0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2024-12-23 02:01:55 +00:00
bird/nest/rt-attr.c
Katerina Kubecova 4af3ee1f2f EAttr normalization rewritten to use bucket sort
The EAttr ID space is dense so we can just walk once, sweep the whole
input and go home.

There is a little bit of memory inefficiency in allocating always the
largest possible block, yet it isn't too bad.

There are also unit tests for this.
2024-12-12 21:02:34 +01:00

1782 lines
42 KiB
C

/*
* BIRD -- Route Attribute Cache
*
* (c) 1998--2000 Martin Mares <mj@ucw.cz>
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
/**
* DOC: Route attribute cache
*
* Each route entry carries a set of route attributes. Several of them
* vary from route to route, but most attributes are usually common
* for a large number of routes. To conserve memory, we've decided to
* store only the varying ones directly in the &rte and hold the rest
* in a special structure called &rta which is shared among all the
* &rte's with these attributes.
*
* Each &rta contains all the static attributes of the route (i.e.,
* those which are always present) as structure members and a list of
* dynamic attributes represented by a linked list of &ea_list
* structures, each of them consisting of an array of &eattr's containing
* the individual attributes. An attribute can be specified more than once
* in the &ea_list chain and in such case the first occurrence overrides
* the others. This semantics is used especially when someone (for example
* a filter) wishes to alter values of several dynamic attributes, but
* it wants to preserve the original attribute lists maintained by
* another module.
*
* Each &eattr contains an attribute identifier (split to protocol ID and
* per-protocol attribute ID), protocol dependent flags, a type code (consisting
* of several bit fields describing attribute characteristics) and either an
* embedded 32-bit value or a pointer to a &adata structure holding attribute
* contents.
*
* There exist two variants of &rta's -- cached and un-cached ones. Un-cached
* &rta's can have arbitrarily complex structure of &ea_list's and they
* can be modified by any module in the route processing chain. Cached
* &rta's have their attribute lists normalized (that means at most one
* &ea_list is present and its values are sorted in order to speed up
* searching), they are stored in a hash table to make fast lookup possible
* and they are provided with a use count to allow sharing.
*
* Routing tables always contain only cached &rta's.
*/
#include "nest/bird.h"
#include "nest/route.h"
#include "nest/protocol.h"
#include "nest/iface.h"
#include "nest/cli.h"
#include "lib/attrs.h"
#include "lib/alloca.h"
#include "lib/hash.h"
#include "lib/idm.h"
#include "lib/resource.h"
#include "lib/string.h"
#include <stddef.h>
#include <stdlib.h>
const adata null_adata; /* adata of length 0 */
struct ea_class ea_gen_igp_metric = {
.name = "igp_metric",
.type = T_INT,
};
struct ea_class ea_gen_preference = {
.name = "preference",
.type = T_INT,
};
struct ea_class ea_gen_from = {
.name = "from",
.type = T_IP,
};
const char * const rta_src_names[RTS_MAX] = {
[RTS_STATIC] = "static",
[RTS_INHERIT] = "inherit",
[RTS_DEVICE] = "device",
[RTS_STATIC_DEVICE] = "static-device",
[RTS_REDIRECT] = "redirect",
[RTS_RIP] = "RIP",
[RTS_OSPF] = "OSPF",
[RTS_OSPF_IA] = "OSPF-IA",
[RTS_OSPF_EXT1] = "OSPF-E1",
[RTS_OSPF_EXT2] = "OSPF-E2",
[RTS_BGP] = "BGP",
[RTS_PIPE] = "pipe",
[RTS_BABEL] = "Babel",
[RTS_RPKI] = "RPKI",
[RTS_PERF] = "Perf",
[RTS_L3VPN] = "L3VPN",
[RTS_AGGREGATED] = "aggregated",
};
static void
ea_gen_source_format(const eattr *a, byte *buf, uint size)
{
if ((a->u.data >= RTS_MAX) || !rta_src_names[a->u.data])
bsnprintf(buf, size, "unknown");
else
bsnprintf(buf, size, "%s", rta_src_names[a->u.data]);
}
struct ea_class ea_gen_source = {
.name = "source",
.type = T_ENUM_RTS,
.readonly = 1,
.format = ea_gen_source_format,
};
struct ea_class ea_gen_nexthop = {
.name = "nexthop",
.type = T_NEXTHOP_LIST,
};
/*
* ea_set_hostentry() acquires hostentry from hostcache.
* New hostentry has zero use count. Cached rta locks its
* hostentry (increases its use count), uncached rta does not lock it.
* Hostentry with zero use count is removed asynchronously
* during host cache update, therefore it is safe to hold
* such hostentry temporarily as long as you hold the table lock.
*
* There is no need to hold a lock for hostentry->dep table, because that table
* contains routes responsible for that hostentry, and therefore is non-empty if
* given hostentry has non-zero use count. If the hostentry has zero use count,
* the entry is removed before dep is referenced.
*
* The protocol responsible for routes with recursive next hops should hold a
* lock for a 'source' table governing that routes (argument tab),
* because its routes reference hostentries related to the governing table.
* When all such routes are
* removed, rtas are immediately removed achieving zero uc. Then the 'source'
* table lock could be immediately released, although hostentries may still
* exist - they will be freed together with the 'source' table.
