
|
ASSERT(p->lsab_used == 0);
|
|
net = lsab_alloc(p, sizeof(struct ospf_lsa_net) + 4 * nodes);
|
|
|
|
net->routers[0] = p->router_id;
|
|
|
|
struct ospf_neighbor *n;
|
|
WALK_LIST(n, ifa->neigh_list)
|
|
{
|
|
if (n->state == NEIGHBOR_FULL)
|
|
{
|
|
/* In OSPFv3, we would like to merge options from Link LSAs of added neighbors */
|
|
|
|
struct top_hash_entry *en =
|
|
ospf_hash_find(p->gr, ifa->iface_id, n->iface_id, n->rid, LSA_T_LINK);
|
|
|
|
if (en)
|
|
options |= ((struct ospf_lsa_link *) en->lsa_body)->options;
|
|
|
|
net->routers[i] = n->rid;
|
|
i++;
|
|
}
|
|
}
|
|
ASSERT(i == nodes);
|
|
|
|
net->optx = options & LSA_OPTIONS_MASK;
|
|
}
|
|
|
|
static void
|
|
ospf_originate_net_lsa(struct ospf_proto *p, struct ospf_iface *ifa)
|
|
{
|
|
struct ospf_new_lsa lsa = {
|
|
.type = LSA_T_NET,
|
|
.dom = ifa->oa->areaid,
|
|
.id = ospf_is_v2(p) ? ipa_to_u32(ifa->addr->ip) : ifa->iface_id,
|
|
.opts = ifa->oa->options,
|
|
.ifa = ifa
|
|
};
|
|
|
|
OSPF_TRACE(D_EVENTS, "Updating network state for %s (Id: %R)", ifa->ifname, lsa.id);
|
|
|
|
if (ospf_is_v2(p))
|
|
prepare_net2_lsa_body(p, ifa);
|
|
else
|
|
prepare_net3_lsa_body(p, ifa);
|
|
|
|
ifa->net_lsa = ospf_originate_lsa(p, &lsa);
|
|
}
|
|
|
|
|
|
/*
|
|
* (Net|Rt)-summary-LSA handling
|
|
* (a.k.a. Inter-Area-(Prefix|Router)-LSA)
|
|
* Type = LSA_T_SUM_NET, LSA_T_SUM_RT
|
|
*/
|
|
|
|
static inline void
|
|
prepare_sum2_lsa_body(struct ospf_proto *p, uint pxlen, u32 metric)
|
|
{
|
|
struct ospf_lsa_sum2 *sum;
|
|
|
|
sum = lsab_allocz(p, sizeof(struct ospf_lsa_sum2));
|
|
sum->netmask = u32_mkmask(pxlen);
|
|
sum->metric = metric;
|
|
}
|
|
|
|
static inline void
|
|
prepare_sum3_net_lsa_body(struct ospf_proto *p, ort *nf, u32 metric)
|
|
{
|
|
struct ospf_lsa_sum3_net *sum;
|
|
|
|
sum = lsab_allocz(p, sizeof(struct ospf_lsa_sum3_net) + IPV6_PREFIX_SPACE(nf->fn.pxlen));
|
|
sum->metric = metric;
|
|
put_ipv6_prefix(sum->prefix, nf->fn.prefix, nf->fn.pxlen, 0, 0);
|
|
}
|
|
|
|
static inline void
|
|
prepare_sum3_rt_lsa_body(struct ospf_proto *p, u32 drid, u32 metric, u32 options)
|
|
{
|
|
struct ospf_lsa_sum3_rt *sum;
|
|
|
|
sum = lsab_allocz(p, sizeof(struct ospf_lsa_sum3_rt));
|
|
sum->options = options;
|
|
sum->metric = metric;
|
|
sum->drid = drid;
|
|
}
|
|
|
|
void
|
|
ospf_originate_sum_net_lsa(struct ospf_proto *p, struct ospf_area *oa, ort *nf, int metric)
|
|
{
|
|
struct ospf_new_lsa lsa = {
|
|
.type = LSA_T_SUM_NET,
|
|
.mode = LSA_M_RTCALC,
|
|
.dom = oa->areaid,
|
|
.id = ort_to_lsaid(p, nf),
|
|
.opts = oa->options,
|
|
.nf = nf
|
|
};
|
|
|
|
if (ospf_is_v2(p))
|
|
prepare_sum2_lsa_body(p, nf->fn.pxlen, metric);
|
|
else
|
|
prepare_sum3_net_lsa_body(p, nf, metric);
|
|
|
|
ospf_originate_lsa(p, &lsa);
|
|
}
|
|
|
|
void
|
|
ospf_originate_sum_rt_lsa(struct ospf_proto *p, struct ospf_area *oa, ort *nf, int metric, u32 options)
|
|
{
|
|
struct ospf_new_lsa lsa = {
|
|
.type = LSA_T_SUM_RT,
|
|
.mode = LSA_M_RTCALC,
|
|
.dom = oa->areaid,
|
|
.id = ipa_to_rid(nf->fn.prefix), /* Router ID of ASBR, irrelevant for OSPFv3 */
|
|
.opts = oa->options
|
|
};
|
|
|
|
if (ospf_is_v2(p))
|
|
prepare_sum2_lsa_body(p, 0, metric);
|
|
else
|
|
prepare_sum3_rt_lsa_body(p, lsa.id, metric, options & LSA_OPTIONS_MASK);
|
|
|
|
ospf_originate_lsa(p, &lsa);
|
|
}
|
|
|
|
|
|
/*
|
|
* AS-external-LSA and NSSA-LSA handling
|
|
* Type = LSA_T_EXT, LSA_T_NSSA
|
|
*/
|
|
|
|
static inline void
|
|
prepare_ext2_lsa_body(struct ospf_proto *p, uint pxlen,
|
|
u32 metric, u32 ebit, ip_addr fwaddr, u32 tag)
|
|
{
|
|
struct ospf_lsa_ext2 *ext;
|
|
|
|
ext = lsab_allocz(p, sizeof(struct ospf_lsa_ext2));
|
|
ext->metric = metric & LSA_METRIC_MASK;
|
|
