0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2025-01-15 05:21:54 +00:00
bird/proto/rpki/rpki.c
Ondrej Zajicek (work) 72163bd5f3 Nest: Allow modification of channels inherited from templates
Multiple definitions of same channels are forbidden, but inherited
channel can be redefined. In such case channel options are merged.
2018-01-09 18:42:22 +01:00

929 lines
26 KiB
C

/*
* BIRD -- The Resource Public Key Infrastructure (RPKI) to Router Protocol
*
* (c) 2015 CZ.NIC
* (c) 2015 Pavel Tvrdik <pawel.tvrdik@gmail.com>
*
* Using RTRlib: http://rpki.realmv6.org/
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
/**
* DOC: RPKI To Router (RPKI-RTR)
*
* The RPKI-RTR protocol is implemented in several files: |rpki.c| containing
* the routes handling, protocol logic, timer events, cache connection,
* reconfiguration, configuration and protocol glue with BIRD core, |packets.c|
* containing the RPKI packets handling and finally all transports files:
* |transport.c|, |tcp_transport.c| and |ssh_transport.c|.
*
* The |transport.c| is a middle layer and interface for each specific
* transport. Transport is a way how to wrap a communication with a cache
* server. There is supported an unprotected TCP transport and an encrypted
* SSHv2 transport. The SSH transport requires LibSSH library. LibSSH is
* loading dynamically using |dlopen()| function. SSH support is integrated in
* |sysdep/unix/io.c|. Each transport must implement an initialization
* function, an open function and a socket identification function. That's all.
*
* This implementation is based on the RTRlib (http://rpki.realmv6.org/). The
* BIRD takes over files |packets.c|, |rtr.c| (inside |rpki.c|), |transport.c|,
* |tcp_transport.c| and |ssh_transport.c| from RTRlib.
*
* A RPKI-RTR connection is described by a structure &rpki_cache. The main
* logic is located in |rpki_cache_change_state()| function. There is a state
* machine. The standard starting state flow looks like |Down| ~> |Connecting|
* ~> |Sync-Start| ~> |Sync-Running| ~> |Established| and then the last three
* states are periodically repeated.
*
* |Connecting| state establishes the transport connection. The state from a
* call |rpki_cache_change_state(CONNECTING)| to a call |rpki_connected_hook()|
*
* |Sync-Start| state starts with sending |Reset Query| or |Serial Query| and
* then waits for |Cache Response|. The state from |rpki_connected_hook()| to
* |rpki_handle_cache_response_pdu()|
*
* During |Sync-Running| BIRD receives data with IPv4/IPv6 Prefixes from cache
* server. The state starts from |rpki_handle_cache_response_pdu()| and ends
* in |rpki_handle_end_of_data_pdu()|.
*
* |Established| state means that BIRD has synced all data with cache server.
* Schedules a refresh timer event that invokes |Sync-Start|. Schedules Expire
* timer event and stops a Retry timer event.
*
* |Transport Error| state means that we have some troubles with a network
* connection. We cannot connect to a cache server or we wait too long for some
* expected PDU for received - |Cache Response| or |End of Data|. It closes
* current connection and schedules a Retry timer event.
*
* |Fatal Protocol Error| is occurred e.g. by received a bad Session ID. We
* restart a protocol, so all ROAs are flushed immediately.
*
* The RPKI-RTR protocol (RFC 6810 bis) defines configurable refresh, retry and
* expire intervals. For maintaining a connection are used timer events that
* are scheduled by |rpki_schedule_next_refresh()|,
* |rpki_schedule_next_retry()| and |rpki_schedule_next_expire()| functions.
*
* A Refresh timer event performs a sync of |Established| connection. So it
* shifts state to |Sync-Start|. If at the beginning of second call of a
* refresh event is connection in |Sync-Start| state then we didn't receive a
* |Cache Response| from a cache server and we invoke |Transport Error| state.
*
* A Retry timer event attempts to connect cache server. It is activated after
* |Transport Error| state and terminated by reaching |Established| state.
* If cache connection is still connecting to the cache server at the beginning
* of an event call then the Retry timer event invokes |Transport Error| state.
*
* An Expire timer event checks expiration of ROAs. If a last successful sync
* was more ago than the expire interval then the Expire timer event invokes a
* protocol restart thereby removes all ROAs learned from that cache server and
* continue trying to connect to cache server. The Expire event is activated
* by initial successful loading of ROAs, receiving End of Data PDU.
