mirror of
https://gitlab.nic.cz/labs/bird.git
synced 2024-11-09 20:58:44 +00:00
928a1cb034
The usage pattern implemented in allocator seems to be incompatible with transparent huge pages, as memory released using madvise(MADV_DONTNEED) with regular page size and alignment does not seem to trigger demotion of huge pages back to regular pages, even when significant number of pages is released. Even if demotion is triggered when system memory is low, it still breaks memory accounting.
258 lines
6.5 KiB
C
258 lines
6.5 KiB
C
/*
|
|
* BIRD Internet Routing Daemon -- Raw allocation
|
|
*
|
|
* (c) 2020 Maria Matejka <mq@ucw.cz>
|
|
*
|
|
* Can be freely distributed and used under the terms of the GNU GPL.
|
|
*/
|
|
|
|
#include "nest/bird.h"
|
|
#include "lib/resource.h"
|
|
#include "lib/lists.h"
|
|
#include "lib/event.h"
|
|
|
|
#include <errno.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
|
|
#ifdef HAVE_MMAP
|
|
#include <sys/mman.h>
|
|
#endif
|
|
|
|
#ifdef CONFIG_DISABLE_THP
|
|
#include <sys/prctl.h>
|
|
#endif
|
|
|
|
long page_size = 0;
|
|
|
|
#ifdef HAVE_MMAP
|
|
#define KEEP_PAGES_MAIN_MAX 256
|
|
#define KEEP_PAGES_MAIN_MIN 8
|
|
#define CLEANUP_PAGES_BULK 256
|
|
|
|
STATIC_ASSERT(KEEP_PAGES_MAIN_MIN * 4 < KEEP_PAGES_MAIN_MAX);
|
|
|
|
static _Bool use_fake = 0;
|
|
|
|
#if DEBUGGING
|
|
struct free_page {
|
|
node unused[42];
|
|
node n;
|
|
};
|
|
#else
|
|
struct free_page {
|
|
node n;
|
|
};
|
|
#endif
|
|
|
|
#define EP_POS_MAX ((page_size - OFFSETOF(struct empty_pages, pages)) / sizeof (void *))
|
|
|
|
struct empty_pages {
|
|
node n;
|
|
uint pos;
|
|
void *pages[0];
|
|
};
|
|
|
|
struct free_pages {
|
|
list pages; /* List of (struct free_page) keeping free pages without releasing them (hot) */
|
|
list empty; /* List of (struct empty_pages) keeping invalidated pages mapped for us (cold) */
|
|
u16 min, max; /* Minimal and maximal number of free pages kept */
|
|
uint cnt; /* Number of free pages in list */
|
|
event cleanup;
|
|
};
|
|
|
|
static void global_free_pages_cleanup_event(void *);
|
|
|
|
static struct free_pages global_free_pages = {
|
|
.min = KEEP_PAGES_MAIN_MIN,
|
|
.max = KEEP_PAGES_MAIN_MAX,
|
|
.cleanup = { .hook = global_free_pages_cleanup_event },
|
|
};
|
|
|
|
uint *pages_kept = &global_free_pages.cnt;
|
|
|
|
static void *
|
|
alloc_sys_page(void)
|
|
{
|
|
void *ptr = mmap(NULL, page_size, PROT_WRITE | PROT_READ, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
|
|
if (ptr == MAP_FAILED)
|
|
bug("mmap(%lu) failed: %m", page_size);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
extern int shutting_down; /* Shutdown requested. */
|
|
|
|
#else // ! HAVE_MMAP
|
|
#define use_fake 1
|
|
#endif
|
|
|
|
void *
|
|
alloc_page(void)
|
|
{
|
|
/* If the system page allocator is goofy, we use posix_memalign to get aligned blocks of memory. */
|
|
if (use_fake)
|
|
{
|
|
void *ptr = NULL;
|
|
int err = posix_memalign(&ptr, page_size, page_size);
|
|
|
|
if (err || !ptr)
|
|
bug("posix_memalign(%lu) failed", (long unsigned int) page_size);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
#ifdef HAVE_MMAP
|
|
struct free_pages *fps = &global_free_pages;
|
|
|
|
/* If there is any free page kept hot, we use it. */
|
|
if (fps->cnt)
|
|
{
|
|
struct free_page *fp = SKIP_BACK(struct free_page, n, HEAD(fps->pages));
|
|
rem_node(&fp->n);
|
|
|
|
/* If the hot-free-page cache is getting short, request the cleanup routine to replenish the cache */
|
|
if ((--fps->cnt < fps->min) && !shutting_down)
|
|
ev_schedule(&fps->cleanup);
|
|
|
|
return fp;
|
|
}
|
|
|
|
/* If there is any free page kept cold, we use that. */
|
|
if (!EMPTY_LIST(fps->empty))
|
|
{
|
|
struct empty_pages *ep = HEAD(fps->empty);
|
|
|
|
/* Either the keeper page contains at least one cold page pointer, return that */
|
|
if (ep->pos)
|
|
return ep->pages[--ep->pos];
|
|
|
|
/* Or the keeper page has no more cold page pointer, return the keeper page */