ext->netmask = u32_mkmask(pxlen);
|
|
ext->fwaddr = ipa_to_u32(fwaddr);
|
|
ext->tag = tag;
|
|
|
|
if (ebit)
|
|
ext->metric |= LSA_EXT2_EBIT;
|
|
}
|
|
|
|
static inline void
|
|
prepare_ext3_lsa_body(struct ospf_proto *p, ort *nf,
|
|
u32 metric, u32 ebit, ip_addr fwaddr, u32 tag, int pbit)
|
|
{
|
|
struct ospf_lsa_ext3 *ext;
|
|
int bsize = sizeof(struct ospf_lsa_ext3)
|
|
+ IPV6_PREFIX_SPACE(nf->fn.pxlen)
|
|
+ (ipa_nonzero(fwaddr) ? 16 : 0)
|
|
+ (tag ? 4 : 0);
|
|
|
|
ext = lsab_allocz(p, bsize);
|
|
ext->metric = metric & LSA_METRIC_MASK;
|
|
u32 *buf = ext->rest;
|
|
|
|
buf = put_ipv6_prefix(buf, nf->fn.prefix, nf->fn.pxlen, pbit ? OPT_PX_P : 0, 0);
|
|
|
|
if (ebit)
|
|
ext->metric |= LSA_EXT3_EBIT;
|
|
|
|
if (ipa_nonzero(fwaddr))
|
|
{
|
|
ext->metric |= LSA_EXT3_FBIT;
|
|
buf = put_ipv6_addr(buf, fwaddr);
|
|
}
|
|
|
|
if (tag)
|
|
{
|
|
ext->metric |= LSA_EXT3_TBIT;
|
|
*buf++ = tag;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* originate_ext_lsa - new route received from nest and filters
|
|
* @p: OSPF protocol instance
|
|
* @oa: ospf_area for which LSA is originated
|
|
* @nf: network prefix and mask
|
|
* @mode: the mode of the LSA (LSA_M_EXPORT or LSA_M_RTCALC)
|
|
* @metric: the metric of a route
|
|
* @ebit: E-bit for route metric (bool)
|
|
* @fwaddr: the forwarding address
|
|
* @tag: the route tag
|
|
* @pbit: P-bit for NSSA LSAs (bool), ignored for external LSAs
|
|
*
|
|
* If I receive a message that new route is installed, I try to originate an
|
|
* external LSA. If @oa is an NSSA area, NSSA-LSA is originated instead.
|
|
* @oa should not be a stub area. @src does not specify whether the LSA
|
|
* is external or NSSA, but it specifies the source of origination -
|
|
* the export from ospf_rt_notify(), or the NSSA-EXT translation.
|
|
*/
|
|
void
|
|
ospf_originate_ext_lsa(struct ospf_proto *p, struct ospf_area *oa, ort *nf, u8 mode,
|
|
u32 metric, u32 ebit, ip_addr fwaddr, u32 tag, int pbit)
|
|
{
|
|
struct ospf_new_lsa lsa = {
|
|
.type = oa ? LSA_T_NSSA : LSA_T_EXT,
|
|
.mode = mode, /* LSA_M_EXPORT or LSA_M_RTCALC */
|
|
.dom = oa ? oa->areaid : 0,
|
|
.id = ort_to_lsaid(p, nf),
|
|
.opts = oa ? (pbit ? OPT_P : 0) : OPT_E,
|
|
.nf = nf
|
|
};
|
|
|
|
if (ospf_is_v2(p))
|
|
prepare_ext2_lsa_body(p, nf->fn.pxlen, metric, ebit, fwaddr, tag);
|
|
else
|
|
prepare_ext3_lsa_body(p, nf, metric, ebit, fwaddr, tag, oa && pbit);
|
|
|
|
ospf_originate_lsa(p, &lsa);
|
|
}
|
|
|
|
static struct top_hash_entry *
|
|
ospf_hash_find_(struct top_graph *f, u32 domain, u32 lsa, u32 rtr, u32 type);
|
|
|
|
static void
|
|
ospf_flush_ext_lsa(struct ospf_proto *p, struct ospf_area *oa, ort *nf)
|
|
{
|
|
struct top_hash_entry *en;
|
|
|
|
u32 type = oa ? LSA_T_NSSA : LSA_T_EXT;
|
|
u32 dom = oa ? oa->areaid : 0;
|
|
u32 id = ort_to_lsaid(p, nf);
|
|
|
|
en = ospf_hash_find_(p->gr, dom, id, p->router_id, type);
|
|
|
|
if (!en || (en->nf != nf))
|
|
return;
|
|
|
|
ospf_flush_lsa(p, en);
|
|
}
|
|
|
|
static inline int
|
|
use_gw_for_fwaddr(struct ospf_proto *p, ip_addr gw, struct iface *iface)
|
|
{
|
|
struct ospf_iface *ifa;
|
|
|
|
if (ipa_zero(gw) || ipa_is_link_local(gw))
|
|
return 0;
|
|
|
|
WALK_LIST(ifa, p->iface_list)
|
|
if ((ifa->iface == iface) &&
|
|
(!ospf_is_v2(p) || ipa_in_net(gw, ifa->addr->prefix, ifa->addr->pxlen)))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline ip_addr
|
|
find_surrogate_fwaddr(struct ospf_proto *p, struct ospf_area *oa)
|
|
{
|
|
struct ospf_iface *ifa;
|
|
struct ifa *a, *cur_addr = NULL;
|
|
int np, cur_np = 0;
|
|
|
|
/* RFC 3101 2.3 - surrogate forwarding address selection */
|
|
|
|
WALK_LIST(ifa, p->iface_list)
|
|
{
|
|
if ((ifa->oa != oa) ||
|
|