*
* A reconfiguration of cache connection works well without restarting when we
* change only intervals values.
*
* Supported standards:
* - RFC 6810 - main RPKI-RTR standard
* - RFC 6810 bis - an explicit timing parameters and protocol version number negotiation
*/
#include <stdlib.h>
#include <netdb.h>
#undef LOCAL_DEBUG
#include "rpki.h"
#include "lib/string.h"
#include "nest/cli.h"
/* Return values for reconfiguration functions */
#define NEED_RESTART 0
#define SUCCESSFUL_RECONF 1
static int rpki_open_connection(struct rpki_cache *cache);
static void rpki_close_connection(struct rpki_cache *cache);
static void rpki_schedule_next_refresh(struct rpki_cache *cache);
static void rpki_schedule_next_retry(struct rpki_cache *cache);
static void rpki_schedule_next_expire_check(struct rpki_cache *cache);
static void rpki_stop_refresh_timer_event(struct rpki_cache *cache);
static void rpki_stop_retry_timer_event(struct rpki_cache *cache);
static void rpki_stop_expire_timer_event(struct rpki_cache *cache);
/*
* Routes handling
*/
void
rpki_table_add_roa(struct rpki_cache *cache, struct channel *channel, const net_addr_union *pfxr)
{
struct rpki_proto *p = cache->p;
rta a0 = {
.src = p->p.main_source,
.source = RTS_RPKI,
.scope = SCOPE_UNIVERSE,
.dest = RTD_NONE,
};
rta *a = rta_lookup(&a0);
rte *e = rte_get_temp(a);
e->pflags = 0;
rte_update2(channel, &pfxr->n, e, a0.src);
}
void
rpki_table_remove_roa(struct rpki_cache *cache, struct channel *channel, const net_addr_union *pfxr)
{
struct rpki_proto *p = cache->p;
rte_update2(channel, &pfxr->n, NULL, p->p.main_source);
}
/*
* RPKI Protocol Logic
*/
static const char *str_cache_states[] = {
[RPKI_CS_CONNECTING] = "Connecting",
[RPKI_CS_ESTABLISHED] = "Established",
[RPKI_CS_RESET] = "Reseting",
[RPKI_CS_SYNC_START] = "Sync-Start",
[RPKI_CS_SYNC_RUNNING] = "Sync-Running",
[RPKI_CS_FAST_RECONNECT] = "Fast-Reconnect",
[RPKI_CS_NO_INCR_UPDATE_AVAIL]= "No-Increment-Update-Available",
[RPKI_CS_ERROR_NO_DATA_AVAIL] = "Cache-Error-No-Data-Available",
[RPKI_CS_ERROR_FATAL] = "Fatal-Protocol-Error",
[RPKI_CS_ERROR_TRANSPORT] = "Transport-Error",
[RPKI_CS_SHUTDOWN] = "Down"
};
/**
* rpki_cache_state_to_str - give a text representation of cache state
* @state: A cache state
*
* The function converts logic cache state into string.
*/
const char *
rpki_cache_state_to_str(enum rpki_cache_state state)
{
return str_cache_states[state];
}
/**
* rpki_start_cache - connect to a cache server
* @cache: RPKI connection instance
*
* This function is a high level method to kick up a connection to a cache server.
*/
static void
rpki_start_cache(struct rpki_cache *cache)
{
rpki_cache_change_state(cache, RPKI_CS_CONNECTING);
}
/**
* rpki_force_restart_proto - force shutdown and start protocol again
* @p: RPKI protocol instance
*
* This function calls shutdown and frees all protocol resources as well.
* After calling this function should be no operations with protocol data,
* they could be freed already.
*/
static void
rpki_force_restart_proto(struct rpki_proto *p)
{
if (p->cache)
{
CACHE_DBG(p->cache, "Connection object destroying");
}
/* Sign as freed */
p->cache = NULL;
proto_notify_state(&p->p, PS_DOWN);
}
/**
* rpki_cache_change_state - check and change cache state
* @cache: RPKI cache instance
* @new_state: suggested new state
*
* This function makes transitions between internal states.
* It represents the core of logic management of RPKI protocol.
* Cannot transit into the same state as cache is in already.
