0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2024-11-15 07:38:43 +00:00
bird/nest/proto.c
2023-10-03 11:26:46 +02:00

2818 lines
71 KiB
C

/*
* BIRD -- Protocols
*
* (c) 1998--2000 Martin Mares <mj@ucw.cz>
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
#undef LOCAL_DEBUG
#include "nest/bird.h"
#include "nest/protocol.h"
#include "lib/resource.h"
#include "lib/lists.h"
#include "lib/event.h"
#include "lib/timer.h"
#include "lib/string.h"
#include "conf/conf.h"
#include "nest/rt.h"
#include "nest/iface.h"
#include "nest/cli.h"
#include "filter/filter.h"
#include "filter/f-inst.h"
pool *proto_pool;
static TLIST_LIST(proto) global_proto_list;
static list STATIC_LIST_INIT(protocol_list);
#define CD(c, msg, args...) ({ if (c->debug & D_STATES) log(L_TRACE "%s.%s: " msg, c->proto->name, c->name ?: "?", ## args); })
#define PD(p, msg, args...) ({ if (p->debug & D_STATES) log(L_TRACE "%s: " msg, p->name, ## args); })
static timer *gr_wait_timer;
#define GRS_NONE 0
#define GRS_INIT 1
#define GRS_ACTIVE 2
#define GRS_DONE 3
static int graceful_restart_state;
static u32 graceful_restart_locks;
static char *p_states[] = { "DOWN", "START", "UP", "STOP" };
static char *c_states[] = { "DOWN", "START", "UP", "STOP", "RESTART" };
extern struct protocol proto_unix_iface;
static void channel_request_reload(struct channel *c);
static void proto_rethink_goal(struct proto *p);
static char *proto_state_name(struct proto *p);
static void channel_init_limit(struct channel *c, struct limit *l, int dir, struct channel_limit *cf);
static void channel_update_limit(struct channel *c, struct limit *l, int dir, struct channel_limit *cf);
static void channel_reset_limit(struct channel *c, struct limit *l, int dir);
static void channel_feed_end(struct channel *c);
static void channel_stop_export(struct channel *c);
static void channel_export_stopped(struct rt_export_request *req);
static void channel_refeed_stopped(struct rt_export_request *req);
static void channel_check_stopped(struct channel *c);
static inline int proto_is_done(struct proto *p)
{ return (p->proto_state == PS_DOWN) && proto_is_inactive(p); }
static inline int channel_is_active(struct channel *c)
{ return (c->channel_state != CS_DOWN); }
static inline int channel_reloadable(struct channel *c)
{ return c->proto->reload_routes && c->reloadable; }
static inline void
channel_log_state_change(struct channel *c)
{
CD(c, "State changed to %s", c_states[c->channel_state]);
}
void
channel_import_log_state_change(struct rt_import_request *req, u8 state)
{
struct channel *c = SKIP_BACK(struct channel, in_req, req);
CD(c, "Channel import state changed to %s", rt_import_state_name(state));
}
void
channel_export_log_state_change(struct rt_export_request *req, u8 state)
{
struct channel *c = SKIP_BACK(struct channel, out_req, req);
CD(c, "Channel export state changed to %s", rt_export_state_name(state));
switch (state)
{
case TES_FEEDING:
if (c->proto->feed_begin)
c->proto->feed_begin(c);
break;
case TES_READY:
channel_feed_end(c);
break;
}
}
void
channel_refeed_log_state_change(struct rt_export_request *req, u8 state)
{
struct channel *c = SKIP_BACK(struct channel, refeed_req, req);
CD(c, "Channel export state changed to %s", rt_export_state_name(state));
switch (state)
{
case TES_FEEDING:
if (c->proto->feed_begin)
c->proto->feed_begin(c);
break;
case TES_READY:
rt_stop_export(req, channel_refeed_stopped);
break;
}
}
static void
channel_dump_import_req(struct rt_import_request *req)
{
struct channel *c = SKIP_BACK(struct channel, in_req, req);
debug(" Channel %s.%s import request %p\n", c->proto->name, c->name, req);
}
static void
channel_dump_export_req(struct rt_export_request *req)
{
struct channel *c = SKIP_BACK(struct channel, out_req, req);
debug(" Channel %s.%s export request %p\n", c->proto->name, c->name, req);
}
static void
channel_dump_refeed_req(struct rt_export_request *req)
{
struct channel *c = SKIP_BACK(struct channel, refeed_req, req);
debug(" Channel %s.%s refeed request %p\n", c->proto->name, c->name, req);
}
static void
channel_rpe_mark_seen_export(struct rt_export_request *req, struct rt_pending_export *rpe)
{
channel_rpe_mark_seen(SKIP_BACK(struct channel, out_req, req), rpe);
}
static void
channel_rpe_mark_seen_refeed(struct rt_export_request *req, struct rt_pending_export *rpe)
{
channel_rpe_mark_seen(SKIP_BACK(struct channel, refeed_req, req), rpe);
}
struct channel *
channel_from_export_request(struct rt_export_request *req)
{
if (req->dump_req == channel_dump_export_req)
return SKIP_BACK(struct channel, out_req, req);
if (req->dump_req == channel_dump_refeed_req)
return SKIP_BACK(struct channel, refeed_req, req);
bug("Garbled channel export request");
}
static void
proto_log_state_change(struct proto *p)
{
if (p->debug & D_STATES)
{
char *name = proto_state_name(p);
if (name != p->last_state_name_announced)
{
p->last_state_name_announced = name;
PD(p, "State changed to %s", proto_state_name(p));
}
}
else
p->last_state_name_announced = NULL;
}
struct channel_config *
proto_cf_find_channel(struct proto_config *pc, uint net_type)
{
struct channel_config *cc;
WALK_LIST(cc, pc->channels)
if (cc->net_type == net_type)
return cc;
return NULL;
}
/**
* proto_find_channel_by_table - find channel connected to a routing table
* @p: protocol instance
* @t: routing table
*
* Returns pointer to channel or NULL
*/
struct channel *
proto_find_channel_by_table(struct proto *p, rtable *t)
{
struct channel *c;
WALK_LIST(c, p->channels)
if (c->table == t)
return c;
return NULL;
}
/**
* proto_find_channel_by_name - find channel by its name
* @p: protocol instance
* @n: channel name
*
* Returns pointer to channel or NULL
*/
struct channel *
proto_find_channel_by_name(struct proto *p, const char *n)
{
struct channel *c;
WALK_LIST(c, p->channels)
if (!strcmp(c->name, n))
return c;
return NULL;
}
/**
* proto_add_channel - connect protocol to a routing table
* @p: protocol instance
* @cf: channel configuration
*
* This function creates a channel between the protocol instance @p and the
* routing table specified in the configuration @cf, making the protocol hear
* all changes in the table and allowing the protocol to update routes in the
* table.
*
* The channel is linked in the protocol channel list and when active also in
* the table channel list. Channels are allocated from the global resource pool
* (@proto_pool) and they are automatically freed when the protocol is removed.