*/
static void
ea_gen_hostentry_stored(const eattr *ea)
{
struct hostentry_adata *had = (struct hostentry_adata *) ea->u.ptr;
lfuc_lock(&had->he->uc);
}
static void
ea_gen_hostentry_freed(const eattr *ea)
{
struct hostentry_adata *had = (struct hostentry_adata *) ea->u.ptr;
lfuc_unlock(&had->he->uc, birdloop_event_list(had->he->owner->loop), had->he->owner->hcu_event);
}
struct ea_class ea_gen_hostentry = {
.name = "hostentry",
.type = T_HOSTENTRY,
.readonly = 1,
.stored = ea_gen_hostentry_stored,
.freed = ea_gen_hostentry_freed,
};
struct ea_class ea_gen_hostentry_version = {
.name = "hostentry version",
.type = T_INT,
.readonly = 1,
.hidden = 1,
};
const char * rta_dest_names[RTD_MAX] = {
[RTD_NONE] = "",
[RTD_UNICAST] = "unicast",
[RTD_BLACKHOLE] = "blackhole",
[RTD_UNREACHABLE] = "unreachable",
[RTD_PROHIBIT] = "prohibited",
};
struct ea_class ea_gen_flowspec_valid = {
.name = "flowspec_valid",
.type = T_ENUM_FLOWSPEC_VALID,
.readonly = 1,
};
const char * flowspec_valid_names[FLOWSPEC__MAX] = {
[FLOWSPEC_UNKNOWN] = "unknown",
[FLOWSPEC_VALID] = "",
[FLOWSPEC_INVALID] = "invalid",
};
static void
ea_gen_aspa_providers_format(const eattr *a, byte *buf, uint size)
{
int_set_format(a->u.ad, ISF_NUMBERS, -1, buf, size - 5);
}
struct ea_class ea_gen_aspa_providers = {
.name = "aspa_providers",
.type = T_CLIST,
.format = ea_gen_aspa_providers_format,
};
DOMAIN(attrs) attrs_domain;
pool *rta_pool;
/* Assuming page size of 4096, these are magic values for slab allocation */
static const uint ea_slab_sizes[] = { 56, 112, 168, 288, 448, 800, 1344 };
static slab *ea_slab[ARRAY_SIZE(ea_slab_sizes)];
static slab *rte_src_slab;
static struct idm src_ids;
#define SRC_ID_INIT_SIZE 4
/* rte source hash */
#define RSH_KEY(n) n->private_id
#define RSH_NEXT(n) n->next
#define RSH_EQ(n1,n2) n1 == n2
#define RSH_FN(n) u64_hash(n)
#define RSH_REHASH rte_src_rehash
#define RSH_PARAMS /2, *2, 1, 1, 8, 20
#define RSH_INIT_ORDER 2
static struct rte_src * _Atomic * _Atomic rte_src_global;
static _Atomic uint rte_src_global_max;
static void
rte_src_init(void)
{
rte_src_slab = sl_new(rta_pool, sizeof(struct rte_src));
uint gmax = SRC_ID_INIT_SIZE * 32;
struct rte_src * _Atomic *g = mb_alloc(rta_pool, sizeof(struct rte_src * _Atomic) * gmax);
for (uint i = 0; i < gmax; i++)
atomic_store_explicit(&g[i], NULL, memory_order_relaxed);
atomic_store_explicit(&rte_src_global, g, memory_order_release);
atomic_store_explicit(&rte_src_global_max, gmax, memory_order_release);
idm_init(&src_ids, rta_pool, SRC_ID_INIT_SIZE);
}
HASH_DEFINE_REHASH_FN(RSH, struct rte_src)
static struct rte_src *
rt_find_source(struct rte_owner *p, u32 id)
{
return HASH_FIND(p->hash, RSH, id);
}
struct rte_src *
rt_get_source_o(struct rte_owner *p, u32 id)
{
if (p->stop)
bug("Stopping route owner asked for another source.");
ASSERT_DIE(birdloop_inside(p->list->loop));
struct rte_src *src = rt_find_source(p, id);
if (src)
{
#ifdef RT_SOURCE_DEBUG
log(L_INFO "Found source %uG", src->global_id);
#endif
lfuc_lock_revive(&src->uc);
return src;
}
RTA_LOCK;
src = sl_allocz(rte_src_slab);
src->owner = p;
src->private_id = id;
src->global_id = idm_alloc(&src_ids);
lfuc_init(&src->uc);
p->uc++;
HASH_INSERT2(p->hash, RSH, rta_pool, src);
if (p->debug & D_ROUTES)
log(L_TRACE "%s: new rte_src ID %luL %uG, have %u sources now",
p->name, src->private_id, src->global_id, p->uc);
uint gm = atomic_load_explicit(&rte_src_global_max, memory_order_relaxed);
struct rte_src * _Atomic * g = atomic_load_explicit(&rte_src_global, memory_order_relaxed);
if (src->global_id >= gm)
{
/* Allocate new block */
size_t old_len = sizeof(struct rte_src * _Atomic) * gm;
struct rte_src * _Atomic * new_block = mb_alloc(rta_pool, old_len * 2);
memcpy(new_block, g, old_len);
for (uint i = 0; i < gm; i++)
atomic_store_explicit(&new_block[gm+i], NULL, memory_order_relaxed);
/* Update the pointer */
atomic_store_explicit(&rte_src_global, new_block, memory_order_release);
atomic_store_explicit(&rte_src_global_max, gm * 2, memory_order_release);
/* Wait for readers */
synchronize_rcu();
/* Free the old block */
mb_free(g);
g = new_block;
}
atomic_store_explicit(&g[src->global_id], src, memory_order_release);
RTA_UNLOCK;
return src;
}
/**
* Find a rte source by its global ID. Only available for existing and locked
* sources stored by their ID. Checking for non-existent or foreign source is unsafe.
*
* @id: requested global ID
*
* Returns the found source or dies. Result of this function is guaranteed to
* be a valid source as long as the caller owns it.