(ifa->type == OSPF_IT_VLINK))
|
|
continue;
|
|
|
|
if (ospf_is_v2(p))
|
|
{
|
|
a = ifa->addr;
|
|
if (a->flags & IA_PEER)
|
|
continue;
|
|
|
|
np = (a->flags & IA_HOST) ? 3 : (ifa->stub ? 2 : 1);
|
|
if (np > cur_np)
|
|
{
|
|
cur_addr = a;
|
|
cur_np = np;
|
|
}
|
|
}
|
|
else /* OSPFv3 */
|
|
{
|
|
WALK_LIST(a, ifa->iface->addrs)
|
|
{
|
|
if ((a->flags & IA_SECONDARY) ||
|
|
(a->flags & IA_PEER) ||
|
|
(a->scope <= SCOPE_LINK))
|
|
continue;
|
|
|
|
np = (a->flags & IA_HOST) ? 3 : (ifa->stub ? 2 : 1);
|
|
if (np > cur_np)
|
|
{
|
|
cur_addr = a;
|
|
cur_np = np;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return cur_addr ? cur_addr->ip : IPA_NONE;
|
|
}
|
|
|
|
void
|
|
ospf_rt_notify(struct proto *P, rtable *tbl UNUSED, net *n, rte *new, rte *old UNUSED, ea_list *ea)
|
|
{
|
|
struct ospf_proto *p = (struct ospf_proto *) P;
|
|
struct ospf_area *oa = NULL; /* non-NULL for NSSA-LSA */
|
|
ort *nf;
|
|
|
|
/*
|
|
* There are several posibilities:
|
|
* 1) router in regular area - originate external LSA with global scope
|
|
* 2) router in NSSA area - originate area-specific NSSA-LSA
|
|
* 3) router in stub area - cannot export routes
|
|
* 4) area border router - same as (1), it is attached to backbone
|
|
*/
|
|
|
|
if ((p->areano == 1) && oa_is_nssa(HEAD(p->area_list)))
|
|
oa = HEAD(p->area_list);
|
|
|
|
if (!new)
|
|
{
|
|
nf = (ort *) fib_find(&p->rtf, &n->n.prefix, n->n.pxlen);
|
|
|
|
if (!nf || !nf->external_rte)
|
|
return;
|
|
|
|
ospf_flush_ext_lsa(p, oa, nf);
|
|
nf->external_rte = 0;
|
|
|
|
/* Old external route might blocked some NSSA translation */
|
|
if ((p->areano > 1) && rt_is_nssa(nf) && nf->n.oa->translate)
|
|
ospf_schedule_rtcalc(p);
|
|
|
|
return;
|
|
}
|
|
|
|
ASSERT(p->asbr);
|
|
|
|
/* Get route attributes */
|
|
rta *a = new->attrs;
|
|
u32 m1 = ea_get_int(ea, EA_OSPF_METRIC1, LSINFINITY);
|
|
u32 m2 = ea_get_int(ea, EA_OSPF_METRIC2, 10000);
|
|
int ebit = (m1 == LSINFINITY);
|
|
u32 metric = ebit ? m2 : m1;
|
|
u32 tag = ea_get_int(ea, EA_OSPF_TAG, 0);
|
|
ip_addr fwd = IPA_NONE;
|
|
|
|
|
|
if ((a->dest == RTD_ROUTER) && use_gw_for_fwaddr(p, a->gw, a->iface))
|
|
fwd = a->gw;
|
|
|
|
/* NSSA-LSA with P-bit set must have non-zero forwarding address */
|
|
if (oa && ipa_zero(fwd))
|
|
{
|
|
fwd = find_surrogate_fwaddr(p, oa);
|
|
|
|
if (ipa_zero(fwd))
|
|
{
|
|
log(L_ERR "%s: Cannot find forwarding address for NSSA-LSA %I/%d",
|
|
p->p.name, n->n.prefix, n->n.pxlen);
|
|
return;
|
|
}
|
|
}
|
|
|
|
nf = (ort *) fib_get(&p->rtf, &n->n.prefix, n->n.pxlen);
|
|
ospf_originate_ext_lsa(p, oa, nf, LSA_M_EXPORT, metric, ebit, fwd, tag, 1);
|
|
nf->external_rte = 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* Link-LSA handling (assume OSPFv3)
|
|
* Type = LSA_T_LINK
|
|
*/
|
|
|
|
static inline void
|
|
lsab_put_prefix(struct ospf_proto *p, ip_addr prefix, u32 pxlen, u32 cost)
|
|
{
|
|
void *buf = lsab_alloc(p, IPV6_PREFIX_SPACE(pxlen));
|
|
u8 flags = (pxlen < MAX_PREFIX_LENGTH) ? 0 : OPT_PX_LA;
|
|
put_ipv6_prefix(buf, prefix, pxlen, flags, cost);
|
|
}
|
|
|
|
static void
|
|
prepare_link_lsa_body(struct ospf_proto *p, struct ospf_iface *ifa)
|
|
{
|
|
struct ospf_lsa_link *ll;
|
|
int i = 0;
|
|
|
|
ASSERT(p->lsab_used == 0);
|
|
ll = lsab_allocz(p, sizeof(struct ospf_lsa_link));
|
|
ll->options = ifa->oa->options | (ifa->priority << 24);
|
|
ll->lladdr = ipa_to_ip6(ifa->addr->ip);
|
|
ll = NULL; /* buffer might be reallocated later */
|
|
|
|
struct ifa *a;
|
|
WALK_LIST(a, ifa->iface->addrs)
|
|
{
|
|
if ((a->flags & IA_SECONDARY) ||
|
|
(a->scope < SCOPE_SITE))
|
|
continue;
|
|
|
|
lsab_put_prefix(p, a->prefix, a->pxlen, 0);
|
|
i++;
|
|
}
|
|
|
|
ll = p->lsab;
|
|
ll->pxcount = i;