*/
struct channel *
proto_add_channel(struct proto *p, struct channel_config *cf)
{
struct channel *c = mb_allocz(proto_pool, cf->class->channel_size);
c->name = cf->name;
c->class = cf->class;
c->proto = p;
c->table = cf->table->table;
rt_lock_table(c->table);
c->in_filter = cf->in_filter;
c->out_filter = cf->out_filter;
c->out_subprefix = cf->out_subprefix;
c->feed_block_size = cf->feed_block_size;
channel_init_limit(c, &c->rx_limit, PLD_RX, &cf->rx_limit);
channel_init_limit(c, &c->in_limit, PLD_IN, &cf->in_limit);
channel_init_limit(c, &c->out_limit, PLD_OUT, &cf->out_limit);
c->net_type = cf->net_type;
c->ra_mode = cf->ra_mode;
c->preference = cf->preference;
c->debug = cf->debug;
c->merge_limit = cf->merge_limit;
c->in_keep = cf->in_keep;
c->rpki_reload = cf->rpki_reload;
c->channel_state = CS_DOWN;
c->last_state_change = current_time();
c->reloadable = 1;
init_list(&c->roa_subscriptions);
CALL(c->class->init, c, cf);
add_tail(&p->channels, &c->n);
CD(c, "Connected to table %s", c->table->name);
return c;
}
void
proto_remove_channel(struct proto *p UNUSED, struct channel *c)
{
ASSERT(c->channel_state == CS_DOWN);
CD(c, "Removed", c->name);
rt_unlock_table(c->table);
rem_node(&c->n);
mb_free(c);
}
static void
proto_start_channels(struct proto *p)
{
struct channel *c;
WALK_LIST(c, p->channels)
if (!c->disabled)
channel_set_state(c, CS_UP);
}
static void
proto_pause_channels(struct proto *p)
{
struct channel *c;
WALK_LIST(c, p->channels)
if (!c->disabled && channel_is_active(c))
channel_set_state(c, CS_PAUSE);
}
static void
proto_stop_channels(struct proto *p)
{
struct channel *c;
WALK_LIST(c, p->channels)
if (!c->disabled && channel_is_active(c))
channel_set_state(c, CS_STOP);
}
static void
proto_remove_channels(struct proto *p)
{
struct channel *c;
WALK_LIST_FIRST(c, p->channels)
proto_remove_channel(p, c);
}
struct roa_subscription {
node roa_node;
struct settle settle;
struct channel *c;
struct rt_export_request req;
struct f_trie* trie;
struct channel_feeding_request cfr[2];
};
static void
channel_roa_in_changed(struct settle *se)
{
struct roa_subscription *s = SKIP_BACK(struct roa_subscription, settle, se);
struct channel *c = s->c;
CD(c, "Reload triggered by RPKI change");
channel_request_reload(c);
}
static void
channel_roa_out_changed(struct settle *se)
{
struct roa_subscription *s = SKIP_BACK(struct roa_subscription, settle, se);
struct channel *c = s->c;
CD(c, "Feeding triggered by RPKI change");
/* TODO feed by trie */
/* Refeed already pending */
if ((s->cfr[0].state == CFRS_PENDING) || (s->cfr[1].state == CFRS_PENDING))
return;
/* First refeed inactive */
if (s->cfr[0].state == CFRS_INACTIVE)
{
s->cfr[0].type = CFRT_AUXILIARY;
channel_request_feeding(c, &s->cfr[0]);
}
else
{
/* Second refeed MUST be inactive */
ASSERT_DIE(s->cfr[1].state == CFRS_INACTIVE);
s->cfr[1].type = CFRT_AUXILIARY;
channel_request_feeding(c, &s->cfr[1]);
}
}
static void
channel_export_one_roa(struct rt_export_request *req, const net_addr *net, struct rt_pending_export *first)
{
struct roa_subscription *s = SKIP_BACK(struct roa_subscription, req, req);
switch (net->type)
{
case NET_ROA4:
trie_add_prefix(s->trie, net, net_pxlen(net), 32);
break;
case NET_ROA6:
trie_add_prefix(s->trie, net, net_pxlen(net), 128);
break;
default:
bug("ROA table sent us a non-roa export");
}
settle_kick(&s->settle, s->c->proto->loop);
rpe_mark_seen_all(req->hook, first, NULL, NULL);
}
static void
channel_dump_roa_req(struct rt_export_request *req)
{
struct roa_subscription *s = SKIP_BACK(struct roa_subscription, req, req);
struct channel *c = s->c;
struct rtable_private *tab = SKIP_BACK(struct rtable_private, exporter.e, req->hook->table);
debug(" Channel %s.%s ROA %s change notifier from table %s request %p\n",
c->proto->name, c->name,
(s->settle.hook == channel_roa_in_changed) ? "import" : "export",
tab->name, req);
}
static int
channel_roa_is_subscribed(struct channel *c, rtable *tab, int dir)
{
void (*hook)(struct settle *) =
dir ? channel_roa_in_changed : channel_roa_out_changed;
struct roa_subscription *s;
node *n;
WALK_LIST2(s, n, c->roa_subscriptions, roa_node)
if ((tab == SKIP_BACK(rtable, priv.exporter.e, s->req.hook->table))
&& (s->settle.hook == hook))
return 1;
return 0;
}
static void
channel_roa_subscribe(struct channel *c, rtable *tab, int dir)
{
if (channel_roa_is_subscribed(c, tab, dir))
return;
struct roa_subscription *s = mb_allocz(c->proto->pool, sizeof(struct roa_subscription));
*s = (struct roa_subscription) {
.settle = SETTLE_INIT(&c->roa_settle, dir ? channel_roa_in_changed : channel_roa_out_changed, NULL),
.c = c,
.trie = f_new_trie(lp_new(c->proto->pool), 0),
.req = {
.name = mb_sprintf(c->proto->pool, "%s.%s.roa-%s.%s",
c->proto->name, c->name, dir ? "in" : "out", tab->name),
.list = proto_work_list(c->proto),
.pool = c->proto->pool,
.trace_routes = c->debug | c->proto->debug,
.dump_req = channel_dump_roa_req,
.export_one = channel_export_one_roa,
},
};
add_tail(&c->roa_subscriptions, &s->roa_node);
rt_request_export(tab, &s->req);
}
static void
channel_roa_unsubscribed(struct rt_export_request *req)
{
struct roa_subscription *s = SKIP_BACK(struct roa_subscription, req, req);
struct channel *c = s->c;
rem_node(&s->roa_node);
mb_free(s);
channel_check_stopped(c);
}
static void
channel_roa_unsubscribe(struct roa_subscription *s)
{
rfree(s->trie->lp);
rt_stop_export(&s->req, channel_roa_unsubscribed);
settle_cancel(&s->settle);
}
static void
channel_roa_subscribe_filter(struct channel *c, int dir)
{
const struct filter *f = dir ? c->in_filter : c->out_filter;
rtable *tab;
int valid = 1, found = 0;
if ((f == FILTER_ACCEPT) || (f == FILTER_REJECT))
return;
/* No automatic reload for non-reloadable channels */
if (dir && !channel_reloadable(c))
valid = 0;
#ifdef CONFIG_BGP
/* No automatic reload for BGP channels without in_table / out_table */
if (c->class == &channel_bgp)
valid = dir ? ((c->in_keep & RIK_PREFILTER) == RIK_PREFILTER) : !!c->out_table;
#endif
struct filter_iterator fit;
FILTER_ITERATE_INIT(&fit, f->root, c->proto->pool);
FILTER_ITERATE(&fit, fi)
{
switch (fi->fi_code)
{
case FI_ROA_CHECK:
tab = fi->i_FI_ROA_CHECK.rtc->table;
if (valid) channel_roa_subscribe(c, tab, dir);
found = 1;
break;
default:
break;
}
}
FILTER_ITERATE_END;
FILTER_ITERATE_CLEANUP(&fit);
if (!valid && found)
log(L_WARN "%s.%s: Automatic RPKI reload not active for %s",
c->proto->name, c->name ?: "?", dir ? "import" : "export");
}
static void
channel_roa_unsubscribe_all(struct channel *c)
{
struct roa_subscription *s;
node *n, *x;
WALK_LIST2_DELSAFE(s, n, x, c->roa_subscriptions, roa_node)
channel_roa_unsubscribe(s);
}
static void
channel_start_import(struct channel *c)
{
if (c->in_req.hook)
{
log(L_WARN "%s.%s: Attempted to start channel's already started import", c->proto->name, c->name);
return;
}
c->in_req = (struct rt_import_request) {
.name = mb_sprintf(c->proto->pool, "%s.%s", c->proto->name, c->name),
.trace_routes = c->debug | c->proto->debug,
.list = proto_work_list(c->proto),
.dump_req = channel_dump_import_req,
.log_state_change = channel_import_log_state_change,
.preimport = channel_preimport,
};
ASSERT(c->channel_state == CS_UP);
channel_reset_limit(c, &c->rx_limit, PLD_RX);
channel_reset_limit(c, &c->in_limit, PLD_IN);
memset(&c->import_stats, 0, sizeof(struct channel_import_stats));
DBG("%s.%s: Channel start import req=%p\n", c->proto->name, c->name, &c->in_req);
rt_request_import(c->table, &c->in_req);
}
static void
channel_start_export(struct channel *c)
{
if (c->out_req.hook)
{
log(L_WARN "%s.%s: Attempted to start channel's already started export", c->proto->name, c->name);
return;
}
ASSERT(c->channel_state == CS_UP);
c->out_req = (struct rt_export_request) {
.name = mb_sprintf(c->proto->pool, "%s.%s", c->proto->name, c->name),
.list = proto_work_list(c->proto),
.pool = c->proto->pool,
.feed_block_size = c->feed_block_size,
.prefilter = {
.mode = c->out_subprefix ? TE_ADDR_IN : TE_ADDR_NONE,
.addr = c->out_subprefix,
},
.trace_routes = c->debug | c->proto->debug,
.dump_req = channel_dump_export_req,
.log_state_change = channel_export_log_state_change,
.mark_seen = channel_rpe_mark_seen_export,
};
bmap_init(&c->export_map, c->proto->pool, 16);
bmap_init(&c->export_reject_map, c->proto->pool, 16);
channel_reset_limit(c, &c->out_limit, PLD_OUT);
memset(&c->export_stats, 0, sizeof(struct channel_export_stats));
switch (c->ra_mode) {
case RA_OPTIMAL:
c->out_req.export_one = rt_notify_optimal;
