mirror of
https://gitlab.nic.cz/labs/bird.git
synced 2024-11-18 00:58:42 +00:00
973aa37e1e
When BIRD has no free memory mapped, it allocates several pages in advance just to be sure that there is some memory available if needed. This hysteresis tactics works quite well to reduce memory ping-ping with kernel. Yet it had a subtle bug: this pre-allocation didn't take a memory coldlist into account, therefore requesting new pages from kernel even in cases when there were other pages available. This led to slow memory bloating. To demonstrate this behavior fast enough to be seen well, you may: * temporarily set the values in sysdep/unix/alloc.c as follows to exacerbate the issue: #define KEEP_PAGES_MAIN_MAX 4096 #define KEEP_PAGES_MAIN_MIN 1000 #define CLEANUP_PAGES_BULK 4096 * create a config file with several millions of static routes * periodically disable all static protocols and then reload config * log memory consumption This should give you a steady growth rate of about 16kB per cycle. If you don't set the values this high, the issue happens much more slowly, yet after 14 days of running, you are going to see an OOM kill. After this fix, pre-allocation uses the memory coldlist to get some hot pages and the same test as described here gets you a perfectly stable constant memory consumption (after some initial wobbling). Thanks to NIX-CZ for reporting and helping to investigate this issue. Thanks to Santiago for finding the cause in the code.
252 lines
6.2 KiB
C
252 lines
6.2 KiB
C
/*
|
|
* BIRD Internet Routing Daemon -- Raw allocation
|
|
*
|
|
* (c) 2020 Maria Matejka <mq@ucw.cz>
|
|
*
|
|
* Can be freely distributed and used under the terms of the GNU GPL.
|
|
*/
|
|
|
|
#include "nest/bird.h"
|
|
#include "lib/resource.h"
|
|
#include "lib/lists.h"
|
|
#include "lib/event.h"
|
|
|
|
#include <errno.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
|
|
#ifdef HAVE_MMAP
|
|
#include <sys/mman.h>
|
|
#endif
|
|
|
|
long page_size = 0;
|
|
|
|
#ifdef HAVE_MMAP
|
|
#define KEEP_PAGES_MAIN_MAX 256
|
|
#define KEEP_PAGES_MAIN_MIN 8
|
|
#define CLEANUP_PAGES_BULK 256
|
|
|
|
STATIC_ASSERT(KEEP_PAGES_MAIN_MIN * 4 < KEEP_PAGES_MAIN_MAX);
|
|
|
|
static _Bool use_fake = 0;
|
|
|
|
#if DEBUGGING
|
|
struct free_page {
|
|
node unused[42];
|
|
node n;
|
|
};
|
|
#else
|
|
struct free_page {
|
|
node n;
|
|
};
|
|
#endif
|
|
|
|
#define EP_POS_MAX ((page_size - OFFSETOF(struct empty_pages, pages)) / sizeof (void *))
|
|
|
|
struct empty_pages {
|
|
node n;
|
|
uint pos;
|
|
void *pages[0];
|
|
};
|
|
|
|
struct free_pages {
|
|
list pages; /* List of (struct free_page) keeping free pages without releasing them (hot) */
|
|
list empty; /* List of (struct empty_pages) keeping invalidated pages mapped for us (cold) */
|
|
u16 min, max; /* Minimal and maximal number of free pages kept */
|
|
uint cnt; /* Number of free pages in list */
|
|
event cleanup;
|
|
};
|
|
|
|
static void global_free_pages_cleanup_event(void *);
|
|
static void *alloc_cold_page(void);
|
|
|
|
static struct free_pages global_free_pages = {
|
|
.min = KEEP_PAGES_MAIN_MIN,
|
|
.max = KEEP_PAGES_MAIN_MAX,
|
|
.cleanup = { .hook = global_free_pages_cleanup_event },
|
|
};
|
|
|
|
uint *pages_kept = &global_free_pages.cnt;
|
|
|
|
static void *
|
|
alloc_sys_page(void)
|
|
{
|
|
void *ptr = mmap(NULL, page_size, PROT_WRITE | PROT_READ, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
|
|
if (ptr == MAP_FAILED)
|
|
bug("mmap(%lu) failed: %m", page_size);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
extern int shutting_down; /* Shutdown requested. */
|
|
|
|
#else // ! HAVE_MMAP
|
|
#define use_fake 1
|
|
#endif
|
|
|
|
void *
|
|
alloc_page(void)
|
|
{
|
|
/* If the system page allocator is goofy, we use posix_memalign to get aligned blocks of memory. */
|
|
if (use_fake)
|
|
{
|
|
void *ptr = NULL;
|
|
int err = posix_memalign(&ptr, page_size, page_size);
|
|
|
|
if (err || !ptr)
|
|
bug("posix_memalign(%lu) failed", (long unsigned int) page_size);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
#ifdef HAVE_MMAP
|
|
struct free_pages *fps = &global_free_pages;
|
|
|
|
/* If there is any free page kept hot, we use it. */
|
|
if (fps->cnt)
|
|
{
|
|
struct free_page *fp = SKIP_BACK(struct free_page, n, HEAD(fps->pages));