*/
struct rte_src *
rt_find_source_global(u32 id)
{
rcu_read_lock();
ASSERT_DIE(id < atomic_load_explicit(&rte_src_global_max, memory_order_acquire));
struct rte_src * _Atomic * g = atomic_load_explicit(&rte_src_global, memory_order_acquire);
struct rte_src *src = atomic_load_explicit(&g[id], memory_order_acquire);
ASSERT_DIE(src);
ASSERT_DIE(src->global_id == id);
rcu_read_unlock();
return src;
}
static inline void
rt_done_sources(struct rte_owner *o)
{
ev_send(o->list, o->stop);
}
void
rt_prune_sources(void *data)
{
struct rte_owner *o = data;
HASH_WALK_FILTER(o->hash, next, src, sp)
{
if (lfuc_finished(&src->uc))
{
o->uc--;
if (o->debug & D_ROUTES)
log(L_TRACE "%s: freed rte_src ID %luL %uG, have %u sources now",
o->name, src->private_id, src->global_id, o->uc);
HASH_DO_REMOVE(o->hash, RSH, sp);
RTA_LOCK;
struct rte_src * _Atomic * g = atomic_load_explicit(&rte_src_global, memory_order_acquire);
atomic_store_explicit(&g[src->global_id], NULL, memory_order_release);
idm_free(&src_ids, src->global_id);
sl_free(src);
RTA_UNLOCK;
}
}
HASH_WALK_FILTER_END;
RTA_LOCK;
HASH_MAY_RESIZE_DOWN(o->hash, RSH, rta_pool);
if (o->stop && !o->uc)
{
rfree(o->prune);
RTA_UNLOCK;
if (o->debug & D_EVENTS)
log(L_TRACE "%s: all rte_src's pruned, scheduling stop event", o->name);
rt_done_sources(o);
}
else
RTA_UNLOCK;
}
void
rt_dump_sources(struct rte_owner *o)
{
debug("\t%s: hord=%u, uc=%u, cnt=%u prune=%p, stop=%p\n",
o->name, o->hash.order, o->uc, o->hash.count, o->prune, o->stop);
debug("\tget_route_info=%p, better=%p, mergable=%p, igp_metric=%p, recalculate=%p",
o->class->get_route_info, o->class->rte_better, o->class->rte_mergable,
o->class->rte_igp_metric, o->rte_recalculate);
int splitting = 0;
HASH_WALK(o->hash, next, src)
{
debug("%c%c%uL %uG %luU",
(splitting % 8) ? ',' : '\n',
(splitting % 8) ? ' ' : '\t',
src->private_id, src->global_id,
atomic_load_explicit(&src->uc.uc, memory_order_relaxed));
splitting++;
}
HASH_WALK_END;
debug("\n");
}
static struct rte_owner_class default_rte_owner_class;
void
rt_init_sources(struct rte_owner *o, const char *name, event_list *list)
{
RTA_LOCK;
HASH_INIT(o->hash, rta_pool, RSH_INIT_ORDER);
o->hash_key = random_u32();
o->uc = 0;
o->name = name;
o->prune = ev_new_init(rta_pool, rt_prune_sources, o);
o->stop = NULL;
o->list = list;
if (!o->class)
o->class = &default_rte_owner_class;
RTA_UNLOCK;
if (o->debug & D_EVENTS)
log(L_TRACE "%s: initialized rte_src owner", o->name);
}
void
rt_destroy_sources(struct rte_owner *o, event *done)
{
o->stop = done;
if (!o->uc)
{
if (o->debug & D_EVENTS)
log(L_TRACE "%s: rte_src owner destroy requested, already clean, scheduling stop event", o->name);
RTA_LOCK;
rfree(o->prune);
RTA_UNLOCK;
rt_done_sources(o);
}
else
if (o->debug & D_EVENTS)
log(L_TRACE "%s: rte_src owner destroy requested, remaining %u rte_src's to prune.", o->name, o->uc);
}
/*
* Multipath Next Hop
*/
static int
nexthop_compare_node(const struct nexthop *x, const struct nexthop *y)
{
int r;
/* Should we also compare flags ? */
r = ((int) y->weight) - ((int) x->weight);
if (r)
return r;
r = ipa_compare(x->gw, y->gw);
if (r)
return r;
r = ((int) y->labels) - ((int) x->labels);
if (r)
return r;
for (int i = 0; i < y->labels; i++)
{
r = ((int) y->label[i]) - ((int) x->label[i]);
if (r)
return r;
}
return ((int) x->iface->index) - ((int) y->iface->index);
}
static int
nexthop_compare_qsort(const void *x, const void *y)
{
return nexthop_compare_node( *(const struct nexthop **) x, *(const struct nexthop **) y );
}
/**
* nexthop_merge - merge nexthop lists
* @x: list 1
* @y: list 2
* @max: max number of nexthops
* @lp: linpool for allocating nexthops
*
* The nexthop_merge() function takes two nexthop lists @x and @y and merges them,
* eliminating possible duplicates. The input lists must be sorted and the
* result is sorted too. The number of nexthops in result is limited by @max.
* New nodes are allocated from linpool @lp.
*
* The arguments @rx and @ry specify whether corresponding input lists may be
* consumed by the function (i.e. their nodes reused in the resulting list), in
* that case the caller should not access these lists after that. To eliminate
* issues with deallocation of these lists, the caller should use some form of
* bulk deallocation (e.g. stack or linpool) to free these nodes when the
* resulting list is no longer needed. When reusability is not set, the
* corresponding lists are not modified nor linked from the resulting list.
*/
struct nexthop_adata *
nexthop_merge(struct nexthop_adata *xin, struct nexthop_adata *yin, int max, linpool *lp)
{
uint outlen = ADATA_SIZE(xin->ad.length) + ADATA_SIZE(yin->ad.length);
struct nexthop_adata *out = lp_alloc(lp, outlen);
out->ad.length = outlen - sizeof (struct adata);
struct nexthop *x = &xin->nh, *y = &yin->nh, *cur = &out->nh;
int xvalid, yvalid;
while (max--)
{
xvalid = NEXTHOP_VALID(x, xin);
yvalid = NEXTHOP_VALID(y, yin);
if (!xvalid && !yvalid)
break;
ASSUME(NEXTHOP_VALID(cur, out));
int cmp = !xvalid ? 1 : !yvalid ? -1 : nexthop_compare_node(x, y);
if (cmp < 0)
{
ASSUME(NEXTHOP_VALID(x, xin));
memcpy(cur, x, nexthop_size(x));
x = NEXTHOP_NEXT(x);
}
else if (cmp > 0)
{
ASSUME(NEXTHOP_VALID(y, yin));
memcpy(cur, y, nexthop_size(y));
y = NEXTHOP_NEXT(y);
}
else
{
ASSUME(NEXTHOP_VALID(x, xin));
memcpy(cur, x, nexthop_size(x));
x = NEXTHOP_NEXT(x);
ASSUME(NEXTHOP_VALID(y, yin));
y = NEXTHOP_NEXT(y);
}
cur = NEXTHOP_NEXT(cur);
}
out->ad.length = (void *) cur - (void *) out->ad.data;
return out;
}