break;
case RA_ANY:
c->out_req.export_one = rt_notify_any;
c->out_req.export_bulk = rt_feed_any;
break;
case RA_ACCEPTED:
c->out_req.export_bulk = rt_notify_accepted;
break;
case RA_MERGED:
c->out_req.export_bulk = rt_notify_merged;
break;
default:
bug("Unknown route announcement mode");
}
c->refeed_req = c->out_req;
c->refeed_req.name = mb_sprintf(c->proto->pool, "%s.%s.refeed", c->proto->name, c->name);
c->refeed_req.dump_req = channel_dump_refeed_req;
c->refeed_req.log_state_change = channel_refeed_log_state_change;
c->refeed_req.mark_seen = channel_rpe_mark_seen_refeed;
DBG("%s.%s: Channel start export req=%p\n", c->proto->name, c->name, &c->out_req);
rt_request_export(c->table, &c->out_req);
}
static void
channel_check_stopped(struct channel *c)
{
switch (c->channel_state)
{
case CS_STOP:
if (!EMPTY_LIST(c->roa_subscriptions) || c->out_req.hook || c->refeed_req.hook || c->in_req.hook || c->reload_req.hook)
return;
channel_set_state(c, CS_DOWN);
proto_send_event(c->proto, c->proto->event);
break;
case CS_PAUSE:
if (!EMPTY_LIST(c->roa_subscriptions) || c->out_req.hook || c->refeed_req.hook || c->reload_req.hook)
return;
channel_set_state(c, CS_START);
break;
}
DBG("%s.%s: Channel requests/hooks stopped (in state %s)\n", c->proto->name, c->name, c_states[c->channel_state]);
}
void
channel_import_stopped(struct rt_import_request *req)
{
struct channel *c = SKIP_BACK(struct channel, in_req, req);
mb_free(c->in_req.name);
c->in_req.name = NULL;
channel_check_stopped(c);
}
static void
channel_export_stopped(struct rt_export_request *req)
{
struct channel *c = SKIP_BACK(struct channel, out_req, req);
/* The hook has already stopped */
req->hook = NULL;
if (c->refeed_pending)
{
ASSERT_DIE(!c->refeeding);
c->refeeding = c->refeed_pending;
c->refeed_pending = NULL;
channel_reset_limit(c, &c->out_limit, PLD_OUT);
bmap_reset(&c->export_map, 16);
bmap_reset(&c->export_reject_map, 16);
rt_request_export(c->table, req);
return;
}
mb_free(c->out_req.name);
c->out_req.name = NULL;
bmap_free(&c->export_map);
bmap_free(&c->export_reject_map);
channel_check_stopped(c);
}
static void
channel_refeed_stopped(struct rt_export_request *req)
{
struct channel *c = SKIP_BACK(struct channel, refeed_req, req);
req->hook = NULL;
channel_feed_end(c);
}
static void
channel_init_feeding(struct channel *c)
{
for (struct channel_feeding_request *cfrp = c->refeed_pending; cfrp; cfrp = cfrp->next)
if (cfrp->type == CFRT_DIRECT)
{
/* Direct feeding requested? Restart the export by force. */
channel_stop_export(c);
return;
}
/* No direct feeding, running auxiliary refeed. */
c->refeeding = c->refeed_pending;
c->refeed_pending = NULL;
c->refeed_trie = f_new_trie(lp_new(c->proto->pool), 0);
rt_request_export(c->table, &c->refeed_req);
}
static void
channel_feed_end(struct channel *c)
{
/* Reset export limit if the feed ended with acceptable number of exported routes */
struct limit *l = &c->out_limit;
if (c->refeeding &&
(c->limit_active & (1 << PLD_OUT)) &&
(l->count <= l->max))
{
log(L_INFO "Protocol %s resets route export limit (%u)", c->proto->name, l->max);
c->limit_active &= ~(1 << PLD_OUT);
/* Queue the same refeed batch back into pending */
struct channel_feeding_request **ptr = &c->refeed_pending;
while (*ptr)
ptr = &((*ptr)->next);
*ptr = c->refeeding;
/* Mark the requests to be redone */
for (struct channel_feeding_request *cfr = c->refeeding; cfr; cfr = cfr->next)
cfr->state = CFRS_PENDING;
c->refeeding = NULL;
}
/* Inform the protocol about the feed ending */
CALL(c->proto->feed_end, c);
/* Free the dynamic feeding requests */
for (struct channel_feeding_request *cfr = c->refeeding, *next = cfr ? cfr->next : NULL;
cfr;
(cfr = next), (next = next ? next->next : NULL))
if (cfr->flags & CFRF_DYNAMIC)
mb_free(cfr);
/* Drop the refeed batch */
c->refeeding = NULL;
if (c->refeed_trie)
{
rfree(c->refeed_trie->lp);
c->refeed_trie = NULL;
}
/* Run the pending batch */
if (c->refeed_pending)
channel_init_feeding(c);
}
/* Called by protocol for reload from in_table */
void
channel_schedule_reload(struct channel *c)
{
ASSERT(c->in_req.hook);
if (c->reload_req.hook)
{
CD(c, "Reload triggered before the previous one has finished");
c->reload_pending = 1;
return;
}
rt_refresh_begin(&c->in_req);
rt_request_export(c->table, &c->reload_req);
}
static void
channel_reload_stopped(struct rt_export_request *req)
{
struct channel *c = SKIP_BACK(struct channel, reload_req, req);
/* Restart reload */
if (c->reload_pending)
{
c->reload_pending = 0;
channel_request_reload(c);
}
if (c->channel_state != CS_UP)
channel_check_stopped(c);
}
static void
channel_reload_log_state_change(struct rt_export_request *req, u8 state)
{
struct channel *c = SKIP_BACK(struct channel, reload_req, req);
if (state == TES_READY)
{
if (c->channel_state == CS_UP)
rt_refresh_end(&c->in_req);
rt_stop_export(req, channel_reload_stopped);
}
}
static void
channel_reload_dump_req(struct rt_export_request *req)
{
struct channel *c = SKIP_BACK(struct channel, reload_req, req);
debug(" Channel %s.%s import reload request %p\n", c->proto->name, c->name, req);
}
/* Called by protocol to activate in_table */
static void
channel_setup_in_table(struct channel *c)
{
c->reload_req = (struct rt_export_request) {
.name = mb_sprintf(c->proto->pool, "%s.%s.import", c->proto->name, c->name),
.list = proto_work_list(c->proto),
.pool = c->proto->pool,
.feed_block_size = c->feed_block_size,
.trace_routes = c->debug | c->proto->debug,
.export_bulk = channel_reload_export_bulk,
.dump_req = channel_reload_dump_req,
.log_state_change = channel_reload_log_state_change,
};
}
static void
channel_do_start(struct channel *c)
{
c->proto->active_channels++;
if ((c->in_keep & RIK_PREFILTER) == RIK_PREFILTER)
channel_setup_in_table(c);
CALL(c->class->start, c);
channel_start_import(c);
}
static void
channel_do_up(struct channel *c)
{
/* Register RPKI/ROA subscriptions */
if (c->rpki_reload)
{
channel_roa_subscribe_filter(c, 1);
channel_roa_subscribe_filter(c, 0);
}
}
static void
channel_do_pause(struct channel *c)
{
/* Drop ROA subscriptions */
channel_roa_unsubscribe_all(c);
/* Need to abort feeding */
c->reload_pending = 0;
if (c->reload_req.hook && c->reload_req.hook->export_state != TES_STOP)
rt_stop_export(&c->reload_req, channel_reload_stopped);
/* Stop export */
c->refeed_pending = 0;
channel_stop_export(c);
}
static void
channel_do_stop(struct channel *c)
{
/* Stop import */
if (c->in_req.hook)
rt_stop_import(&c->in_req, channel_import_stopped);
c->gr_wait = 0;
if (c->gr_lock)
channel_graceful_restart_unlock(c);
CALL(c->class->shutdown, c);
}
static void
channel_do_down(struct channel *c)
{
ASSERT(!c->reload_req.hook);
c->proto->active_channels--;
memset(&c->import_stats, 0, sizeof(struct channel_import_stats));
memset(&c->export_stats, 0, sizeof(struct channel_export_stats));
c->out_table = NULL;
/* The in_table and out_table are going to be freed by freeing their resource pools. */
CALL(c->class->cleanup, c);
/* Schedule protocol shutddown */
if (proto_is_done(c->proto))
proto_send_event(c->proto, c->proto->event);
}
void
channel_set_state(struct channel *c, uint state)
{
uint cs = c->channel_state;
DBG("%s reporting channel %s state transition %s -> %s\n", c->proto->name, c->name, c_states[cs], c_states[state]);
if (state == cs)
return;
c->channel_state = state;
c->last_state_change = current_time();
switch (state)
{
case CS_START:
ASSERT(cs == CS_DOWN || cs == CS_PAUSE);
if (cs == CS_DOWN)
channel_do_start(c);
break;
case CS_UP:
ASSERT(cs == CS_DOWN || cs == CS_START);
if (cs == CS_DOWN)
channel_do_start(c);
if (!c->gr_wait && c->proto->rt_notify)
channel_start_export(c);
channel_do_up(c);
break;
case CS_PAUSE:
ASSERT(cs == CS_UP);
if (cs == CS_UP)
channel_do_pause(c);
break;
case CS_STOP:
ASSERT(cs == CS_UP || cs == CS_START || cs == CS_PAUSE);
if (cs == CS_UP)
channel_do_pause(c);
channel_do_stop(c);
break;
case CS_DOWN:
ASSERT(cs == CS_STOP);
channel_do_down(c);
break;
default:
ASSERT(0);
}
channel_log_state_change(c);
}
/**
* channel_request_feeding - request feeding routes to the channel
* @c: given channel
*
* Sometimes it is needed to send again all routes to the channel. This is
* called feeding and can be requested by this function. This would cause
* channel export state transition to ES_FEEDING (during feeding) and when
* completed, it will switch back to ES_READY. This function can be called
* even when feeding is already running, in that case it is restarted.