|
|
}
|
|
|
|
static void
|
|
ospf_originate_link_lsa(struct ospf_proto *p, struct ospf_iface *ifa)
|
|
{
|
|
if (ospf_is_v2(p))
|
|
return;
|
|
|
|
struct ospf_new_lsa lsa = {
|
|
.type = LSA_T_LINK,
|
|
.dom = ifa->iface_id,
|
|
.id = ifa->iface_id,
|
|
.ifa = ifa
|
|
};
|
|
|
|
OSPF_TRACE(D_EVENTS, "Updating link state for %s (Id: %R)", ifa->ifname, lsa.id);
|
|
|
|
prepare_link_lsa_body(p, ifa);
|
|
|
|
ifa->link_lsa = ospf_originate_lsa(p, &lsa);
|
|
}
|
|
|
|
|
|
/*
|
|
* Prefix-Rt-LSA handling (assume OSPFv3)
|
|
* Type = LSA_T_PREFIX, referred type = LSA_T_RT
|
|
*/
|
|
|
|
static void
|
|
prepare_prefix_rt_lsa_body(struct ospf_proto *p, struct ospf_area *oa)
|
|
{
|
|
struct ospf_config *cf = (struct ospf_config *) (p->p.cf);
|
|
struct ospf_iface *ifa;
|
|
struct ospf_lsa_prefix *lp;
|
|
int host_addr = 0;
|
|
int net_lsa;
|
|
int i = 0;
|
|
|
|
ASSERT(p->lsab_used == 0);
|
|
lp = lsab_allocz(p, sizeof(struct ospf_lsa_prefix));
|
|
lp->ref_type = LSA_T_RT;
|
|
lp->ref_id = 0;
|
|
lp->ref_rt = p->router_id;
|
|
lp = NULL; /* buffer might be reallocated later */
|
|
|
|
WALK_LIST(ifa, p->iface_list)
|
|
{
|
|
if ((ifa->oa != oa) || (ifa->type == OSPF_IT_VLINK) || (ifa->state == OSPF_IS_DOWN))
|
|
continue;
|
|
|
|
ifa->px_pos_beg = i;
|
|
|
|
if ((ifa->type == OSPF_IT_BCAST) ||
|
|
(ifa->type == OSPF_IT_NBMA))
|
|
net_lsa = bcast_net_active(ifa);
|
|
else
|
|
net_lsa = 0;
|
|
|
|
struct ifa *a;
|
|
WALK_LIST(a, ifa->iface->addrs)
|
|
{
|
|
if ((a->flags & IA_SECONDARY) ||
|
|
(a->flags & IA_PEER) ||
|
|
(a->scope <= SCOPE_LINK))
|
|
continue;
|
|
|
|
if (((a->pxlen < MAX_PREFIX_LENGTH) && net_lsa) ||
|
|
configured_stubnet(oa, a))
|
|
continue;
|
|
|
|
if ((a->flags & IA_HOST) ||
|
|
(ifa->state == OSPF_IS_LOOP) ||
|
|
(ifa->type == OSPF_IT_PTMP))
|
|
{
|
|
lsab_put_prefix(p, a->ip, MAX_PREFIX_LENGTH, 0);
|
|
host_addr = 1;
|
|
}
|
|
else
|
|
lsab_put_prefix(p, a->prefix, a->pxlen, ifa->cost);
|
|
i++;
|
|
}
|
|
|
|
ifa->px_pos_end = i;
|
|
}
|
|
|
|
struct ospf_stubnet_config *sn;
|
|
WALK_LIST(sn, oa->ac->stubnet_list)
|
|
if (!sn->hidden)
|
|
{
|
|
lsab_put_prefix(p, sn->px.addr, sn->px.len, sn->cost);
|
|
if (sn->px.len == MAX_PREFIX_LENGTH)
|
|
host_addr = 1;
|
|
i++;
|
|
}
|
|
|
|
/* If there are some configured vlinks, find some global address
|
|
(even from another area), which will be used as a vlink endpoint. */
|
|
if (!EMPTY_LIST(cf->vlink_list) && !host_addr)
|
|
{
|
|
WALK_LIST(ifa, p->iface_list)
|
|
{
|
|
if ((ifa->type == OSPF_IT_VLINK) || (ifa->state == OSPF_IS_DOWN))
|
|
continue;
|
|
|
|
struct ifa *a;
|
|
WALK_LIST(a, ifa->iface->addrs)
|
|
{
|
|
if ((a->flags & IA_SECONDARY) || (a->scope <= SCOPE_LINK))
|
|
continue;
|
|
|
|
/* Found some IP */
|
|
lsab_put_prefix(p, a->ip, MAX_PREFIX_LENGTH, 0);
|
|
i++;
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
|
|
done:
|
|
lp = p->lsab;
|
|
lp->pxcount = i;
|
|
}
|
|
|
|
static void
|
|
ospf_originate_prefix_rt_lsa(struct ospf_proto *p, struct ospf_area *oa)
|
|
{
|
|
if (ospf_is_v2(p))
|
|
return;
|
|
|
|
struct ospf_new_lsa lsa = {
|
|
.type = LSA_T_PREFIX,
|
|
.dom = oa->areaid,
|
|
.id = 0
|
|
};
|
|
|
|
prepare_prefix_rt_lsa_body(p, oa);
|
|
|
|
ospf_originate_lsa(p, &lsa);
|
|
}
|
|
|
|
|
|
/*
|
|
* Prefix-Net-LSA handling (assume OSPFv3)
|
|
* Type = LSA_T_PREFIX, referred type = LSA_T_NET
|
|
*/
|
|
|
|
static inline int
|
|
prefix_space(u32 *buf)
|
|
{
|
|
int pxl = *buf >> 24;
|
|
return IPV6_PREFIX_SPACE(pxl);
|
|
}
|
|
|
|
static inline int
|
|
prefix_same(u32 *b1, u32 *b2)
|
|
{
|
|
int pxl1 = *b1 >> 24;
|
|
int pxl2 = *b2 >> 24;
|
|
int pxs, i;
|
|
|
|
if (pxl1 != pxl2)
|
|
return 0;
|
|
|
|
pxs = IPV6_PREFIX_WORDS(pxl1);