struct nexthop_adata *
nexthop_sort(struct nexthop_adata *nhad, linpool *lp)
{
/* Count the nexthops */
uint cnt = 0;
NEXTHOP_WALK(nh, nhad)
cnt++;
if (cnt <= 1)
return nhad;
/* Get pointers to them */
struct nexthop **sptr = tmp_alloc(cnt * sizeof(struct nexthop *));
uint i = 0;
NEXTHOP_WALK(nh, nhad)
sptr[i++] = nh;
/* Sort the pointers */
qsort(sptr, cnt, sizeof(struct nexthop *), nexthop_compare_qsort);
/* Allocate the output */
struct nexthop_adata *out = (struct nexthop_adata *) lp_alloc_adata(lp, nhad->ad.length);
struct nexthop *dest = &out->nh;
/* Deduplicate nexthops while storing them */
for (uint i = 0; i < cnt; i++)
{
if (i && !nexthop_compare_node(sptr[i], sptr[i-1]))
continue;
memcpy(dest, sptr[i], NEXTHOP_SIZE(sptr[i]));
dest = NEXTHOP_NEXT(dest);
}
out->ad.length = (void *) dest - (void *) out->ad.data;
return out;
}
int
nexthop_is_sorted(struct nexthop_adata *nhad)
{
struct nexthop *prev = NULL;
NEXTHOP_WALK(nh, nhad)
{
if (prev && (nexthop_compare_node(prev, nh) >= 0))
return 0;
prev = nh;
}
return 1;
}
/*
* Extended Attributes
*/
#define EA_CLASS_INITIAL_MAX 128
static struct ea_class **ea_class_global = NULL;
static uint ea_class_max;
static struct idm ea_class_idm;
/* Config parser lex register function */
void ea_lex_register(struct ea_class *def);
static void
ea_class_free(struct ea_class *cl)
{
RTA_LOCK;
/* No more ea class references. Unregister the attribute. */
idm_free(&ea_class_idm, cl->id);
ea_class_global[cl->id] = NULL;
/* When we start supporting full protocol removal, we may need to call
* ea_lex_unregister(cl), see where ea_lex_register() is called. */
RTA_UNLOCK;
}
static void
ea_class_ref_free(resource *r)
{
SKIP_BACK_DECLARE(struct ea_class_ref, ref, r, r);
if (!--ref->class->uc)
ea_class_free(ref->class);
}
static void
ea_class_ref_dump(resource *r, unsigned indent UNUSED)
{
SKIP_BACK_DECLARE(struct ea_class_ref, ref, r, r);
debug("name \"%s\", type=%d\n", ref->class->name, ref->class->type);
}
static struct resclass ea_class_ref_class = {
.name = "Attribute class reference",
.size = sizeof(struct ea_class_ref),
.free = ea_class_ref_free,
.dump = ea_class_ref_dump,
.lookup = NULL,
.memsize = NULL,
};
static void
ea_class_init(void)
{
ASSERT_DIE(ea_class_global == NULL);
idm_init(&ea_class_idm, rta_pool, EA_CLASS_INITIAL_MAX);
ea_class_global = mb_allocz(rta_pool,
sizeof(*ea_class_global) * (ea_class_max = EA_CLASS_INITIAL_MAX));
}
struct ea_class_ref *
ea_ref_class(pool *p, struct ea_class *def)
{
def->uc++;
struct ea_class_ref *ref = ralloc(p, &ea_class_ref_class);
ref->class = def;
return ref;
}
static struct ea_class_ref *
ea_register(pool *p, struct ea_class *def)
{
def->id = idm_alloc(&ea_class_idm);
ASSERT_DIE(ea_class_global);
while (def->id >= ea_class_max)
ea_class_global = mb_realloc(ea_class_global, sizeof(*ea_class_global) * (ea_class_max *= 2));
ASSERT_DIE(def->id < ea_class_max);
ea_class_global[def->id] = def;
return ea_ref_class(p, def);
}
struct ea_class_ref *
ea_register_alloc(pool *p, struct ea_class cl)
{
struct ea_class_ref *ref;
RTA_LOCK;
struct ea_class *clp = ea_class_find_by_name(cl.name);
if (clp && clp->type == cl.type)
{
ref = ea_ref_class(p, clp);
RTA_UNLOCK;
return ref;
}
uint namelen = strlen(cl.name) + 1;
struct {
struct ea_class cl;
char name[0];
} *cla = mb_alloc(rta_pool, sizeof(struct ea_class) + namelen);
cla->cl = cl;
memcpy(cla->name, cl.name, namelen);
cla->cl.name = cla->name;
ref = ea_register(p, &cla->cl);
RTA_UNLOCK;
return ref;
}
void
ea_register_init(struct ea_class *clp)
{
RTA_LOCK;
ASSERT_DIE(!ea_class_find_by_name(clp->name));
struct ea_class *def = ea_register(&root_pool, clp)->class;
if (!clp->hidden)
ea_lex_register(def);
RTA_UNLOCK;
}
struct ea_class *
ea_class_find_by_id(uint id)
{
ASSERT_DIE(id < ea_class_max);
ASSERT_DIE(ea_class_global[id]);
return ea_class_global[id];
}
static inline eattr *
ea__find(ea_list *e, unsigned id)
{
eattr *a;
int l, r, m;
while (e)
{
if (e->flags & EALF_BISECT)
{
l = 0;
r = e->count - 1;
while (l <= r)
{
m = (l+r) / 2;
a = &e->attrs[m];
if (a->id == id)
return a;
else if (a->id < id)
l = m+1;
else
r = m-1;
}
}
else
for(m=0; m<e->count; m++)
if (e->attrs[m].id == id)
return &e->attrs[m];
e = e->next;
}
return NULL;
}
/**
* ea_find - find an extended attribute
* @e: attribute list to search in
* @id: attribute ID to search for
*
* Given an extended attribute list, ea_find() searches for a first
* occurrence of an attribute with specified ID, returning either a pointer
* to its &eattr structure or %NULL if no such attribute exists.
*/
eattr *
ea_find_by_id(ea_list *e, unsigned id)
{
eattr *a = ea__find(e, id & EA_CODE_MASK);
if (a && a->undef && !(id & EA_ALLOW_UNDEF))
return NULL;
return a;
}
/**
* ea_walk - walk through extended attributes
* @s: walk state structure
* @id: start of attribute ID interval
* @max: length of attribute ID interval
*
* Given an extended attribute list, ea_walk() walks through the list looking
* for first occurrences of attributes with ID in specified interval from @id to
* (@id + @max - 1), returning pointers to found &eattr structures, storing its
* walk state in @s for subsequent calls.
*
* The function ea_walk() is supposed to be called in a loop, with initially
* zeroed walk state structure @s with filled the initial extended attribute
* list, returning one found attribute in each call or %NULL when no other
* attribute exists. The extended attribute list or the arguments should not be
* modified between calls. The maximum value of @max is 128.