*/
void
channel_request_feeding(struct channel *c, struct channel_feeding_request *cfr)
{
ASSERT(c->out_req.hook);
/* Enqueue the request */
cfr->next = c->refeed_pending;
c->refeed_pending = cfr;
/* Initialize refeeds unless already refeeding */
if (!c->refeeding)
channel_init_feeding(c);
}
void
channel_request_feeding_dynamic(struct channel *c, enum channel_feeding_request_type type)
{
struct channel_feeding_request *req = mb_allocz(c->proto->pool, sizeof *req);
req->type = type;
req->flags |= CFRF_DYNAMIC;
channel_request_feeding(c, req);
}
static void
channel_stop_export(struct channel *c)
{
if (c->refeed_req.hook && (c->refeed_req.hook->export_state != TES_STOP))
rt_stop_export(&c->refeed_req, channel_refeed_stopped);
if (c->out_req.hook && (c->out_req.hook->export_state != TES_STOP))
rt_stop_export(&c->out_req, channel_export_stopped);
}
static void
channel_request_reload(struct channel *c)
{
ASSERT(c->in_req.hook);
ASSERT(channel_reloadable(c));
CD(c, "Reload requested");
if ((c->in_keep & RIK_PREFILTER) == RIK_PREFILTER)
channel_schedule_reload(c);
else
c->proto->reload_routes(c);
}
const struct channel_class channel_basic = {
.channel_size = sizeof(struct channel),
.config_size = sizeof(struct channel_config)
};
void *
channel_config_new(const struct channel_class *cc, const char *name, uint net_type, struct proto_config *proto)
{
struct channel_config *cf = NULL;
struct rtable_config *tab = NULL;
if (net_type)
{
if (!net_val_match(net_type, proto->protocol->channel_mask))
cf_error("Unsupported channel type");
if (proto->net_type && (net_type != proto->net_type))
cf_error("Different channel type");
tab = rt_get_default_table(new_config, net_type);
}
if (!cc)
cc = &channel_basic;
cf = cfg_allocz(cc->config_size);
cf->name = name;
cf->class = cc;
cf->parent = proto;
cf->table = tab;
cf->out_filter = FILTER_REJECT;
cf->feed_block_size = 16384;
cf->net_type = net_type;
cf->ra_mode = RA_OPTIMAL;
cf->preference = proto->protocol->preference;
cf->debug = new_config->channel_default_debug;
cf->rpki_reload = 1;
cf->roa_settle = (struct settle_config) {
.min = 1 S,
.max = 20 S,
};
add_tail(&proto->channels, &cf->n);
return cf;
}
void *
channel_config_get(const struct channel_class *cc, const char *name, uint net_type, struct proto_config *proto)
{
struct channel_config *cf;
/* We are using name as token, so no strcmp() */
WALK_LIST(cf, proto->channels)
if (cf->name == name)
{
/* Allow to redefine channel only if inherited from template */
if (cf->parent == proto)
cf_error("Multiple %s channels", name);
cf->parent = proto;
cf->copy = 1;
return cf;
}
return channel_config_new(cc, name, net_type, proto);
}
struct channel_config *
channel_copy_config(struct channel_config *src, struct proto_config *proto)
{
struct channel_config *dst = cfg_alloc(src->class->config_size);
memcpy(dst, src, src->class->config_size);
memset(&dst->n, 0, sizeof(node));
add_tail(&proto->channels, &dst->n);
CALL(src->class->copy_config, dst, src);
return dst;
}
static int reconfigure_type; /* Hack to propagate type info to channel_reconfigure() */
int
channel_reconfigure(struct channel *c, struct channel_config *cf)
{
/* Touched by reconfiguration */
c->stale = 0;
/* FIXME: better handle these changes, also handle in_keep_filtered */
if ((c->table != cf->table->table) ||
(cf->ra_mode && (c->ra_mode != cf->ra_mode)) ||
(cf->in_keep != c->in_keep) ||
cf->out_subprefix && c->out_subprefix &&
!net_equal(cf->out_subprefix, c->out_subprefix) ||
(!cf->out_subprefix != !c->out_subprefix))
return 0;
/* Note that filter_same() requires arguments in (new, old) order */
int import_changed = !filter_same(cf->in_filter, c->in_filter);
int export_changed = !filter_same(cf->out_filter, c->out_filter);
int rpki_reload_changed = (cf->rpki_reload != c->rpki_reload);
if (c->preference != cf->preference)
import_changed = 1;
if (c->merge_limit != cf->merge_limit)
export_changed = 1;
/* Reconfigure channel fields */
c->in_filter = cf->in_filter;
c->out_filter = cf->out_filter;
channel_update_limit(c, &c->rx_limit, PLD_RX, &cf->rx_limit);
channel_update_limit(c, &c->in_limit, PLD_IN, &cf->in_limit);
channel_update_limit(c, &c->out_limit, PLD_OUT, &cf->out_limit);
// c->ra_mode = cf->ra_mode;
c->merge_limit = cf->merge_limit;
c->preference = cf->preference;
c->out_req.prefilter.addr = c->out_subprefix = cf->out_subprefix;
c->debug = cf->debug;
c->in_req.trace_routes = c->out_req.trace_routes = c->debug | c->proto->debug;
c->rpki_reload = cf->rpki_reload;
if ( (c->roa_settle.min != cf->roa_settle.min)
|| (c->roa_settle.max != cf->roa_settle.max))
{
c->roa_settle = cf->roa_settle;
struct roa_subscription *s;
node *n;
WALK_LIST2(s, n, c->roa_subscriptions, roa_node)
{
s->settle.cf = cf->roa_settle;
if (settle_active(&s->settle))
settle_kick(&s->settle, &main_birdloop);
}
}
/* Execute channel-specific reconfigure hook */
if (c->class->reconfigure && !c->class->reconfigure(c, cf, &import_changed, &export_changed))
return 0;
/* If the channel is not open, it has no routes and we cannot reload it anyways */
if (c->channel_state != CS_UP)
goto done;
/* Update RPKI/ROA subscriptions */
if (import_changed || export_changed || rpki_reload_changed)
{
channel_roa_unsubscribe_all(c);
if (c->rpki_reload)
{
channel_roa_subscribe_filter(c, 1);
channel_roa_subscribe_filter(c, 0);
}
}
if (reconfigure_type == RECONFIG_SOFT)
{
if (import_changed)
log(L_INFO "Channel %s.%s changed import", c->proto->name, c->name);
if (export_changed)
log(L_INFO "Channel %s.%s changed export", c->proto->name, c->name);
goto done;
}
/* Route reload may be not supported */
if (import_changed && !channel_reloadable(c))
return 0;
if (import_changed || export_changed)
log(L_INFO "Reloading channel %s.%s", c->proto->name, c->name);
if (import_changed)
channel_request_reload(c);
if (export_changed)
channel_request_feeding_dynamic(c, CFRT_AUXILIARY);
done:
CD(c, "Reconfigured");
return 1;
}
int
proto_configure_channel(struct proto *p, struct channel **pc, struct channel_config *cf)
{
struct channel *c = *pc;
if (!c && cf)
{
/* We could add the channel, but currently it would just stay in down state
until protocol is restarted, so it is better to force restart anyways. */
if (p->proto_state != PS_DOWN)
{
log(L_INFO "Cannot add channel %s.%s", p->name, cf->name);
return 0;
}
*pc = proto_add_channel(p, cf);
}
else if (c && !cf)
{
if (c->channel_state != CS_DOWN)
{
log(L_INFO "Cannot remove channel %s.%s", c->proto->name, c->name);
return 0;
}
proto_remove_channel(p, c);
*pc = NULL;
}
else if (c && cf)
{
if (!channel_reconfigure(c, cf))
{
log(L_INFO "Cannot reconfigure channel %s.%s", c->proto->name, c->name);
return 0;
}
}
return 1;
}
static void
proto_cleanup(struct proto *p)
{
CALL(p->proto->cleanup, p);
if (p->pool)
{
rp_free(p->pool);
p->pool = NULL;
}
p->active = 0;
proto_log_state_change(p);
proto_rethink_goal(p);
}
static void
proto_loop_stopped(void *ptr)
{
struct proto *p = ptr;
ASSERT_DIE(birdloop_inside(&main_birdloop));
ASSERT_DIE(p->loop != &main_birdloop);
p->pool = NULL; /* is freed by birdloop_free() */
birdloop_free(p->loop);
p->loop = &main_birdloop;
proto_cleanup(p);
}
static void
proto_event(void *ptr)
{
struct proto *p = ptr;
if (p->do_stop)
{
iface_unsubscribe(&p->iface_sub);
p->do_stop = 0;
}
if (proto_is_done(p) && p->pool_fragile) /* perusing pool_fragile to do this once only */
{
rp_free(p->pool_fragile);
p->pool_fragile = NULL;
if (p->loop != &main_birdloop)
birdloop_stop_self(p->loop, proto_loop_stopped, p);
else
proto_cleanup(p);
}
}
/**
* proto_new - create a new protocol instance
* @c: protocol configuration
*
* When a new configuration has been read in, the core code starts
* initializing all the protocol instances configured by calling their
* init() hooks with the corresponding instance configuration. The initialization
* code of the protocol is expected to create a new instance according to the
* configuration by calling this function and then modifying the default settings
* to values wanted by the protocol.