|
|
rem_node(&fp->n);
|
|
|
|
/* If the hot-free-page cache is getting short, request the cleanup routine to replenish the cache */
|
|
if ((--fps->cnt < fps->min) && !shutting_down)
|
|
ev_schedule(&fps->cleanup);
|
|
|
|
return fp;
|
|
}
|
|
else
|
|
return alloc_cold_page();
|
|
}
|
|
|
|
static void *
|
|
alloc_cold_page(void)
|
|
{
|
|
struct free_pages *fps = &global_free_pages;
|
|
|
|
/* If there is any free page kept cold, we use that. */
|
|
if (!EMPTY_LIST(fps->empty))
|
|
{
|
|
struct empty_pages *ep = HEAD(fps->empty);
|
|
|
|
/* Either the keeper page contains at least one cold page pointer, return that */
|
|
if (ep->pos)
|
|
return ep->pages[--ep->pos];
|
|
|
|
/* Or the keeper page has no more cold page pointer, return the keeper page */
|
|
rem_node(&ep->n);
|
|
return ep;
|
|
}
|
|
|
|
/* And in the worst case, allocate a new page by mmap() */
|
|
return alloc_sys_page();
|
|
#endif
|
|
}
|
|
|
|
void
|
|
free_page(void *ptr)
|
|
{
|
|
/* If the system page allocator is goofy, we just free the block and care no more. */
|
|
if (use_fake)
|
|
{
|
|
free(ptr);
|
|
return;
|
|
}
|
|
|
|
#ifdef HAVE_MMAP
|
|
struct free_pages *fps = &global_free_pages;
|
|
struct free_page *fp = ptr;
|
|
|
|
/* Otherwise, we add the free page to the hot-free-page list */
|
|
fp->n = (node) {};
|
|
add_tail(&fps->pages, &fp->n);
|
|
|
|
/* And if there are too many hot free pages, we ask for page cleanup */
|
|
if ((++fps->cnt > fps->max) && !shutting_down)
|
|
ev_schedule(&fps->cleanup);
|
|
#endif
|
|
}
|
|
|
|
#ifdef HAVE_MMAP
|
|
static void
|
|
global_free_pages_cleanup_event(void *data UNUSED)
|
|
{
|
|
/* Cleanup on shutdown is ignored. All pages may be kept hot, OS will take care. */
|
|
if (shutting_down)
|
|
return;
|
|
|
|
struct free_pages *fps = &global_free_pages;
|
|
|
|
/* Cleanup may get called when hot free page cache is short of pages. Replenishing. */
|
|
while (fps->cnt / 2 < fps->min)
|
|
free_page(alloc_cold_page());
|
|
|
|
/* Or the hot free page cache is too big. Moving some pages to the cold free page cache. */
|
|
for (int limit = CLEANUP_PAGES_BULK; limit && (fps->cnt > fps->max / 2); fps->cnt--, limit--)
|
|
{
|
|
struct free_page *fp = SKIP_BACK(struct free_page, n, TAIL(fps->pages));
|
|
rem_node(&fp->n);
|
|
|
|
/* Empty pages are stored as pointers. To store them, we need a pointer block. */
|
|
struct empty_pages *ep;
|
|
if (EMPTY_LIST(fps->empty) || ((ep = HEAD(fps->empty))->pos == EP_POS_MAX))
|
|
{
|
|
/* There is either no pointer block or the last block is full. We use this block as a pointer block. */
|
|
ep = (struct empty_pages *) fp;
|
|
*ep = (struct empty_pages) {};
|
|
add_head(&fps->empty, &ep->n);
|
|
}
|
|
else
|
|
{
|
|
/* We store this block as a pointer into the first free place
|
|
* and tell the OS that the underlying memory is trash. */
|
|
ep->pages[ep->pos++] = fp;
|
|
if (madvise(fp, page_size,
|
|
#ifdef CONFIG_MADV_DONTNEED_TO_FREE
|
|
MADV_DONTNEED
|
|
#else
|
|
MADV_FREE
|
|
#endif
|
|
) < 0)
|
|
bug("madvise(%p) failed: %m", fp);
|
|
}
|
|
}
|
|
|
|
/* If the hot free page cleanup hit the limit, re-schedule this routine
|
|
* to allow for other routines to run. */
|
|
if (fps->cnt > fps->max)
|
|
ev_schedule(&fps->cleanup);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
resource_sys_init(void)
|
|
{
|
|
#ifdef HAVE_MMAP
|
|
ASSERT_DIE(global_free_pages.cnt == 0);
|
|
|
|
/* Check what page size the system supports */
|
|
if (!(page_size = sysconf(_SC_PAGESIZE)))
|
|
die("System page size must be non-zero");
|
|
|
|
if ((u64_popcount(page_size) == 1) && (page_size >= (1 << 10)) && (page_size <= (1 << 18)))
|
|
{
|
|
/* We assume that page size has only one bit and is between 1K and 256K (incl.).
|
|
* Otherwise, the assumptions in lib/slab.c (sl_head's num_full range) aren't met. */
|
|
|
|
struct free_pages *fps = &global_free_pages;
|
|
|
|
init_list(&fps->pages);
|
|
init_list(&fps->empty);
|
|
global_free_pages_cleanup_event(NULL);
|
|
return;
|
|
}
|
|
|
|
/* Too big or strange page, use the aligned allocator instead */
|
|
log(L_WARN "Got strange memory page size (%ld), using the aligned allocator instead", (s64) page_size);
|
|
use_fake = 1;
|
|
#endif
|
|
|
|
page_size = 4096;
|
|
}
|