*/
eattr *
ea_walk(struct ea_walk_state *s, uint id, uint max)
{
ea_list *e = s->eattrs;
eattr *a = s->ea;
eattr *a_max;
max = id + max;
if (a)
goto step;
for (; e; e = e->next)
{
if (e->flags & EALF_BISECT)
{
int l, r, m;
l = 0;
r = e->count - 1;
while (l < r)
{
m = (l+r) / 2;
if (e->attrs[m].id < id)
l = m + 1;
else
r = m;
}
a = e->attrs + l;
}
else
a = e->attrs;
step:
a_max = e->attrs + e->count;
for (; a < a_max; a++)
if ((a->id >= id) && (a->id < max))
{
int n = a->id - id;
if (BIT32_TEST(s->visited, n))
continue;
BIT32_SET(s->visited, n);
if (a->undef)
continue;
s->eattrs = e;
s->ea = a;
return a;
}
else if (e->flags & EALF_BISECT)
break;
}
return NULL;
}
static bool
eattr_same_value(const eattr *a, const eattr *b)
{
if (
a->id != b->id ||
a->flags != b->flags ||
a->type != b->type ||
a->undef != b->undef
)
return 0;
if (a->undef)
return 1;
if (a->type == T_PTR)
return a->u.v_ptr == b->u.v_ptr;
if (a->type & EAF_EMBEDDED)
return a->u.data == b->u.data;
else
return adata_same(a->u.ptr, b->u.ptr);
}
static bool
eattr_same(const eattr *a, const eattr *b)
{
return
eattr_same_value(a, b) &&
a->originated == b->originated &&
a->fresh == b->fresh;
}
/**
* ea_same - compare two &ea_list's
* @x: attribute list
* @y: attribute list
*
* ea_same() compares two normalized attribute lists @x and @y and returns
* 1 if they contain the same attributes, 0 otherwise.
*/
int
ea_same(ea_list *x, ea_list *y)
{
int c;
if (!x || !y)
return x == y;
if (x->next != y->next)
return 0;
if (x->count != y->count)
return 0;
for(c=0; c<x->count; c++)
if (!eattr_same(&x->attrs[c], &y->attrs[c]))
return 0;
return 1;
}
uint
ea_list_size(ea_list *o)
{
unsigned i, elen;
ASSERT_DIE(o);
elen = BIRD_CPU_ALIGN(sizeof(ea_list) + sizeof(eattr) * o->count);
for(i=0; i<o->count; i++)
{
eattr *a = &o->attrs[i];
if (!a->undef && !(a->type & EAF_EMBEDDED))
elen += ADATA_SIZE(a->u.ptr->length);
}
return elen;
}
/**
* ea_normalize - create a normalized version of attributes
* @e: input attributes
* @upto: bitmask of layers which should stay as an underlay
*
* This function squashes all updates done atop some ea_list
* and creates the final structure useful for storage or fast searching.
* The method is a bucket sort.
*
* Returns the final ea_list with some excess memory at the end,
* allocated from the tmp_linpool. The adata is linked from the original places.
*/
ea_list *
ea_normalize(ea_list *e, u32 upto)
{
/* We expect some work to be actually needed. */
ASSERT_DIE(!BIT32_TEST(&upto, e->stored));
/* Allocate the output */
ea_list *out = tmp_allocz(ea_class_max * sizeof(eattr) + sizeof(ea_list));
*out = (ea_list) {
.flags = EALF_SORTED,
};
uint min_id = ~0, max_id = 0;
eattr *buckets = out->attrs;
/* Walk the attribute lists, one after another. */
for (; e; e = e->next)
{
if (!out->next && BIT32_TEST(&upto, e->stored))
out->next = e;
for (int i = 0; i < e->count; i++)
{
uint id = e->attrs[i].id;
if (id > max_id)
max_id = id;
if (id < min_id)
min_id = id;
if (out->next)
{
/* Underlay: check whether the value is duplicate */
if (buckets[id].id && buckets[id].fresh)
if (eattr_same_value(&e->attrs[i], &buckets[id]))
/* Duplicate value treated as no change at all */
buckets[id] = (eattr) {};
else
/* This value is actually needed */
buckets[id].fresh = 0;
}
else
{
/* Overlay: not seen yet -> copy the eattr */
if (!buckets[id].id)
{
buckets[id] = e->attrs[i];
buckets[id].fresh = 1;
}
}
/* The originated information is relevant from the lowermost one */
buckets[id].originated = e->attrs[i].originated;
}
}
/* And now we just walk the list from beginning to end and collect
* everything to the beginning of the list.
* Walking just that part which is inhabited for sure. */
for (uint id = min_id; id <= max_id; id++)
{
/* Nothing to see for this ID */
if (!buckets[id].id)
continue;
/* Drop unnecessary undefs */
if (buckets[id].undef && buckets[id].fresh)
continue;
/* Now the freshness is lost, finally */
buckets[id].fresh = 0;
/* Move the attribute to the beginning */
ASSERT_DIE(out->count < id);
buckets[out->count++] = buckets[id];
}
/* We want to bisect only if the list is long enough */
if (out->count > 5)
out->flags |= EALF_BISECT;
return out;
}
void
ea_list_copy(ea_list *n, ea_list *o, uint elen)
{
uint adpos = sizeof(ea_list) + sizeof(eattr) * o->count;
memcpy(n, o, adpos);
adpos = BIRD_CPU_ALIGN(adpos);
for(uint i=0; i<o->count; i++)
{
eattr *a = &n->attrs[i];
if (!a->undef && !(a->type & EAF_EMBEDDED))
{
unsigned size = ADATA_SIZE(a->u.ptr->length);
ASSERT_DIE(adpos + size <= elen);
struct adata *d = ((void *) n) + adpos;
memcpy(d, a->u.ptr, size);
a->u.ptr = d;
adpos += size;
}
}
ASSERT_DIE(adpos == elen);
}
static void
ea_list_ref(ea_list *l)
{
for(uint i=0; i<l->count; i++)
{
eattr *a = &l->attrs[i];
ASSERT_DIE(a->id < ea_class_max);
if (a->undef)
continue;
struct ea_class *cl = ea_class_global[a->id];
ASSERT_DIE(cl && cl->uc);
CALL(cl->stored, a);
cl->uc++;
}
if (l->next)
ea_ref(l->next);
}
static void
ea_list_unref(ea_list *l)
{
for(uint i=0; i<l->count; i++)
{
eattr *a = &l->attrs[i];
ASSERT_DIE(a->id < ea_class_max);
if (a->undef)
continue;
struct ea_class *cl = ea_class_global[a->id];
ASSERT_DIE(cl && cl->uc);
CALL(cl->freed, a);
if (!--cl->uc)
ea_class_free(cl);
}
if (l->next)
ea_free_later(l->next);
}
void
ea_format_bitfield(const struct eattr *a, byte *buf, int bufsize, const char **names, int min, int max)