*/
void *
proto_new(struct proto_config *cf)
{
struct proto *p = mb_allocz(proto_pool, cf->protocol->proto_size);
p->cf = cf;
p->debug = cf->debug;
p->mrtdump = cf->mrtdump;
p->name = cf->name;
p->proto = cf->protocol;
p->net_type = cf->net_type;
p->disabled = cf->disabled;
p->hash_key = random_u32();
cf->proto = p;
init_list(&p->channels);
return p;
}
static struct proto *
proto_init(struct proto_config *c, struct proto *after)
{
struct protocol *pr = c->protocol;
struct proto *p = pr->init(c);
p->loop = &main_birdloop;
p->proto_state = PS_DOWN;
p->last_state_change = current_time();
p->vrf = c->vrf;
proto_add_after(&global_proto_list, p, after);
p->event = ev_new_init(proto_pool, proto_event, p);
PD(p, "Initializing%s", p->disabled ? " [disabled]" : "");
return p;
}
static void
proto_start(struct proto *p)
{
DBG("Kicking %s up\n", p->name);
PD(p, "Starting");
if (graceful_restart_state == GRS_INIT)
p->gr_recovery = 1;
if (p->cf->loop_order != DOMAIN_ORDER(the_bird))
{
p->loop = birdloop_new(proto_pool, p->cf->loop_order, p->cf->loop_max_latency, "Protocol %s", p->cf->name);
p->pool = birdloop_pool(p->loop);
}
else
p->pool = rp_newf(proto_pool, the_bird_domain.the_bird, "Protocol %s", p->cf->name);
p->iface_sub.target = proto_event_list(p);
p->iface_sub.name = p->name;
p->iface_sub.debug = !!(p->debug & D_IFACES);
PROTO_LOCKED_FROM_MAIN(p)
{
p->pool_fragile = rp_newf(p->pool, birdloop_domain(p->loop), "Protocol %s fragile objects", p->cf->name);
proto_notify_state(p, (p->proto->start ? p->proto->start(p) : PS_UP));
}
}
/**
* proto_config_new - create a new protocol configuration
* @pr: protocol the configuration will belong to
* @class: SYM_PROTO or SYM_TEMPLATE
*
* Whenever the configuration file says that a new instance
* of a routing protocol should be created, the parser calls
* proto_config_new() to create a configuration entry for this
* instance (a structure staring with the &proto_config header
* containing all the generic items followed by protocol-specific
* ones). Also, the configuration entry gets added to the list
* of protocol instances kept in the configuration.
*
* The function is also used to create protocol templates (when class
* SYM_TEMPLATE is specified), the only difference is that templates
* are not added to the list of protocol instances and therefore not
* initialized during protos_commit()).
*/
void *
proto_config_new(struct protocol *pr, int class)
{
struct proto_config *cf = cfg_allocz(pr->config_size);
if (class == SYM_PROTO)
add_tail(&new_config->protos, &cf->n);
cf->global = new_config;
cf->protocol = pr;
cf->name = pr->name;
cf->class = class;
cf->debug = new_config->proto_default_debug;
cf->mrtdump = new_config->proto_default_mrtdump;
cf->loop_order = DOMAIN_ORDER(the_bird);
init_list(&cf->channels);
return cf;
}
/**
* proto_copy_config - copy a protocol configuration
* @dest: destination protocol configuration
* @src: source protocol configuration
*
* Whenever a new instance of a routing protocol is created from the
* template, proto_copy_config() is called to copy a content of
* the source protocol configuration to the new protocol configuration.
* Name, class and a node in protos list of @dest are kept intact.
* copy_config() protocol hook is used to copy protocol-specific data.
*/
void
proto_copy_config(struct proto_config *dest, struct proto_config *src)
{
struct channel_config *cc;
node old_node;
int old_class;
const char *old_name;
if (dest->protocol != src->protocol)
cf_error("Can't copy configuration from a different protocol type");
if (dest->protocol->copy_config == NULL)
cf_error("Inheriting configuration for %s is not supported", src->protocol->name);
DBG("Copying configuration from %s to %s\n", src->name, dest->name);
/*
* Copy struct proto_config here. Keep original node, class and name.
* protocol-specific config copy is handled by protocol copy_config() hook
*/
old_node = dest->n;
old_class = dest->class;
old_name = dest->name;
memcpy(dest, src, src->protocol->config_size);
dest->n = old_node;
dest->class = old_class;
dest->name = old_name;
init_list(&dest->channels);
WALK_LIST(cc, src->channels)
channel_copy_config(cc, dest);
/* FIXME: allow for undefined copy_config */
dest->protocol->copy_config(dest, src);
}
void
proto_clone_config(struct symbol *sym, struct proto_config *parent)
{
struct proto_config *cf = proto_config_new(parent->protocol, SYM_PROTO);
proto_copy_config(cf, parent);
cf->name = sym->name;
cf->proto = NULL;
cf->parent = parent;
sym->class = cf->class;
sym->proto = cf;
}
static void
proto_undef_clone(struct symbol *sym, struct proto_config *cf)
{
rem_node(&cf->n);
sym->class = SYM_VOID;
sym->proto = NULL;
}
/**
* protos_preconfig - pre-configuration processing
* @c: new configuration
*
* This function calls the preconfig() hooks of all routing
* protocols available to prepare them for reading of the new
* configuration.
*/
void
protos_preconfig(struct config *c)
{
struct protocol *p;
init_list(&c->protos);
DBG("Protocol preconfig:");
WALK_LIST(p, protocol_list)
{
DBG(" %s", p->name);
p->name_counter = 0;
if (p->preconfig)
p->preconfig(p, c);
}
DBG("\n");
}
static int
proto_reconfigure(struct proto *p, struct proto_config *oc, struct proto_config *nc, int type)
{
/* If the protocol is DOWN, we just restart it */
if (p->proto_state == PS_DOWN)
return 0;
/* If there is a too big change in core attributes, ... */
if ((nc->protocol != oc->protocol) ||
(nc->net_type != oc->net_type) ||
(nc->disabled != p->disabled) ||
(nc->vrf != oc->vrf))
return 0;
p->sources.name = p->name = nc->name;
p->debug = nc->debug;
p->mrtdump = nc->mrtdump;
reconfigure_type = type;
/* Execute protocol specific reconfigure hook */
if (!p->proto->reconfigure || !p->proto->reconfigure(p, nc))
return 0;
DBG("\t%s: same\n", oc->name);
PD(p, "Reconfigured");
p->cf = nc;
return 1;
}
static struct protos_commit_request {
struct config *new;
struct config *old;
enum protocol_startup phase;
int force_reconfig;
int type;
} protos_commit_request;
static int proto_rethink_goal_pending = 0;
static void protos_do_commit(struct config *new, struct config *old, int force_reconfig, int type);
/**
* protos_commit - commit new protocol configuration
* @new: new configuration
* @old: old configuration or %NULL if it's boot time config
* @force_reconfig: force restart of all protocols (used for example
* when the router ID changes)
* @type: type of reconfiguration (RECONFIG_SOFT or RECONFIG_HARD)
*
* Scan differences between @old and @new configuration and adjust all
* protocol instances to conform to the new configuration.