*/
void
rpki_cache_change_state(struct rpki_cache *cache, const enum rpki_cache_state new_state)
{
const enum rpki_cache_state old_state = cache->state;
if (old_state == new_state)
return;
cache->state = new_state;
CACHE_TRACE(D_EVENTS, cache, "Changing from %s to %s state", rpki_cache_state_to_str(old_state), rpki_cache_state_to_str(new_state));
switch (new_state)
{
case RPKI_CS_CONNECTING:
{
sock *sk = cache->tr_sock->sk;
if (sk == NULL || sk->fd < 0)
rpki_open_connection(cache);
else
rpki_cache_change_state(cache, RPKI_CS_SYNC_START);
rpki_schedule_next_retry(cache);
break;
}
case RPKI_CS_ESTABLISHED:
rpki_schedule_next_refresh(cache);
rpki_schedule_next_expire_check(cache);
rpki_stop_retry_timer_event(cache);
break;
case RPKI_CS_RESET:
/* Resetting cache connection. */
cache->request_session_id = 1;
cache->serial_num = 0;
rpki_cache_change_state(cache, RPKI_CS_SYNC_START);
break;
case RPKI_CS_SYNC_START:
/* Requesting for receive ROAs from a cache server. */
if (cache->request_session_id)
{
/* Send request for Session ID */
if (rpki_send_reset_query(cache) != RPKI_SUCCESS)
rpki_cache_change_state(cache, RPKI_CS_ERROR_TRANSPORT);
}
else
{
/* We have already a session_id. So send a Serial Query and start an incremental sync */
if (rpki_send_serial_query(cache) != RPKI_SUCCESS)
rpki_cache_change_state(cache, RPKI_CS_ERROR_TRANSPORT);
}
break;
case RPKI_CS_SYNC_RUNNING:
/* The state between Cache Response and End of Data. Only waiting for
* receiving all IP Prefix PDUs and finally a End of Data PDU. */
break;
case RPKI_CS_NO_INCR_UPDATE_AVAIL:
/* Server was unable to answer the last Serial Query and sent Cache Reset. */
rpki_cache_change_state(cache, RPKI_CS_RESET);
break;
case RPKI_CS_ERROR_NO_DATA_AVAIL:
/* No validation records are available on the cache server. */
rpki_cache_change_state(cache, RPKI_CS_RESET);
break;
case RPKI_CS_ERROR_FATAL:
/* Fatal protocol error occurred. */
rpki_force_restart_proto(cache->p);
break;
case RPKI_CS_ERROR_TRANSPORT:
/* Error on the transport socket occurred. */
rpki_close_connection(cache);
rpki_schedule_next_retry(cache);
rpki_stop_refresh_timer_event(cache);
break;
case RPKI_CS_FAST_RECONNECT:
/* Reconnect without any waiting period */
rpki_close_connection(cache);
rpki_cache_change_state(cache, RPKI_CS_CONNECTING);
break;
case RPKI_CS_SHUTDOWN:
bug("This isn't never really called.");
break;
};
}
/*
* RPKI Timer Events
*/
static void
rpki_schedule_next_refresh(struct rpki_cache *cache)
{
btime t = cache->refresh_interval S;
CACHE_DBG(cache, "after %t s", t);
tm_start(cache->refresh_timer, t);
}
static void
rpki_schedule_next_retry(struct rpki_cache *cache)
{
btime t = cache->retry_interval S;
CACHE_DBG(cache, "after %t s", t);
tm_start(cache->retry_timer, t);
}
static void
rpki_schedule_next_expire_check(struct rpki_cache *cache)
{
/* A minimum time to wait is 1 second */
btime t = cache->last_update + cache->expire_interval S - current_time();
t = MAX(t, 1 S);
CACHE_DBG(cache, "after %t s", t);
tm_start(cache->expire_timer, t);
}
static void
rpki_stop_refresh_timer_event(struct rpki_cache *cache)
{
CACHE_DBG(cache, "Stop");
tm_stop(cache->refresh_timer);
}
static void
rpki_stop_retry_timer_event(struct rpki_cache *cache)
{
CACHE_DBG(cache, "Stop");
tm_stop(cache->retry_timer);
}
static void UNUSED
rpki_stop_expire_timer_event(struct rpki_cache *cache)
{
CACHE_DBG(cache, "Stop");
tm_stop(cache->expire_timer);
}
static int
rpki_do_we_recv_prefix_pdu_in_last_seconds(struct rpki_cache *cache)
{
if (!cache->last_rx_prefix)
return 0;
return ((current_time() - cache->last_rx_prefix) <= 2 S);
}
/**
* rpki_refresh_hook - control a scheduling of downloading data from cache server
* @tm: refresh timer with cache connection instance in data
*
* This function is periodically called during &ESTABLISHED or &SYNC* state
* cache connection. The first refresh schedule is invoked after receiving a
* |End of Data| PDU and has run by some &ERROR is occurred.