{
byte *start = buf;
byte *bound = buf + bufsize - 32;
u32 data = a->u.data;
int i;
for (i = min; i < max; i++)
if ((data & (1u << i)) && names[i])
{
if (buf > bound)
{
strcpy(buf, " ...");
return;
}
buf += bsprintf(buf, "%s ", names[i]);
data &= ~(1u << i);
}
if (data)
bsprintf(buf, "%08x ", data);
if (buf != start)
buf--;
*buf = 0;
return;
}
static inline void
opaque_format(const struct adata *ad, byte *buf, uint size)
{
byte *bound = buf + size - 10;
uint i;
for(i = 0; i < ad->length; i++)
{
if (buf > bound)
{
strcpy(buf, " ...");
return;
}
if (i)
*buf++ = ' ';
buf += bsprintf(buf, "%02x", ad->data[i]);
}
*buf = 0;
return;
}
static inline void
ea_show_int_set(struct cli *c, const char *name, const struct adata *ad, int way, byte *buf)
{
int nlen = strlen(name);
int i = int_set_format(ad, way, 0, buf, CLI_MSG_SIZE - nlen - 3);
cli_printf(c, -1012, "\t%s: %s", name, buf);
while (i)
{
i = int_set_format(ad, way, i, buf, CLI_MSG_SIZE - 1);
cli_printf(c, -1012, "\t\t%s", buf);
}
}
static inline void
ea_show_ec_set(struct cli *c, const char *name, const struct adata *ad, byte *buf)
{
int nlen = strlen(name);
int i = ec_set_format(ad, 0, buf, CLI_MSG_SIZE - nlen - 3);
cli_printf(c, -1012, "\t%s: %s", name, buf);
while (i)
{
i = ec_set_format(ad, i, buf, CLI_MSG_SIZE - 1);
cli_printf(c, -1012, "\t\t%s", buf);
}
}
static inline void
ea_show_lc_set(struct cli *c, const char *name, const struct adata *ad, byte *buf)
{
int nlen = strlen(name);
int i = lc_set_format(ad, 0, buf, CLI_MSG_SIZE - nlen - 3);
cli_printf(c, -1012, "\t%s: %s", name, buf);
while (i)
{
i = lc_set_format(ad, i, buf, CLI_MSG_SIZE - 1);
cli_printf(c, -1012, "\t\t%s", buf);
}
}
void
ea_show_nexthop_list(struct cli *c, struct nexthop_adata *nhad)
{
if (!NEXTHOP_IS_REACHABLE(nhad))
return;
NEXTHOP_WALK(nh, nhad)
{
char mpls[MPLS_MAX_LABEL_STACK*12 + 5], *lsp = mpls;
char *onlink = (nh->flags & RNF_ONLINK) ? " onlink" : "";
char weight[16] = "";
if (nh->labels)
{
lsp += bsprintf(lsp, " mpls %d", nh->label[0]);
for (int i=1;i<nh->labels; i++)
lsp += bsprintf(lsp, "/%d", nh->label[i]);
}
*lsp = '\0';
if (!NEXTHOP_ONE(nhad))
bsprintf(weight, " weight %d", nh->weight + 1);
if (ipa_nonzero(nh->gw))
if (nh->iface)
cli_printf(c, -1007, "\tvia %I on %s%s%s%s",
nh->gw, nh->iface->name, mpls, onlink, weight);
else
cli_printf(c, -1007, "\tvia %I", nh->gw);
else
cli_printf(c, -1007, "\tdev %s%s%s",
nh->iface->name, mpls, onlink, weight);
}
}
void
ea_show_hostentry(const struct adata *ad, byte *buf, uint size)
{
const struct hostentry_adata *had = (const struct hostentry_adata *) ad;
uint s = 0;
if (ipa_nonzero(had->he->link) && !ipa_equal(had->he->link, had->he->addr))
s = bsnprintf(buf, size, "via %I %I table %s", had->he->addr, had->he->link, had->he->owner->name);
else
s = bsnprintf(buf, size, "via %I table %s", had->he->addr, had->he->owner->name);
uint lc = HOSTENTRY_LABEL_COUNT(had);
if (!lc)
return;
s = bsnprintf((buf += s), (size -= s), " mpls");
for (uint i=0; i < lc; i++)
s = bsnprintf((buf += s), (size -= s), " %u", had->labels[i]);
}
/**
* ea_show - print an &eattr to CLI
* @c: destination CLI
* @e: attribute to be printed
*
* This function takes an extended attribute represented by its &eattr
* structure and prints it to the CLI according to the type information.
*
* If the protocol defining the attribute provides its own
* get_attr() hook, it's consulted first.
*/
static void
ea_show(struct cli *c, const eattr *e)
{
const struct adata *ad = (e->type & EAF_EMBEDDED) ? NULL : e->u.ptr;
byte buf[CLI_MSG_SIZE];
byte *pos = buf, *end = buf + sizeof(buf);
ASSERT_DIE(e->id < ea_class_max);
struct ea_class *cls = ea_class_global[e->id];
ASSERT_DIE(cls);
if (e->undef || cls->hidden)
return;
else if (cls->format)
cls->format(e, buf, end - buf);
else
switch (e->type)
{
case T_INT:
if ((cls == &ea_gen_igp_metric) && e->u.data >= IGP_METRIC_UNKNOWN)
return;
bsprintf(pos, "%u", e->u.data);
break;
case T_OPAQUE:
opaque_format(ad, pos, end - pos);
break;
case T_IP:
bsprintf(pos, "%I", *(ip_addr *) ad->data);
break;
case T_QUAD:
bsprintf(pos, "%R", e->u.data);
break;
case T_PATH:
as_path_format(ad, pos, end - pos);
break;
case T_CLIST:
ea_show_int_set(c, cls->name, ad, ISF_COMMUNITY_LIST, buf);
return;
case T_ECLIST:
ea_show_ec_set(c, cls->name, ad, buf);
return;
case T_LCLIST:
ea_show_lc_set(c, cls->name, ad, buf);
return;
case T_STRING:
bsnprintf(pos, end - pos, "%s", (const char *) ad->data);
break;
case T_NEXTHOP_LIST:
ea_show_nexthop_list(c, (struct nexthop_adata *) e->u.ptr);
return;
case T_HOSTENTRY:
ea_show_hostentry(ad, pos, end - pos);
break;
default:
bsprintf(pos, "<type %02x>", e->type);
}
cli_printf(c, -1012, "\t%s: %s", cls->name, buf);
}
static void
nexthop_dump(const struct adata *ad)
{
struct nexthop_adata *nhad = (struct nexthop_adata *) ad;
debug(":");
if (!NEXTHOP_IS_REACHABLE(nhad))
{
const char *name = rta_dest_name(nhad->dest);
if (name)
debug(" %s", name);
else
debug(" D%d", nhad->dest);
}
else NEXTHOP_WALK(nh, nhad)
{
if (ipa_nonzero(nh->gw)) debug(" ->%I", nh->gw);
if (nh->labels) debug(" L %d", nh->label[0]);
for (int i=1; i<nh->labels; i++)
debug("/%d", nh->label[i]);
debug(" [%s]", nh->iface ? nh->iface->name : "???");
}
}
/**
* ea_dump - dump an extended attribute
* @e: attribute to be dumped
*
* ea_dump() dumps contents of the extended attribute given to
* the debug output.