*
* When a protocol exists in the new configuration, but it doesn't in the
* original one, it's immediately started. When a collision with the other
* running protocol would arise, the new protocol will be temporarily stopped
* by the locking mechanism.
*
* When a protocol exists in the old configuration, but it doesn't in the
* new one, it's shut down and deleted after the shutdown completes.
*
* When a protocol exists in both configurations, the core decides
* whether it's possible to reconfigure it dynamically - it checks all
* the core properties of the protocol (changes in filters are ignored
* if type is RECONFIG_SOFT) and if they match, it asks the
* reconfigure() hook of the protocol to see if the protocol is able
* to switch to the new configuration. If it isn't possible, the
* protocol is shut down and a new instance is started with the new
* configuration after the shutdown is completed.
*/
void
protos_commit(struct config *new, struct config *old, int force_reconfig, int type)
{
protos_commit_request = (struct protos_commit_request) {
.new = new,
.old = old,
.phase = (new->shutdown && !new->gr_down) ? PROTOCOL_STARTUP_REGULAR : PROTOCOL_STARTUP_NECESSARY,
.force_reconfig = force_reconfig,
.type = type,
};
protos_do_commit(new, old, force_reconfig, type);
}
static void
protos_do_commit(struct config *new, struct config *old, int force_reconfig, int type)
{
enum protocol_startup phase = protos_commit_request.phase;
struct proto_config *oc, *nc;
struct symbol *sym;
struct proto *p;
if ((phase < PROTOCOL_STARTUP_REGULAR) || (phase > PROTOCOL_STARTUP_NECESSARY))
{
protos_commit_request = (struct protos_commit_request) {};
return;
}
DBG("protos_commit:\n");
if (old)
{
WALK_LIST(oc, old->protos)
{
if (oc->protocol->startup != phase)
continue;
p = oc->proto;
sym = cf_find_symbol(new, oc->name);
struct birdloop *proto_loop = PROTO_ENTER_FROM_MAIN(p);
/* Handle dynamic protocols */
if (!sym && oc->parent && !new->shutdown)
{
struct symbol *parsym = cf_find_symbol(new, oc->parent->name);
if (parsym && parsym->class == SYM_PROTO)
{
/* This is hack, we would like to share config, but we need to copy it now */
new_config = new;
cfg_mem = new->mem;
conf_this_scope = new->root_scope;
sym = cf_get_symbol(oc->name);
proto_clone_config(sym, parsym->proto);
new_config = NULL;
cfg_mem = NULL;
}
}
if (sym && sym->class == SYM_PROTO && !new->shutdown)
{
/* Found match, let's check if we can smoothly switch to new configuration */
/* No need to check description */
nc = sym->proto;
nc->proto = p;
/* We will try to reconfigure protocol p */
if (!force_reconfig && proto_reconfigure(p, oc, nc, type))
{
PROTO_LEAVE_FROM_MAIN(proto_loop);
continue;
}
if (nc->parent)
{
proto_undef_clone(sym, nc);
goto remove;
}
/* Unsuccessful, we will restart it */
if (!p->disabled && !nc->disabled)
log(L_INFO "Restarting protocol %s", p->name);
else if (p->disabled && !nc->disabled)
log(L_INFO "Enabling protocol %s", p->name);
else if (!p->disabled && nc->disabled)
log(L_INFO "Disabling protocol %s", p->name);
p->down_code = nc->disabled ? PDC_CF_DISABLE : PDC_CF_RESTART;
p->cf_new = nc;
}
else if (!new->shutdown)
{
remove:
log(L_INFO "Removing protocol %s", p->name);
p->down_code = PDC_CF_REMOVE;
p->cf_new = NULL;
}
else if (new->gr_down)
{
p->down_code = PDC_CMD_GR_DOWN;
p->cf_new = NULL;
}
else /* global shutdown */
{
p->down_code = PDC_CMD_SHUTDOWN;
p->cf_new = NULL;
}
p->reconfiguring = 1;
PROTO_LEAVE_FROM_MAIN(proto_loop);
config_add_obstacle(old);
proto_rethink_goal(p);
}
}
struct proto *after = NULL;
WALK_LIST(nc, new->protos)
if ((nc->protocol->startup == phase) && !nc->proto)
{
/* Not a first-time configuration */
if (old)
log(L_INFO "Adding protocol %s", nc->name);
p = proto_init(nc, after);
after = p;
proto_rethink_goal(p);
}
else
after = nc->proto;
DBG("Protocol start\n");
/* Determine router ID for the first time - it has to be here and not in
global_commit() because it is postponed after start of device protocol */
if (!config->router_id)
{
config->router_id = if_choose_router_id(config->router_id_from, 0);
if (!config->router_id)
die("Cannot determine router ID, please configure it manually");
}
/* Commit next round of protocols */
if (new->shutdown && !new->gr_down)
protos_commit_request.phase++;
else
protos_commit_request.phase--;
/* If something is pending, the next round will be called asynchronously from proto_rethink_goal(). */
if (!proto_rethink_goal_pending)
protos_do_commit(new, old, force_reconfig, type);
}
static void
proto_shutdown(struct proto *p)
{
if (p->proto_state == PS_START || p->proto_state == PS_UP)
{
/* Going down */
DBG("Kicking %s down\n", p->name);
PD(p, "Shutting down");
proto_notify_state(p, (p->proto->shutdown ? p->proto->shutdown(p) : PS_DOWN));
if (p->reconfiguring)
{
proto_rethink_goal_pending++;
p->reconfiguring = 2;
}
}
}
static void
proto_rethink_goal(struct proto *p)
{
int goal_pending = (p->reconfiguring == 2);
if (p->reconfiguring && !p->active)
{
struct proto_config *nc = p->cf_new;
struct proto *after = p->n.prev;
DBG("%s has shut down for reconfiguration\n", p->name);
p->cf->proto = NULL;
config_del_obstacle(p->cf->global);
proto_remove_channels(p);
proto_rem_node(&global_proto_list, p);
rfree(p->event);
mb_free(p->message);
mb_free(p);
if (!nc)
goto done;
p = proto_init(nc, after);
}
/* Determine what state we want to reach */
if (p->disabled || p->reconfiguring)
{
PROTO_LOCKED_FROM_MAIN(p)
proto_shutdown(p);
}
else if (!p->active)
proto_start(p);
done:
if (goal_pending && !--proto_rethink_goal_pending)
protos_do_commit(
protos_commit_request.new,
protos_commit_request.old,
protos_commit_request.force_reconfig,
protos_commit_request.type
);
}
struct proto *
proto_spawn(struct proto_config *cf, uint disabled)
{
struct proto *p = proto_init(cf, global_proto_list.last);
p->disabled = disabled;
proto_rethink_goal(p);
return p;
}
/**
* DOC: Graceful restart recovery
*
* Graceful restart of a router is a process when the routing plane (e.g. BIRD)
* restarts but both the forwarding plane (e.g kernel routing table) and routing
* neighbors keep proper routes, and therefore uninterrupted packet forwarding
* is maintained.
*
* BIRD implements graceful restart recovery by deferring export of routes to
* protocols until routing tables are refilled with the expected content. After
* start, protocols generate routes as usual, but routes are not propagated to
* them, until protocols report that they generated all routes. After that,
* graceful restart recovery is finished and the export (and the initial feed)
* to protocols is enabled.
*
* When graceful restart recovery need is detected during initialization, then
* enabled protocols are marked with @gr_recovery flag before start. Such
* protocols then decide how to proceed with graceful restart, participation is
* voluntary. Protocols could lock the recovery for each channel by function
* channel_graceful_restart_lock() (state stored in @gr_lock flag), which means
* that they want to postpone the end of the recovery until they converge and
* then unlock it. They also could set @gr_wait before advancing to %PS_UP,
* which means that the core should defer route export to that channel until
* the end of the recovery. This should be done by protocols that expect their
* neigbors to keep the proper routes (kernel table, BGP sessions with BGP
* graceful restart capability).