|
|
for (i = 1; i < pxs; i++)
|
|
if (b1[i] != b2[i])
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static inline u32 *
|
|
prefix_advance(u32 *buf)
|
|
{
|
|
int pxl = *buf >> 24;
|
|
return buf + IPV6_PREFIX_WORDS(pxl);
|
|
}
|
|
|
|
/* FIXME eliminate items with LA bit set? see 4.4.3.9 */
|
|
static void
|
|
add_prefix(struct ospf_proto *p, u32 *px, int offset, int *pxc)
|
|
{
|
|
u32 *pxl = lsab_offset(p, offset);
|
|
int i;
|
|
for (i = 0; i < *pxc; pxl = prefix_advance(pxl), i++)
|
|
if (prefix_same(px, pxl))
|
|
{
|
|
/* Options should be logically OR'ed together */
|
|
*pxl |= (*px & 0x00FF0000);
|
|
return;
|
|
}
|
|
|
|
ASSERT(pxl == lsab_end(p));
|
|
|
|
int pxspace = prefix_space(px);
|
|
pxl = lsab_alloc(p, pxspace);
|
|
memcpy(pxl, px, pxspace);
|
|
*pxl &= 0xFFFF0000; /* Set metric to zero */
|
|
(*pxc)++;
|
|
}
|
|
|
|
static void
|
|
add_link_lsa(struct ospf_proto *p, struct ospf_lsa_link *ll, int offset, int *pxc)
|
|
{
|
|
u32 *pxb = ll->rest;
|
|
int j;
|
|
|
|
for (j = 0; j < ll->pxcount; pxb = prefix_advance(pxb), j++)
|
|
{
|
|
u8 pxlen = (pxb[0] >> 24);
|
|
u8 pxopts = (pxb[0] >> 16);
|
|
|
|
/* Skip NU or LA prefixes */
|
|
if (pxopts & (OPT_PX_NU | OPT_PX_LA))
|
|
continue;
|
|
|
|
/* Skip link-local prefixes */
|
|
if ((pxlen >= 10) && ((pxb[1] & 0xffc00000) == 0xfe800000))
|
|
continue;
|
|
|
|
add_prefix(p, pxb, offset, pxc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
prepare_prefix_net_lsa_body(struct ospf_proto *p, struct ospf_iface *ifa)
|
|
{
|
|
struct ospf_lsa_prefix *lp;
|
|
struct ospf_neighbor *n;
|
|
struct top_hash_entry *en;
|
|
int pxc, offset;
|
|
|
|
ASSERT(p->lsab_used == 0);
|
|
lp = lsab_allocz(p, sizeof(struct ospf_lsa_prefix));
|
|
lp->ref_type = LSA_T_NET;
|
|
lp->ref_id = ifa->net_lsa->lsa.id;
|
|
lp->ref_rt = p->router_id;
|
|
lp = NULL; /* buffer might be reallocated later */
|
|
|
|
pxc = 0;
|
|
offset = p->lsab_used;
|
|
|
|
/* Find all Link LSAs associated with the link and merge their prefixes */
|
|
if (en = ifa->link_lsa)
|
|
add_link_lsa(p, en->next_lsa_body ?: en->lsa_body, offset, &pxc);
|
|
|
|
WALK_LIST(n, ifa->neigh_list)
|
|
if ((n->state == NEIGHBOR_FULL) &&
|
|
(en = ospf_hash_find(p->gr, ifa->iface_id, n->iface_id, n->rid, LSA_T_LINK)))
|
|
add_link_lsa(p, en->lsa_body, offset, &pxc);
|
|
|
|
lp = p->lsab;
|
|
lp->pxcount = pxc;
|
|
}
|
|
|
|
static void
|
|
ospf_originate_prefix_net_lsa(struct ospf_proto *p, struct ospf_iface *ifa)
|
|
{
|
|
if (ospf_is_v2(p))
|
|
return;
|
|
|
|
struct ospf_new_lsa lsa = {
|
|
.type = LSA_T_PREFIX,
|
|
.dom = ifa->oa->areaid,
|
|
.id = ifa->iface_id,
|
|
.ifa = ifa
|
|
};
|
|
|
|
prepare_prefix_net_lsa_body(p, ifa);
|
|
|
|
ifa->pxn_lsa = ospf_originate_lsa(p, &lsa);
|
|
}
|
|
|
|
static inline int breaks_minlsinterval(struct top_hash_entry *en)
|
|
{ return en && (en->lsa.age < LSA_MAXAGE) && ((en->inst_time + MINLSINTERVAL) > now); }
|
|
|
|
void
|
|
ospf_update_topology(struct ospf_proto *p)
|
|
{
|
|
struct ospf_area *oa;
|
|
struct ospf_iface *ifa;
|
|
|
|
WALK_LIST(oa, p->area_list)
|
|
{
|
|
if (oa->update_rt_lsa)
|
|
{
|
|
/*
|
|
* Generally, MinLSInterval is enforced in ospf_do_originate_lsa(), but
|
|
* origination of (prefix) router LSA is a special case. We do not want to
|
|
* prepare a new router LSA body and then postpone it in en->next_lsa_body
|
|
* for later origination, because there are side effects (updates of
|
|
* rt_pos_* and px_pos_* in ospf_iface structures) during that, which may
|
|
* confuse routing table calculation if executed after LSA body
|
|
* preparation but before final LSA origination (as rtcalc would use
|
|
* current rt_pos_* indexes but the old router LSA body).