*/
void
ea_dump(ea_list *e)
{
int i;
if (!e)
{
debug("NONE");
return;
}
while (e)
{
struct ea_storage *s = e->stored ? ea_get_storage(e) : NULL;
debug("[%c%c] overlay=%d uc=%d h=%08x",
(e->flags & EALF_SORTED) ? 'S' : 's',
(e->flags & EALF_BISECT) ? 'B' : 'b',
e->stored,
s ? atomic_load_explicit(&s->uc, memory_order_relaxed) : 0,
s ? s->hash_key : 0);
for(i=0; i<e->count; i++)
{
eattr *a = &e->attrs[i];
struct ea_class *clp = (a->id < ea_class_max) ? ea_class_global[a->id] : NULL;
if (clp)
debug(" %s", clp->name);
else
debug(" 0x%x", a->id);
debug(".%02x", a->flags);
debug("=%c",
"?iO?IRP???S??pE?"
"??L???N?????????"
"?o???r??????????" [a->type]);
if (a->originated)
debug("o");
if (a->undef)
debug(":undef");
else if (a->type & EAF_EMBEDDED)
debug(":%08x", a->u.data);
else if (a->id == ea_gen_nexthop.id)
nexthop_dump(a->u.ptr);
else
{
int j, len = a->u.ptr->length;
debug("[%d]:", len);
for(j=0; j<len; j++)
debug("%02x", a->u.ptr->data[j]);
}
debug(" ");
}
if (e = e->next)
debug(" | ");
}
}
/**
* ea_hash - calculate an &ea_list hash key
* @e: attribute list
*
* ea_hash() takes an extended attribute list and calculated a hopefully
* uniformly distributed hash value from its contents.
*/
uint
ea_hash(ea_list *e)
{
const u64 mul = 0x68576150f3d6847;
u64 h = 0xafcef24eda8b29;
int i;
if (e) /* Assuming chain of length 1 */
{
h ^= mem_hash(&e->next, sizeof(e->next));
for(i=0; i<e->count; i++)
{
struct eattr *a = &e->attrs[i];
h ^= a->id; h *= mul;
if (a->undef)
continue;
if (a->type & EAF_EMBEDDED)
h ^= a->u.data;
else
{
const struct adata *d = a->u.ptr;
h ^= mem_hash(d->data, d->length);
}
h *= mul;
}
}
return (h >> 32) ^ (h & 0xffffffff);
}
/**
* ea_append - concatenate &ea_list's
* @to: destination list (can be %NULL)
* @what: list to be appended (can be %NULL)
*
* This function appends the &ea_list @what at the end of
* &ea_list @to and returns a pointer to the resulting list.
*/
ea_list *
ea_append(ea_list *to, ea_list *what)
{
ea_list *res;
if (!to)
return what;
res = to;
while (to->next)
to = to->next;
to->next = what;
return res;
}
/*
* rta's
*/
static SPINHASH(struct ea_storage) rta_hash_table;
#define RTAH_KEY(a) a->l, a->hash_key
#define RTAH_NEXT(a) a->next_hash
#define RTAH_EQ(a, b) ((a)->hash_key == (b)->hash_key) && (ea_same((a), (b)))
#define RTAH_FN(a, h) h
#define RTAH_ORDER 12
#define RTAH_REHASH rta_rehash
#define RTAH_PARAMS /8, *2, 2, 2, 12, 28
static void RTAH_REHASH(void *_ UNUSED) {
int step;
RTA_LOCK;
SPINHASH_REHASH_PREPARE(&rta_hash_table, RTAH, struct ea_storage, step);
RTA_UNLOCK;
if (!step) return;
if (step > 0) SPINHASH_REHASH_UP (&rta_hash_table, RTAH, struct ea_storage, step);
if (step < 0) SPINHASH_REHASH_DOWN(&rta_hash_table, RTAH, struct ea_storage, -step);
RTA_LOCK;
SPINHASH_REHASH_FINISH(&rta_hash_table, RTAH);
RTA_UNLOCK;
}
static ea_list *
ea_lookup_existing(ea_list *o, u32 squash_upto, uint h)
{
struct ea_storage *r = NULL;
SPINHASH_BEGIN_CHAIN(rta_hash_table, RTAH, read, eap, o, h);
for (struct ea_storage *ea; ea = *eap; eap = &RTAH_NEXT(ea))
if (
(h == ea->hash_key) &&
ea_same(o, ea->l) &&
BIT32_TEST(&squash_upto, ea->l->stored) &&
(!r || r->l->stored > ea->l->stored))
r = ea;
if (r)
atomic_fetch_add_explicit(&r->uc, 1, memory_order_acq_rel);
SPINHASH_END_CHAIN(read);
return r ? r->l : NULL;
}
/**
* rta_lookup - look up a &rta in attribute cache
* @o: a un-cached &rta
*
* rta_lookup() gets an un-cached &rta structure and returns its cached
* counterpart. It starts with examining the attribute cache to see whether
* there exists a matching entry. If such an entry exists, it's returned and
* its use count is incremented, else a new entry is created with use count
* set to 1.
*
* The extended attribute lists attached to the &rta are automatically
* converted to the normalized form.