|
|
rem_node(&ep->n);
|
|
return ep;
|
|
}
|
|
|
|
/* And in the worst case, allocate a new page by mmap() */
|
|
return alloc_sys_page();
|
|
#endif
|
|
}
|
|
|
|
void
|
|
free_page(void *ptr)
|
|
{
|
|
/* If the system page allocator is goofy, we just free the block and care no more. */
|
|
if (use_fake)
|
|
{
|
|
free(ptr);
|
|
return;
|
|
}
|
|
|
|
#ifdef HAVE_MMAP
|
|
struct free_pages *fps = &global_free_pages;
|
|
struct free_page *fp = ptr;
|
|
|
|
/* Otherwise, we add the free page to the hot-free-page list */
|
|
fp->n = (node) {};
|
|
add_tail(&fps->pages, &fp->n);
|
|
|
|
/* And if there are too many hot free pages, we ask for page cleanup */
|
|
if ((++fps->cnt > fps->max) && !shutting_down)
|
|
ev_schedule(&fps->cleanup);
|
|
#endif
|
|
}
|
|
|
|
#ifdef HAVE_MMAP
|
|
static void
|
|
global_free_pages_cleanup_event(void *data UNUSED)
|
|
{
|
|
/* Cleanup on shutdown is ignored. All pages may be kept hot, OS will take care. */
|
|
if (shutting_down)
|
|
return;
|
|
|
|
struct free_pages *fps = &global_free_pages;
|
|
|
|
/* Cleanup may get called when hot free page cache is short of pages. Replenishing. */
|
|
while (fps->cnt / 2 < fps->min)
|
|
{
|
|
struct free_page *fp = alloc_sys_page();
|
|
fp->n = (node) {};
|
|
add_tail(&fps->pages, &fp->n);
|
|
fps->cnt++;
|
|
}
|
|
|
|
/* Or the hot free page cache is too big. Moving some pages to the cold free page cache. */
|
|
for (int limit = CLEANUP_PAGES_BULK; limit && (fps->cnt > fps->max / 2); fps->cnt--, limit--)
|
|
{
|
|
struct free_page *fp = SKIP_BACK(struct free_page, n, TAIL(fps->pages));
|
|
rem_node(&fp->n);
|
|
|
|
/* Empty pages are stored as pointers. To store them, we need a pointer block. */
|
|
struct empty_pages *ep;
|
|
if (EMPTY_LIST(fps->empty) || ((ep = HEAD(fps->empty))->pos == EP_POS_MAX))
|
|
{
|
|
/* There is either no pointer block or the last block is full. We use this block as a pointer block. */
|
|
ep = (struct empty_pages *) fp;
|
|
*ep = (struct empty_pages) {};
|
|
add_head(&fps->empty, &ep->n);
|
|
}
|
|
else
|
|
{
|
|
/* We store this block as a pointer into the first free place
|
|
* and tell the OS that the underlying memory is trash. */
|
|
ep->pages[ep->pos++] = fp;
|
|
if (madvise(fp, page_size,
|
|
#ifdef CONFIG_MADV_DONTNEED_TO_FREE
|
|
MADV_DONTNEED
|
|
#else
|
|
MADV_FREE
|
|
#endif
|
|
) < 0)
|
|
bug("madvise(%p) failed: %m", fp);
|
|
}
|
|
}
|
|
|
|
/* If the hot free page cleanup hit the limit, re-schedule this routine
|
|
* to allow for other routines to run. */
|
|
if (fps->cnt > fps->max)
|
|
ev_schedule(&fps->cleanup);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
resource_sys_init(void)
|
|
{
|
|
#ifdef CONFIG_DISABLE_THP
|
|
/* Disable transparent huge pages, they do not work properly with madvice(MADV_DONTNEED) */
|
|
if (prctl(PR_SET_THP_DISABLE, (unsigned long) 1, (unsigned long) 0, (unsigned long) 0, (unsigned long) 0) < 0)
|
|
die("prctl(PR_SET_THP_DISABLE) failed: %m");
|
|
#endif
|
|
|
|
#ifdef HAVE_MMAP
|
|
ASSERT_DIE(global_free_pages.cnt == 0);
|
|
|
|
/* Check what page size the system supports */
|
|
if (!(page_size = sysconf(_SC_PAGESIZE)))
|
|
die("System page size must be non-zero");
|
|
|
|
if ((u64_popcount(page_size) == 1) && (page_size >= (1 << 10)) && (page_size <= (1 << 18)))
|
|
{
|
|
/* We assume that page size has only one bit and is between 1K and 256K (incl.).
|
|
* Otherwise, the assumptions in lib/slab.c (sl_head's num_full range) aren't met. */
|
|
|
|
struct free_pages *fps = &global_free_pages;
|
|
|
|
init_list(&fps->pages);
|
|
init_list(&fps->empty);
|
|
global_free_pages_cleanup_event(NULL);
|
|
return;
|
|
}
|
|
|
|
/* Too big or strange page, use the aligned allocator instead */
|
|
log(L_WARN "Got strange memory page size (%ld), using the aligned allocator instead", (s64) page_size);
|
|
use_fake = 1;
|
|
#endif
|
|
|
|
page_size = 4096;
|
|
}
|