*/
static void
rpki_refresh_hook(timer *tm)
{
struct rpki_cache *cache = tm->data;
CACHE_DBG(cache, "%s", rpki_cache_state_to_str(cache->state));
switch (cache->state)
{
case RPKI_CS_ESTABLISHED:
rpki_cache_change_state(cache, RPKI_CS_SYNC_START);
break;
case RPKI_CS_SYNC_START:
/* We sent Serial/Reset Query in last refresh hook call
* and didn't receive Cache Response yet. It is probably
* troubles with network. */
case RPKI_CS_SYNC_RUNNING:
/* We sent Serial/Reset Query in last refresh hook call
* and we got Cache Response but didn't get End-Of-Data yet.
* It could be a trouble with network or only too long synchronization. */
if (!rpki_do_we_recv_prefix_pdu_in_last_seconds(cache))
{
CACHE_TRACE(D_EVENTS, cache, "Sync takes more time than refresh interval %us, resetting connection", cache->refresh_interval);
rpki_cache_change_state(cache, RPKI_CS_ERROR_TRANSPORT);
}
break;
default:
break;
}
if (cache->state != RPKI_CS_SHUTDOWN && cache->state != RPKI_CS_ERROR_TRANSPORT)
rpki_schedule_next_refresh(cache);
else
rpki_stop_refresh_timer_event(cache);
}
/**
* rpki_retry_hook - control a scheduling of retrying connection to cache server
* @tm: retry timer with cache connection instance in data
*
* This function is periodically called during &ERROR* state cache connection.
* The first retry schedule is invoked after any &ERROR* state occurred and
* ends by reaching of &ESTABLISHED state again.
*/
static void
rpki_retry_hook(timer *tm)
{
struct rpki_cache *cache = tm->data;
CACHE_DBG(cache, "%s", rpki_cache_state_to_str(cache->state));
switch (cache->state)
{
case RPKI_CS_ESTABLISHED:
case RPKI_CS_SHUTDOWN:
break;
case RPKI_CS_CONNECTING:
case RPKI_CS_SYNC_START:
case RPKI_CS_SYNC_RUNNING:
if (!rpki_do_we_recv_prefix_pdu_in_last_seconds(cache))
{
/* We tried to establish a connection in last retry hook call and haven't done
* yet. It looks like troubles with network. We are aggressive here. */
CACHE_TRACE(D_EVENTS, cache, "Sync takes more time than retry interval %us, resetting connection.", cache->retry_interval);
rpki_cache_change_state(cache, RPKI_CS_ERROR_TRANSPORT);
}
break;
default:
rpki_cache_change_state(cache, RPKI_CS_CONNECTING);
break;
}
if (cache->state != RPKI_CS_ESTABLISHED)
rpki_schedule_next_retry(cache);
else
rpki_stop_retry_timer_event(cache);
}
/**
* rpki_expire_hook - control a expiration of ROA entries
* @tm: expire timer with cache connection instance in data
*
* This function is scheduled after received a |End of Data| PDU.
* A waiting interval is calculated dynamically by last update.
* If we reach an expiration time then we invoke a restarting
* of the protocol.
*/
static void
rpki_expire_hook(timer *tm)
{
struct rpki_cache *cache = tm->data;
if (!cache->last_update)
return;
CACHE_DBG(cache, "%s", rpki_cache_state_to_str(cache->state));
btime t = cache->last_update + cache->expire_interval S - current_time();
if (t <= 0)
{
CACHE_TRACE(D_EVENTS, cache, "All ROAs expired");
rpki_force_restart_proto(cache->p);
}
else
{
CACHE_DBG(cache, "Remains %t seconds to become ROAs obsolete", t);
rpki_schedule_next_expire_check(cache);
}
}
/**
* rpki_check_refresh_interval - check validity of refresh interval value
* @seconds: suggested value
*
* This function validates value and should return |NULL|.