*
* The graceful restart recovery is finished when either all graceful restart
* locks are unlocked or when graceful restart wait timer fires.
*
*/
static void graceful_restart_done(timer *t);
/**
* graceful_restart_recovery - request initial graceful restart recovery
*
* Called by the platform initialization code if the need for recovery
* after graceful restart is detected during boot. Have to be called
* before protos_commit().
*/
void
graceful_restart_recovery(void)
{
graceful_restart_state = GRS_INIT;
}
/**
* graceful_restart_init - initialize graceful restart
*
* When graceful restart recovery was requested, the function starts an active
* phase of the recovery and initializes graceful restart wait timer. The
* function have to be called after protos_commit().
*/
void
graceful_restart_init(void)
{
if (!graceful_restart_state)
return;
log(L_INFO "Graceful restart started");
if (!graceful_restart_locks)
{
graceful_restart_done(NULL);
return;
}
graceful_restart_state = GRS_ACTIVE;
gr_wait_timer = tm_new_init(proto_pool, graceful_restart_done, NULL, 0, 0);
tm_start(gr_wait_timer, config->gr_wait S);
}
/**
* graceful_restart_done - finalize graceful restart
* @t: unused
*
* When there are no locks on graceful restart, the functions finalizes the
* graceful restart recovery. Protocols postponing route export until the end of
* the recovery are awakened and the export to them is enabled. All other
* related state is cleared. The function is also called when the graceful
* restart wait timer fires (but there are still some locks).
*/
static void
graceful_restart_done(timer *t UNUSED)
{
log(L_INFO "Graceful restart done");
graceful_restart_state = GRS_DONE;
WALK_TLIST(proto, p, &global_proto_list)
{
if (!p->gr_recovery)
continue;
struct channel *c;
WALK_LIST(c, p->channels)
{
/* Resume postponed export of routes */
if ((c->channel_state == CS_UP) && c->gr_wait && p->rt_notify)
channel_start_export(c);
/* Cleanup */
c->gr_wait = 0;
c->gr_lock = 0;
}
p->gr_recovery = 0;
}
graceful_restart_locks = 0;
}
void
graceful_restart_show_status(void)
{
if (graceful_restart_state != GRS_ACTIVE)
return;
cli_msg(-24, "Graceful restart recovery in progress");
cli_msg(-24, " Waiting for %d channels to recover", graceful_restart_locks);
cli_msg(-24, " Wait timer is %t/%u", tm_remains(gr_wait_timer), config->gr_wait);
}
/**
* channel_graceful_restart_lock - lock graceful restart by channel
* @p: channel instance
*
* This function allows a protocol to postpone the end of graceful restart
* recovery until it converges. The lock is removed when the protocol calls
* channel_graceful_restart_unlock() or when the channel is closed.
*
* The function have to be called during the initial phase of graceful restart
* recovery and only for protocols that are part of graceful restart (i.e. their
* @gr_recovery is set), which means it should be called from protocol start
* hooks.
*/
void
channel_graceful_restart_lock(struct channel *c)
{
ASSERT(graceful_restart_state == GRS_INIT);
ASSERT(c->proto->gr_recovery);
if (c->gr_lock)
return;
c->gr_lock = 1;
graceful_restart_locks++;
}
/**
* channel_graceful_restart_unlock - unlock graceful restart by channel
* @p: channel instance
*
* This function unlocks a lock from channel_graceful_restart_lock(). It is also
* automatically called when the lock holding protocol went down.
*/
void
channel_graceful_restart_unlock(struct channel *c)
{
if (!c->gr_lock)
return;
c->gr_lock = 0;
graceful_restart_locks--;
if ((graceful_restart_state == GRS_ACTIVE) && !graceful_restart_locks)
tm_start(gr_wait_timer, 0);
}
/**
* protos_dump_all - dump status of all protocols
*
* This function dumps status of all existing protocol instances to the
* debug output. It involves printing of general status information
* such as protocol states, its position on the protocol lists
* and also calling of a dump() hook of the protocol to print
* the internals.
*/
void
protos_dump_all(void)
{
debug("Protocols:\n");
WALK_TLIST(proto, p, &global_proto_list) PROTO_LOCKED_FROM_MAIN(p)
{
#define DPF(x) (p->x ? " " #x : "")
debug(" protocol %s (%p) state %s with %d active channels flags: %s%s%s%s\n",
p->name, p, p_states[p->proto_state], p->active_channels,
DPF(disabled), DPF(active), DPF(do_stop), DPF(reconfiguring));
#undef DPF
struct channel *c;
WALK_LIST(c, p->channels)
{
debug("\tTABLE %s\n", c->table->name);
if (c->in_filter)
debug("\tInput filter: %s\n", filter_name(c->in_filter));
if (c->out_filter)
debug("\tOutput filter: %s\n", filter_name(c->out_filter));
debug("\tChannel state: %s/%s/%s\n", c_states[c->channel_state],
c->in_req.hook ? rt_import_state_name(rt_import_get_state(c->in_req.hook)) : "-",
c->out_req.hook ? rt_export_state_name(rt_export_get_state(c->out_req.hook)) : "-");
}
if (p->proto->dump && (p->proto_state != PS_DOWN))
p->proto->dump(p);
}
}
/**
* proto_build - make a single protocol available
* @p: the protocol
*
* After the platform specific initialization code uses protos_build()
* to add all the standard protocols, it should call proto_build() for
* all platform specific protocols to inform the core that they exist.
*/
void
proto_build(struct protocol *p)
{
add_tail(&protocol_list, &p->n);
}
/* FIXME: convert this call to some protocol hook */
extern void bfd_init_all(void);
void protos_build_gen(void);
/**
* protos_build - build a protocol list
*
* This function is called during BIRD startup to insert
* all standard protocols to the global protocol list. Insertion
* of platform specific protocols (such as the kernel syncer)
* is in the domain of competence of the platform dependent
* startup code.
*/
void
protos_build(void)
{
proto_pool = rp_new(&root_pool, the_bird_domain.the_bird, "Protocols");
protos_build_gen();
}
/* Temporary hack to propagate restart to BGP */
int proto_restart;
static void
proto_restart_event_hook(void *_p)
{
struct proto *p = _p;
if (!p->down_sched)
return;
proto_restart = (p->down_sched == PDS_RESTART);
p->disabled = 1;
proto_rethink_goal(p);
p->restart_event = NULL;
p->restart_timer = NULL;
if (proto_restart)
/* No need to call proto_rethink_goal() here again as the proto_cleanup() routine will
* call it after the protocol stops ... and both these routines are fixed to main_birdloop.
*/
p->disabled = 0;
}
static void
proto_send_restart_event(struct proto *p)
{
if (!p->restart_event)
p->restart_event = ev_new_init(p->pool, proto_restart_event_hook, p);
ev_send(&global_event_list, p->restart_event);
}
static void
proto_send_restart_event_from_timer(struct timer *t)
{
proto_send_restart_event((struct proto *) t->data);
}
static inline void
proto_schedule_down(struct proto *p, byte restart, byte code)
{
/* Does not work for other states (even PS_START) */
ASSERT(p->proto_state == PS_UP);
/* Scheduled restart may change to shutdown, but not otherwise */
if (p->down_sched == PDS_DISABLE)
return;
p->down_sched = restart ? PDS_RESTART : PDS_DISABLE;
p->down_code = code;
if (!restart)
{
if (p->restart_timer && tm_active(p->restart_timer))
tm_stop(p->restart_timer);
proto_send_restart_event(p);
}
else
{
if (!p->restart_timer)
p->restart_timer = tm_new_init(p->pool, proto_send_restart_event_from_timer, p, 0, 0);
tm_start_max_in(p->restart_timer, 250 MS, p->loop);
}
}
/**
* proto_set_message - set administrative message to protocol
* @p: protocol
* @msg: message
* @len: message length (-1 for NULL-terminated string)
*
* The function sets administrative message (string) related to protocol state
* change. It is called by the nest code for manual enable/disable/restart
* commands all routes to the protocol, and by protocol-specific code when the
* protocol state change is initiated by the protocol. Using NULL message clears
* the last message. The message string may be either NULL-terminated or with an
* explicit length.