*/
ea_list *
ea_lookup_slow(ea_list *o, u32 squash_upto, enum ea_stored oid)
{
uint h;
ASSERT(o->stored != oid);
ASSERT(oid);
o = ea_normalize(o, squash_upto);
h = ea_hash(o);
squash_upto |= BIT32_VAL(oid);
struct ea_list *rr = ea_lookup_existing(o, squash_upto, h);
if (rr) return rr;
RTA_LOCK;
if (rr = ea_lookup_existing(o, squash_upto, oid))
{
RTA_UNLOCK;
return rr;
}
struct ea_storage *r = NULL;
uint elen = ea_list_size(o);
uint sz = elen + sizeof(struct ea_storage);
for (uint i=0; i<ARRAY_SIZE(ea_slab_sizes); i++)
if (sz <= ea_slab_sizes[i])
{
r = sl_alloc(ea_slab[i]);
break;
}
int huge = r ? 0 : EALF_HUGE;;
if (huge)
r = mb_alloc(rta_pool, sz);
ea_list_copy(r->l, o, elen);
ea_list_ref(r->l);
r->l->flags |= huge;
r->l->stored = oid;
r->hash_key = h;
atomic_store_explicit(&r->uc, 1, memory_order_release);
SPINHASH_INSERT(rta_hash_table, RTAH, r);
RTA_UNLOCK;
return r->l;
}
#define EA_UC_SUB (1ULL << 44)
#define EA_UC_IN_PROGRESS(x) ((x) >> 44)
#define EA_UC_ASSIGNED(x) ((x) & (EA_UC_SUB-1))
#define EA_UC_DONE(x) (EA_UC_ASSIGNED(x) == EA_UC_IN_PROGRESS(x))
void
ea_free_deferred(struct deferred_call *dc)
{
struct ea_storage *r = ea_get_storage(SKIP_BACK(struct ea_free_deferred, dc, dc)->attrs);
/* Indicate free intent */
u64 prev = atomic_fetch_add_explicit(&r->uc, EA_UC_SUB, memory_order_acq_rel);
prev |= EA_UC_SUB;
if (!EA_UC_DONE(prev))
{
/* The easy case: somebody else holds the usecount */
ASSERT_DIE(EA_UC_IN_PROGRESS(prev) < EA_UC_ASSIGNED(prev));
atomic_fetch_sub_explicit(&r->uc, EA_UC_SUB + 1, memory_order_acq_rel);
return;
}
/* Wait for others to finish */
while (EA_UC_DONE(prev) && (EA_UC_IN_PROGRESS(prev) > 1))
prev = atomic_load_explicit(&r->uc, memory_order_acquire);
if (!EA_UC_DONE(prev))
{
/* Somebody else has found us inbetween, no need to free */
ASSERT_DIE(EA_UC_IN_PROGRESS(prev) < EA_UC_ASSIGNED(prev));
atomic_fetch_sub_explicit(&r->uc, EA_UC_SUB + 1, memory_order_acq_rel);
return;
}
/* We are the last one to free this ea */
RTA_LOCK;
/* Trying to remove the ea from the hash */
SPINHASH_REMOVE(rta_hash_table, RTAH, r);
/* Somebody has cloned this rta inbetween. This sometimes happens. */
prev = atomic_load_explicit(&r->uc, memory_order_acquire);
if (!EA_UC_DONE(prev) || (EA_UC_IN_PROGRESS(prev) > 1))
{
/* Reinsert the ea and go away */
SPINHASH_INSERT(rta_hash_table, RTAH, r);
atomic_fetch_sub_explicit(&r->uc, EA_UC_SUB + 1, memory_order_acq_rel);
RTA_UNLOCK;
return;
}
/* Fine, now everybody is actually done */
ASSERT_DIE(atomic_load_explicit(&r->uc, memory_order_acquire) == EA_UC_SUB + 1);
/* And now we can free the object, finally */
ea_list_unref(r->l);
if (r->l->flags & EALF_HUGE)
mb_free(r);
else
sl_free(r);
RTA_UNLOCK;
}
/**
* rta_dump_all - dump attribute cache
*
* This function dumps the whole contents of route attribute cache
* to the debug output.
*/
void
ea_dump_all(void)
{
debug("Route attribute cache (%d entries, order %d):\n",
atomic_load_explicit(&rta_hash_table.count, memory_order_relaxed),
atomic_load_explicit(&rta_hash_table.cur, memory_order_relaxed)->order);
SPINHASH_WALK(rta_hash_table, RTAH, a)
{
debug("%p ", a);
ea_dump(a->l);
debug("\n");
}
SPINHASH_WALK_END;
debug("\n");
}
void
ea_show_list(struct cli *c, ea_list *eal)
{
ea_list *n = ea_normalize(eal, 0);
for (int i =0; i < n->count; i++)
ea_show(c, &n->attrs[i]);
}
/**
* rta_init - initialize route attribute cache
*
* This function is called during initialization of the routing
* table module to set up the internals of the attribute cache.
*/
void
rta_init(void)
{
attrs_domain = DOMAIN_NEW(attrs);
RTA_LOCK;
rta_pool = rp_new(&root_pool, attrs_domain.attrs, "Attributes");
for (uint i=0; i<ARRAY_SIZE(ea_slab_sizes); i++)
ea_slab[i] = sl_new(rta_pool, ea_slab_sizes[i]);
SPINHASH_INIT(rta_hash_table, RTAH, rta_pool, &global_work_list);
rte_src_init();
ea_class_init();
RTA_UNLOCK;
/* These attributes are required to be first for nice "show route" output */
ea_register_init(&ea_gen_nexthop);
ea_register_init(&ea_gen_hostentry);
ea_register_init(&ea_gen_hostentry_version);
/* Other generic route attributes */
ea_register_init(&ea_gen_preference);
ea_register_init(&ea_gen_igp_metric);
ea_register_init(&ea_gen_from);
ea_register_init(&ea_gen_source);
ea_register_init(&ea_gen_flowspec_valid);
/* MPLS route attributes */
ea_register_init(&ea_gen_mpls_policy);
ea_register_init(&ea_gen_mpls_class);
ea_register_init(&ea_gen_mpls_label);
/* ASPA providers */
ea_register_init(&ea_gen_aspa_providers);
}
/*
* Documentation for functions declared inline in route.h
*/
#if 0
/**
* rta_clone - clone route attributes
* @r: a &rta to be cloned
*
* rta_clone() takes a cached &rta and returns its identical cached
* copy. Currently it works by just returning the original &rta with
* its use count incremented.
*/
static inline rta *rta_clone(rta *r)
{ DUMMY; }
/**
* rta_free - free route attributes
* @r: a &rta to be freed
*
* If you stop using a &rta (for example when deleting a route which uses
* it), you need to call rta_free() to notify the attribute cache the
* attribute is no longer in use and can be freed if you were the last
* user (which rta_free() tests by inspecting the use count).
*/
static inline void rta_free(rta *r)
{ DUMMY; }
#endif