|
|
*
|
|
* Here, we ensure that MinLSInterval is observed and we do not even try
|
|
* to originate these LSAs if it is not. Therefore, origination, when
|
|
* requested, will succeed unless there is also a seqnum wrapping, which
|
|
* is not a problem because in that case rtcalc is blocked by MaxAge.
|
|
*/
|
|
|
|
if (breaks_minlsinterval(oa->rt) || breaks_minlsinterval(oa->pxr_lsa))
|
|
continue;
|
|
|
|
ospf_originate_rt_lsa(p, oa);
|
|
ospf_originate_prefix_rt_lsa(p, oa);
|
|
oa->update_rt_lsa = 0;
|
|
}
|
|
}
|
|
|
|
WALK_LIST(ifa, p->iface_list)
|
|
{
|
|
if (ifa->type == OSPF_IT_VLINK)
|
|
continue;
|
|
|
|
if (ifa->update_link_lsa)
|
|
{
|
|
if ((ifa->state > OSPF_IS_LOOP) && !ifa->link_lsa_suppression)
|
|
ospf_originate_link_lsa(p, ifa);
|
|
else
|
|
ospf_flush2_lsa(p, &ifa->link_lsa);
|
|
|
|
ifa->update_link_lsa = 0;
|
|
}
|
|
|
|
if (ifa->update_net_lsa)
|
|
{
|
|
if ((ifa->state == OSPF_IS_DR) && (ifa->fadj > 0))
|
|
{
|
|
ospf_originate_net_lsa(p, ifa);
|
|
ospf_originate_prefix_net_lsa(p, ifa);
|
|
}
|
|
else
|
|
{
|
|
ospf_flush2_lsa(p, &ifa->net_lsa);
|
|
ospf_flush2_lsa(p, &ifa->pxn_lsa);
|
|
}
|
|
|
|
ifa->update_net_lsa = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
ospf_top_ht_alloc(struct top_graph *f)
|
|
{
|
|
f->hash_size = 1 << f->hash_order;
|
|
f->hash_mask = f->hash_size - 1;
|
|
if (f->hash_order > HASH_HI_MAX - HASH_HI_STEP)
|
|
f->hash_entries_max = ~0;
|
|
else
|
|
f->hash_entries_max = f->hash_size HASH_HI_MARK;
|
|
if (f->hash_order < HASH_LO_MIN + HASH_LO_STEP)
|
|
f->hash_entries_min = 0;
|
|
else
|
|
f->hash_entries_min = f->hash_size HASH_LO_MARK;
|
|
DBG("Allocating OSPF hash of order %d: %d hash_entries, %d low, %d high\n",
|
|
f->hash_order, f->hash_size, f->hash_entries_min, f->hash_entries_max);
|
|
f->hash_table =
|
|
mb_alloc(f->pool, f->hash_size * sizeof(struct top_hash_entry *));
|
|
bzero(f->hash_table, f->hash_size * sizeof(struct top_hash_entry *));
|
|
}
|
|
|
|
static inline void
|
|
ospf_top_ht_free(struct top_hash_entry **h)
|
|
{
|
|
mb_free(h);
|
|
}
|
|
|
|
static inline u32
|
|
ospf_top_hash_u32(u32 a)
|
|
{
|
|
/* Shamelessly stolen from IP address hashing in ipv4.h */
|
|
a ^= a >> 16;
|
|
a ^= a << 10;
|
|
return a;
|
|
}
|
|
|
|
static uint
|
|
ospf_top_hash(struct top_graph *f, u32 domain, u32 lsaid, u32 rtrid, u32 type)
|
|
{
|
|
/* In OSPFv2, we don't know Router ID when looking for network LSAs.
|
|
In OSPFv3, we don't know LSA ID when looking for router LSAs.