* If the check doesn't pass then returns error message.
*/
const char *
rpki_check_refresh_interval(uint seconds)
{
if (seconds < 1)
return "Minimum allowed refresh interval is 1 second";
if (seconds > 86400)
return "Maximum allowed refresh interval is 86400 seconds";
return NULL;
}
/**
* rpki_check_retry_interval - check validity of retry interval value
* @seconds: suggested value
*
* This function validates value and should return |NULL|.
* If the check doesn't pass then returns error message.
*/
const char *
rpki_check_retry_interval(uint seconds)
{
if (seconds < 1)
return "Minimum allowed retry interval is 1 second";
if (seconds > 7200)
return "Maximum allowed retry interval is 7200 seconds";
return NULL;
}
/**
* rpki_check_expire_interval - check validity of expire interval value
* @seconds: suggested value
*
* This function validates value and should return |NULL|.
* If the check doesn't pass then returns error message.
*/
const char *
rpki_check_expire_interval(uint seconds)
{
if (seconds < 600)
return "Minimum allowed expire interval is 600 seconds";
if (seconds > 172800)
return "Maximum allowed expire interval is 172800 seconds";
return NULL;
}
/*
* RPKI Cache
*/
static struct rpki_cache *
rpki_init_cache(struct rpki_proto *p, struct rpki_config *cf)
{
pool *pool = rp_new(p->p.pool, cf->hostname);
struct rpki_cache *cache = mb_allocz(pool, sizeof(struct rpki_cache));
cache->pool = pool;
cache->p = p;
cache->state = RPKI_CS_SHUTDOWN;
cache->request_session_id = 1;
cache->version = RPKI_MAX_VERSION;
cache->refresh_interval = cf->refresh_interval;
cache->retry_interval = cf->retry_interval;
cache->expire_interval = cf->expire_interval;
cache->refresh_timer = tm_new_init(pool, &rpki_refresh_hook, cache, 0, 0);
cache->retry_timer = tm_new_init(pool, &rpki_retry_hook, cache, 0, 0);
cache->expire_timer = tm_new_init(pool, &rpki_expire_hook, cache, 0, 0);
cache->tr_sock = mb_allocz(pool, sizeof(struct rpki_tr_sock));
cache->tr_sock->cache = cache;
switch (cf->tr_config.type)
{
case RPKI_TR_TCP: rpki_tr_tcp_init(cache->tr_sock); break;
case RPKI_TR_SSH: rpki_tr_ssh_init(cache->tr_sock); break;
};
CACHE_DBG(cache, "Connection object created");
return cache;
}
/**
* rpki_get_cache_ident - give a text representation of cache server name
* @cache: RPKI connection instance
*
* The function converts cache connection into string.
*/
const char *
rpki_get_cache_ident(struct rpki_cache *cache)
{
return rpki_tr_ident(cache->tr_sock);
}
static int
rpki_open_connection(struct rpki_cache *cache)
{
CACHE_TRACE(D_EVENTS, cache, "Opening a connection");
if (rpki_tr_open(cache->tr_sock) == RPKI_TR_ERROR)
{
rpki_cache_change_state(cache, RPKI_CS_ERROR_TRANSPORT);
return RPKI_TR_ERROR;
}
return RPKI_TR_SUCCESS;
}
static void
rpki_close_connection(struct rpki_cache *cache)
{
CACHE_TRACE(D_EVENTS, cache, "Closing a connection");
rpki_tr_close(cache->tr_sock);
proto_notify_state(&cache->p->p, PS_START);
}
static int
rpki_shutdown(struct proto *P)
{
struct rpki_proto *p = (void *) P;
rpki_force_restart_proto(p);
/* Protocol memory pool will be automatically freed */
return PS_DOWN;
}
/*
* RPKI Reconfiguration
*/
static int
rpki_try_fast_reconnect(struct rpki_cache *cache)
{
if (cache->state == RPKI_CS_ESTABLISHED)
{
rpki_cache_change_state(cache, RPKI_CS_FAST_RECONNECT);
return SUCCESSFUL_RECONF;
}
return NEED_RESTART;
}
/**
* rpki_reconfigure_cache - a cache reconfiguration
* @p: RPKI protocol instance
* @cache: a cache connection
* @new: new RPKI configuration
* @old: old RPKI configuration
*
* This function reconfigures existing single cache server connection with new
* existing configuration. Generally, a change of time intervals could be
* reconfigured without restarting and all others changes requires a restart of
* protocol. Returns |NEED_TO_RESTART| or |SUCCESSFUL_RECONF|.