|
|
In both cases, there is (usually) just one (or small number)
|
|
appropriate LSA, so we just clear unknown part of key. */
|
|
|
|
return (((f->ospf2 && (type == LSA_T_NET)) ? 0 : ospf_top_hash_u32(rtrid)) +
|
|
((!f->ospf2 && (type == LSA_T_RT)) ? 0 : ospf_top_hash_u32(lsaid)) +
|
|
type + domain) & f->hash_mask;
|
|
|
|
/*
|
|
return (ospf_top_hash_u32(lsaid) + ospf_top_hash_u32(rtrid) +
|
|
type + areaid) & f->hash_mask;
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* ospf_top_new - allocated new topology database
|
|
* @p: OSPF protocol instance
|
|
* @pool: pool for allocation
|
|
*
|
|
* This dynamically hashed structure is used for keeping LSAs. Mainly it is used
|
|
* for the LSA database of the OSPF protocol, but also for LSA retransmission
|
|
* and request lists of OSPF neighbors.
|
|
*/
|
|
struct top_graph *
|
|
ospf_top_new(struct ospf_proto *p, pool *pool)
|
|
{
|
|
struct top_graph *f;
|
|
|
|
f = mb_allocz(pool, sizeof(struct top_graph));
|
|
f->pool = pool;
|
|
f->hash_slab = sl_new(f->pool, sizeof(struct top_hash_entry));
|
|
f->hash_order = HASH_DEF_ORDER;
|
|
ospf_top_ht_alloc(f);
|
|
f->hash_entries = 0;
|
|
f->hash_entries_min = 0;
|
|
f->ospf2 = ospf_is_v2(p);
|
|
return f;
|
|
}
|
|
|
|
void
|
|
ospf_top_free(struct top_graph *f)
|
|
{
|
|
rfree(f->hash_slab);
|
|
ospf_top_ht_free(f->hash_table);
|
|
mb_free(f);
|
|
}
|
|
|
|
static void
|
|
ospf_top_rehash(struct top_graph *f, int step)
|
|
{
|
|
struct top_hash_entry **n, **oldt, **newt, *e, *x;
|
|
uint oldn, oldh;
|
|
|
|
oldn = f->hash_size;
|
|
oldt = f->hash_table;
|
|
DBG("re-hashing topology hash from order %d to %d\n", f->hash_order,
|
|
f->hash_order + step);
|
|
f->hash_order += step;
|
|
ospf_top_ht_alloc(f);
|
|
newt = f->hash_table;
|
|
|
|
for (oldh = 0; oldh < oldn; oldh++)
|
|
{
|
|
e = oldt[oldh];
|
|
while (e)
|
|
{
|
|
x = e->next;
|
|
n = newt + ospf_top_hash(f, e->domain, e->lsa.id, e->lsa.rt, e->lsa_type);
|
|
e->next = *n;
|
|
*n = e;
|
|
e = x;
|
|
}
|
|
}
|
|
ospf_top_ht_free(oldt);
|
|
}
|
|
|
|
static struct top_hash_entry *
|
|
ospf_hash_find_(struct top_graph *f, u32 domain, u32 lsa, u32 rtr, u32 type)
|
|
{
|
|
struct top_hash_entry *e;
|
|
e = f->hash_table[ospf_top_hash(f, domain, lsa, rtr, type)];
|
|
|
|
while (e && (e->lsa.id != lsa || e->lsa.rt != rtr ||
|
|
e->lsa_type != type || e->domain != domain))
|
|
e = e->next;
|
|
|
|
return e;
|
|
}
|
|
|
|
struct top_hash_entry *
|
|
ospf_hash_find(struct top_graph *f, u32 domain, u32 lsa, u32 rtr, u32 type)
|
|
{
|
|
struct top_hash_entry *e = ospf_hash_find_(f, domain, lsa, rtr, type);
|
|
|
|
/* Hide hash entry with empty lsa_body */
|
|
return (e && e->lsa_body) ? e : NULL;
|
|
}
|
|
|
|
/* In OSPFv2, lsa.id is the same as lsa.rt for router LSA. In OSPFv3, we don't know
|
|
lsa.id when looking for router LSAs. We return matching LSA with smallest lsa.id. */
|
|
struct top_hash_entry *
|
|
ospf_hash_find_rt(struct top_graph *f, u32 domain, u32 rtr)
|
|
{
|
|
struct top_hash_entry *rv = NULL;
|
|
struct top_hash_entry *e;
|
|
/* We can put rtr for lsa.id to hash fn, it is ignored in OSPFv3 */
|
|
e = f->hash_table[ospf_top_hash(f, domain, rtr, rtr, LSA_T_RT)];
|
|
|
|
while (e)
|
|
{
|
|
if (e->lsa.rt == rtr && e->lsa_type == LSA_T_RT && e->domain == domain && e->lsa_body)
|
|
{
|
|
if (f->ospf2 && (e->lsa.id == rtr))
|
|
return e;
|
|
if (!f->ospf2 && (!rv || e->lsa.id < rv->lsa.id))
|
|
rv = e;
|
|
}
|
|
e = e->next;
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* ospf_hash_find_rt3_first() and ospf_hash_find_rt3_next() are used exclusively
|
|
* for lsa_walk_rt_init(), lsa_walk_rt(), therefore they skip MaxAge entries.