*/
static int
rpki_reconfigure_cache(struct rpki_proto *p UNUSED, struct rpki_cache *cache, struct rpki_config *new, struct rpki_config *old)
{
u8 try_fast_reconnect = 0;
if (strcmp(old->hostname, new->hostname) != 0)
{
CACHE_TRACE(D_EVENTS, cache, "Cache server address changed to %s", new->hostname);
return NEED_RESTART;
}
if (old->port != new->port)
{
CACHE_TRACE(D_EVENTS, cache, "Cache server port changed to %u", new->port);
return NEED_RESTART;
}
if (old->tr_config.type != new->tr_config.type)
{
CACHE_TRACE(D_EVENTS, cache, "Transport type changed");
return NEED_RESTART;
}
else if (new->tr_config.type == RPKI_TR_SSH)
{
struct rpki_tr_ssh_config *ssh_old = (void *) old->tr_config.spec;
struct rpki_tr_ssh_config *ssh_new = (void *) new->tr_config.spec;
if ((strcmp(ssh_old->bird_private_key, ssh_new->bird_private_key) != 0) ||
(strcmp(ssh_old->cache_public_key, ssh_new->cache_public_key) != 0) ||
(strcmp(ssh_old->user, ssh_new->user) != 0))
{
CACHE_TRACE(D_EVENTS, cache, "Settings of SSH transport configuration changed");
try_fast_reconnect = 1;
}
}
#define TEST_INTERVAL(name, Name) \
if (cache->name##_interval != new->name##_interval || \
old->keep_##name##_interval != new->keep_##name##_interval) \
{ \
cache->name##_interval = new->name##_interval; \
CACHE_TRACE(D_EVENTS, cache, #Name " interval changed to %u seconds %s", cache->name##_interval, (new->keep_##name##_interval ? "and keep it" : "")); \
try_fast_reconnect = 1; \
}
TEST_INTERVAL(refresh, Refresh);
TEST_INTERVAL(retry, Retry);
TEST_INTERVAL(expire, Expire);
#undef TEST_INTERVAL
if (try_fast_reconnect)
return rpki_try_fast_reconnect(cache);
return SUCCESSFUL_RECONF;
}
/**
* rpki_reconfigure - a protocol reconfiguration hook
* @P: a protocol instance
* @CF: a new protocol configuration
*
* This function reconfigures whole protocol.
* It sets new protocol configuration into a protocol structure.
* Returns |NEED_TO_RESTART| or |SUCCESSFUL_RECONF|.
*/
static int
rpki_reconfigure(struct proto *P, struct proto_config *CF)
{
struct rpki_proto *p = (void *) P;
struct rpki_config *new = (void *) CF;
struct rpki_config *old = (void *) p->p.cf;
struct rpki_cache *cache = p->cache;
if (!proto_configure_channel(&p->p, &p->roa4_channel, proto_cf_find_channel(CF, NET_ROA4)) ||
!proto_configure_channel(&p->p, &p->roa6_channel, proto_cf_find_channel(CF, NET_ROA6)))
return NEED_RESTART;
if (rpki_reconfigure_cache(p, cache, new, old) != SUCCESSFUL_RECONF)
return NEED_RESTART;
return SUCCESSFUL_RECONF;
}
/*
* RPKI Protocol Glue
*/
static struct proto *
rpki_init(struct proto_config *CF)
{
struct proto *P = proto_new(CF);
struct rpki_proto *p = (void *) P;
proto_configure_channel(&p->p, &p->roa4_channel, proto_cf_find_channel(CF, NET_ROA4));
proto_configure_channel(&p->p, &p->roa6_channel, proto_cf_find_channel(CF, NET_ROA6));
return P;
}
static int
rpki_start(struct proto *P)
{
struct rpki_proto *p = (void *) P;
struct rpki_config *cf = (void *) P->cf;
p->cache = rpki_init_cache(p, cf);
rpki_start_cache(p->cache);
return PS_START;
}
static void
rpki_get_status(struct proto *P, byte *buf)
{
struct rpki_proto *p = (struct rpki_proto *) P;
if (P->proto_state == PS_DOWN)
{
*buf = 0;
return;
}
if (p->cache)
bsprintf(buf, "%s", rpki_cache_state_to_str(p->cache->state));
else
bsprintf(buf, "No cache server configured");
}
static void
rpki_show_proto_info_timer(const char *name, uint num, timer *t)
{
if (tm_active(t))
cli_msg(-1006, " %-16s: %t/%u", name, tm_remains(t), num);
else
cli_msg(-1006, " %-16s: ---", name);
}
static void
rpki_show_proto_info(struct proto *P)
{
struct rpki_proto *p = (struct rpki_proto *) P;
struct rpki_config *cf = (void *) p->p.cf;
struct rpki_cache *cache = p->cache;
if (P->proto_state == PS_DOWN)
return;
if (cache)
{
const char *transport_name = "---";
switch (cf->tr_config.type)
{
case RPKI_TR_SSH: transport_name = "SSHv2"; break;
case RPKI_TR_TCP: transport_name = "Unprotected over TCP"; break;
};
cli_msg(-1006, " Cache server: %s", rpki_get_cache_ident(cache));
cli_msg(-1006, " Status: %s", rpki_cache_state_to_str(cache->state));
cli_msg(-1006, " Transport: %s", transport_name);
cli_msg(-1006, " Protocol version: %u", cache->version);
if (cache->request_session_id)
cli_msg(-1006, " Session ID: ---");
else
cli_msg(-1006, " Session ID: %u", cache->session_id);
if (cache->last_update)
{
cli_msg(-1006, " Serial number: %u", cache->serial_num);
cli_msg(-1006, " Last update: before %t s", current_time() - cache->last_update);
}
else
{
cli_msg(-1006, " Serial number: ---");
cli_msg(-1006, " Last update: ---");
}
rpki_show_proto_info_timer("Refresh timer", cache->refresh_interval, cache->refresh_timer);
rpki_show_proto_info_timer("Retry timer", cache->retry_interval, cache->retry_timer);
rpki_show_proto_info_timer("Expire timer", cache->expire_interval, cache->expire_timer);
if (p->roa4_channel)
channel_show_info(p->roa4_channel);
else
cli_msg(-1006, " No roa4 channel");
if (p->roa6_channel)
channel_show_info(p->roa6_channel);
else
cli_msg(-1006, " No roa6 channel");
}
}
/*
* RPKI Protocol Configuration
*/
/**
* rpki_check_config - check and complete configuration of RPKI protocol
* @cf: RPKI configuration
*
* This function is called at the end of parsing RPKI protocol configuration.
*/
void
rpki_check_config(struct rpki_config *cf)
{
/* Do not check templates at all */
if (cf->c.class == SYM_TEMPLATE)
return;
if (ipa_zero(cf->ip) && cf->hostname == NULL)
cf_error("IP address or hostname of cache server must be set");
/* Set default transport type */
if (cf->tr_config.spec == NULL)
{
cf->tr_config.spec = cfg_allocz(sizeof(struct rpki_tr_tcp_config));
cf->tr_config.type = RPKI_TR_TCP;
}
if (cf->port == 0)
{
/* Set default port numbers */
switch (cf->tr_config.type)
{
case RPKI_TR_SSH:
cf->port = RPKI_SSH_PORT;
break;
default:
cf->port = RPKI_TCP_PORT;
}
}
}
static void
rpki_postconfig(struct proto_config *CF)
{
/* Define default channel */
if (EMPTY_LIST(CF->channels))
channel_config_new(NULL, net_label[CF->net_type], CF->net_type, CF);
}
static void
rpki_copy_config(struct proto_config *dest UNUSED, struct proto_config *src UNUSED)
{
/* FIXME: Should copy transport */
}
struct protocol proto_rpki = {
.name = "RPKI",
.template = "rpki%d",
.preference = DEF_PREF_RPKI,
.proto_size = sizeof(struct rpki_proto),
.config_size = sizeof(struct rpki_config),
.init = rpki_init,
.start = rpki_start,
.postconfig = rpki_postconfig,
.channel_mask = (NB_ROA4 | NB_ROA6),
.show_proto_info = rpki_show_proto_info,
.shutdown = rpki_shutdown,
.copy_config = rpki_copy_config,
.reconfigure = rpki_reconfigure,
.get_status = rpki_get_status,
};