|
|
*/
|
|
static inline struct top_hash_entry *
|
|
find_matching_rt3(struct top_hash_entry *e, u32 domain, u32 rtr)
|
|
{
|
|
while (e && (e->lsa.rt != rtr || e->lsa_type != LSA_T_RT ||
|
|
e->domain != domain || e->lsa.age == LSA_MAXAGE))
|
|
e = e->next;
|
|
return e;
|
|
}
|
|
|
|
struct top_hash_entry *
|
|
ospf_hash_find_rt3_first(struct top_graph *f, u32 domain, u32 rtr)
|
|
{
|
|
struct top_hash_entry *e;
|
|
e = f->hash_table[ospf_top_hash(f, domain, 0, rtr, LSA_T_RT)];
|
|
return find_matching_rt3(e, domain, rtr);
|
|
}
|
|
|
|
struct top_hash_entry *
|
|
ospf_hash_find_rt3_next(struct top_hash_entry *e)
|
|
{
|
|
return find_matching_rt3(e->next, e->domain, e->lsa.rt);
|
|
}
|
|
|
|
/* In OSPFv2, we don't know Router ID when looking for network LSAs.
|
|
There should be just one, so we find any match. */
|
|
struct top_hash_entry *
|
|
ospf_hash_find_net2(struct top_graph *f, u32 domain, u32 id)
|
|
{
|
|
struct top_hash_entry *e;
|
|
e = f->hash_table[ospf_top_hash(f, domain, id, 0, LSA_T_NET)];
|
|
|
|
while (e && (e->lsa.id != id || e->lsa_type != LSA_T_NET ||
|
|
e->domain != domain || e->lsa_body == NULL))
|
|
e = e->next;
|
|
|
|
return e;
|
|
}
|
|
|
|
|
|
struct top_hash_entry *
|
|
ospf_hash_get(struct top_graph *f, u32 domain, u32 lsa, u32 rtr, u32 type)
|
|
{
|
|
struct top_hash_entry **ee;
|
|
struct top_hash_entry *e;
|
|
|
|
ee = f->hash_table + ospf_top_hash(f, domain, lsa, rtr, type);
|
|
e = *ee;
|
|
|
|
while (e && (e->lsa.id != lsa || e->lsa.rt != rtr ||
|
|
e->lsa_type != type || e->domain != domain))
|
|
e = e->next;
|
|
|
|
if (e)
|
|
return e;
|
|
|
|
e = sl_alloc(f->hash_slab);
|
|
bzero(e, sizeof(struct top_hash_entry));
|
|
|
|
e->color = OUTSPF;
|
|
e->dist = LSINFINITY;
|
|
e->lsa.type_raw = type;
|
|
e->lsa.id = lsa;
|
|
e->lsa.rt = rtr;
|
|
e->lsa.sn = LSA_ZEROSEQNO;
|
|
e->lsa_type = type;
|
|
e->domain = domain;
|
|
e->next = *ee;
|
|
*ee = e;
|
|
if (f->hash_entries++ > f->hash_entries_max)
|
|
ospf_top_rehash(f, HASH_HI_STEP);
|
|
return e;
|
|
}
|
|
|
|
void
|
|
ospf_hash_delete(struct top_graph *f, struct top_hash_entry *e)
|
|
{
|
|
struct top_hash_entry **ee = f->hash_table +
|
|
ospf_top_hash(f, e->domain, e->lsa.id, e->lsa.rt, e->lsa_type);
|
|
|
|
while (*ee)
|
|
{
|
|
if (*ee == e)
|
|
{
|
|
*ee = e->next;
|
|
sl_free(f->hash_slab, e);
|
|
if (f->hash_entries-- < f->hash_entries_min)
|
|
ospf_top_rehash(f, -HASH_LO_STEP);
|
|
return;
|
|
}
|
|
ee = &((*ee)->next);
|
|
}
|
|
bug("ospf_hash_delete() called for invalid node");
|
|
}
|
|
|
|
/*
|
|
static void
|
|
ospf_dump_lsa(struct top_hash_entry *he, struct proto *p)
|
|
{
|
|
|
|
struct ospf_lsa_rt *rt = NULL;
|
|
struct ospf_lsa_rt_link *rr = NULL;
|
|
struct ospf_lsa_net *ln = NULL;
|
|
u32 *rts = NULL;
|
|
u32 i, max;
|
|
|
|
OSPF_TRACE(D_EVENTS, "- %1x %-1R %-1R %4u 0x%08x 0x%04x %-1R",
|
|
he->lsa.type, he->lsa.id, he->lsa.rt, he->lsa.age, he->lsa.sn,
|
|
he->lsa.checksum, he->domain);
|
|
|
|
|
|
switch (he->lsa.type)
|
|
{
|
|
case LSA_T_RT:
|
|
rt = he->lsa_body;
|
|
rr = (struct ospf_lsa_rt_link *) (rt + 1);
|
|
|
|
for (i = 0; i < lsa_rt_items(&he->lsa); i++)
|
|
OSPF_TRACE(D_EVENTS, " - %1x %-1R %-1R %5u",
|
|
rr[i].type, rr[i].id, rr[i].data, rr[i].metric);
|
|
break;
|
|
|
|
case LSA_T_NET:
|
|
ln = he->lsa_body;
|
|
rts = (u32 *) (ln + 1);
|
|
|
|
for (i = 0; i < lsa_net_items(&he->lsa); i++)
|
|
OSPF_TRACE(D_EVENTS, " - %-1R", rts[i]);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
ospf_top_dump(struct top_graph *f, struct proto *p)
|
|
{
|
|
uint i;
|
|
OSPF_TRACE(D_EVENTS, "Hash entries: %d", f->hash_entries);
|
|
|
|
for (i = 0; i < f->hash_size; i++)
|
|
{
|
|
struct top_hash_entry *e;
|
|
for (e = f->hash_table[i]; e != NULL; e = e->next)
|
|
ospf_dump_lsa(e, p);
|
|
}
|
|
}
|
|
*/
|