*/
void
proto_set_message(struct proto *p, char *msg, int len)
{
mb_free(p->message);
p->message = NULL;
if (!msg || !len)
return;
if (len < 0)
len = strlen(msg);
if (!len)
return;
p->message = mb_alloc(proto_pool, len + 1);
memcpy(p->message, msg, len);
p->message[len] = 0;
}
static const char * channel_limit_name[] = {
[PLA_WARN] = "warn",
[PLA_BLOCK] = "block",
[PLA_RESTART] = "restart",
[PLA_DISABLE] = "disable",
};
static void
channel_log_limit(struct channel *c, struct limit *l, int dir)
{
const char *dir_name[PLD_MAX] = { "receive", "import" , "export" };
log(L_WARN "Channel %s.%s hits route %s limit (%d), action: %s",
c->proto->name, c->name, dir_name[dir], l->max, channel_limit_name[c->limit_actions[dir]]);
}
static void
channel_activate_limit(struct channel *c, struct limit *l, int dir)
{
if (c->limit_active & (1 << dir))
return;
c->limit_active |= (1 << dir);
channel_log_limit(c, l, dir);
}
static int
channel_limit_warn(struct limit *l, void *data)
{
struct channel_limit_data *cld = data;
struct channel *c = cld->c;
int dir = cld->dir;
channel_log_limit(c, l, dir);
return 0;
}
static int
channel_limit_block(struct limit *l, void *data)
{
struct channel_limit_data *cld = data;
struct channel *c = cld->c;
int dir = cld->dir;
channel_activate_limit(c, l, dir);
return 1;
}
static const byte chl_dir_down[PLD_MAX] = { PDC_RX_LIMIT_HIT, PDC_IN_LIMIT_HIT, PDC_OUT_LIMIT_HIT };
static int
channel_limit_down(struct limit *l, void *data)
{
struct channel_limit_data *cld = data;
struct channel *c = cld->c;
struct proto *p = c->proto;
int dir = cld->dir;
channel_activate_limit(c, l, dir);
if (p->proto_state == PS_UP)
proto_schedule_down(p, c->limit_actions[dir] == PLA_RESTART, chl_dir_down[dir]);
return 1;
}
static int (*channel_limit_action[])(struct limit *, void *) = {
[PLA_NONE] = NULL,
[PLA_WARN] = channel_limit_warn,
[PLA_BLOCK] = channel_limit_block,
[PLA_RESTART] = channel_limit_down,
[PLA_DISABLE] = channel_limit_down,
};
static void
channel_update_limit(struct channel *c, struct limit *l, int dir, struct channel_limit *cf)
{
l->action = channel_limit_action[cf->action];
c->limit_actions[dir] = cf->action;
struct channel_limit_data cld = { .c = c, .dir = dir };
limit_update(l, &cld, cf->action ? cf->limit : ~((u32) 0));
}
static void
channel_init_limit(struct channel *c, struct limit *l, int dir, struct channel_limit *cf)
{
channel_reset_limit(c, l, dir);
channel_update_limit(c, l, dir, cf);
}
static void
channel_reset_limit(struct channel *c, struct limit *l, int dir)
{
limit_reset(l);
c->limit_active &= ~(1 << dir);
}
static struct rte_owner_class default_rte_owner_class;
static inline void
proto_do_start(struct proto *p)
{
p->active = 1;
rt_init_sources(&p->sources, p->name, proto_event_list(p));
if (!p->sources.class)
p->sources.class = &default_rte_owner_class;
if (!p->cf->late_if_feed)
iface_subscribe(&p->iface_sub);
}
static void
proto_do_up(struct proto *p)
{
if (!p->main_source)
p->main_source = rt_get_source(p, 0);
// Locked automaticaly
proto_start_channels(p);
if (p->cf->late_if_feed)
iface_subscribe(&p->iface_sub);
}
static inline void
proto_do_pause(struct proto *p)
{
proto_pause_channels(p);
}
static void
proto_do_stop(struct proto *p)
{
p->down_sched = 0;
p->gr_recovery = 0;
if (p->main_source)
{
rt_unlock_source(p->main_source);
p->main_source = NULL;
}
proto_stop_channels(p);
rt_destroy_sources(&p->sources, p->event);
p->do_stop = 1;
proto_send_event(p, p->event);
}
static void
proto_do_down(struct proto *p)
{
p->down_code = 0;
/* Shutdown is finished in the protocol event */
if (proto_is_done(p))
proto_send_event(p, p->event);
}
/**
* proto_notify_state - notify core about protocol state change
* @p: protocol the state of which has changed
* @ps: the new status
*
* Whenever a state of a protocol changes due to some event internal
* to the protocol (i.e., not inside a start() or shutdown() hook),
* it should immediately notify the core about the change by calling
* proto_notify_state() which will write the new state to the &proto
* structure and take all the actions necessary to adapt to the new
* state. State change to PS_DOWN immediately frees resources of protocol
* and might execute start callback of protocol; therefore,
* it should be used at tail positions of protocol callbacks.
*/
void
proto_notify_state(struct proto *p, uint state)
{
uint ps = p->proto_state;
DBG("%s reporting state transition %s -> %s\n", p->name, p_states[ps], p_states[state]);
if (state == ps)
return;
p->proto_state = state;
p->last_state_change = current_time();
switch (state)
{
case PS_START:
ASSERT(ps == PS_DOWN || ps == PS_UP);
if (ps == PS_DOWN)
proto_do_start(p);
else
proto_do_pause(p);
break;
case PS_UP:
ASSERT(ps == PS_DOWN || ps == PS_START);
if (ps == PS_DOWN)
proto_do_start(p);
proto_do_up(p);
break;
case PS_STOP:
ASSERT(ps == PS_START || ps == PS_UP);
proto_do_stop(p);
break;
case PS_DOWN:
if (ps != PS_STOP)
proto_do_stop(p);
proto_do_down(p);
break;
default:
bug("%s: Invalid state %d", p->name, ps);
}
proto_log_state_change(p);
}
/*
* CLI Commands
*/
static char *
proto_state_name(struct proto *p)
{
switch (p->proto_state)
{
case PS_DOWN: return p->active ? "flush" : "down";
case PS_START: return "start";
case PS_UP: return "up";
case PS_STOP: return "stop";
default: return "???";
}
}
static void
channel_show_stats(struct channel *c)
{
struct channel_import_stats *ch_is = &c->import_stats;
struct channel_export_stats *ch_es = &c->export_stats;
struct rt_import_stats *rt_is = c->in_req.hook ? &c->in_req.hook->stats : NULL;
struct rt_export_stats *rt_es = c->out_req.hook ? &c->out_req.hook->stats : NULL;
#define SON(ie, item) ((ie) ? (ie)->item : 0)
#define SCI(item) SON(ch_is, item)
#define SCE(item) SON(ch_es, item)
#define SRI(item) SON(rt_is, item)
#define SRE(item) SON(rt_es, item)
u32 rx_routes = c->rx_limit.count;
u32 in_routes = c->in_limit.count;
u32 out_routes = c->out_limit.count;
if (c->in_keep)
cli_msg(-1006, " Routes: %u imported, %u filtered, %u exported, %u preferred",
in_routes, (rx_routes - in_routes), out_routes, SRI(pref));
else
cli_msg(-1006, " Routes: %u imported, %u exported, %u preferred",
in_routes, out_routes, SRI(pref));
cli_msg(-1006, " Route change stats: received rejected filtered ignored RX limit IN limit accepted");
cli_msg(-1006, " Import updates: %10u %10u %10u %10u %10u %10u %10u",
SCI(updates_received), SCI(updates_invalid),
SCI(updates_filtered), SRI(updates_ignored),
SCI(updates_limited_rx), SCI(updates_limited_in),
SRI(updates_accepted));
cli_msg(-1006, " Import withdraws: %10u %10u --- %10u --- %10u",
SCI(withdraws_received), SCI(withdraws_invalid),
SRI(withdraws_ignored), SRI(withdraws_accepted));
cli_msg(-1006, " Export updates: %10u %10u %10u --- %10u %10u",
SRE(updates_received), SCE(updates_rejected),
SCE(updates_filtered), SCE(updates_limited), SCE(updates_accepted));
cli_msg(-1006, " Export withdraws: %10u --- --- --- ---%10u",
SRE(withdraws_received), SCE(withdraws_accepted));
#undef SRI
#undef SRE
#undef SCI
#undef SCE
#undef SON
}
void
channel_show_limit(struct limit *l, const char *dsc, int active, int action)
{
if (!l->action)
return;
cli_msg(-1006, " %-16s%d%s", dsc, l->max, active ? " [HIT]" : "");
cli_msg(-1006, " Action: %s", channel_limit_name[action]);
}
void
channel_show_info(struct channel *c)
{
cli_msg(-1006, " Channel %s", c->name);
cli_msg(-1006, " State: %s", c_states[c->channel_state]);
cli_msg(-1006, " Import state: %s", rt_import_state_name(rt_import_get_state(c->in_req.hook)));
cli_msg(-1006, " Export state: %s", rt_export_state_name(rt_export_get_state(c->out_req.hook)));
cli_msg(-1006, " Table: %s", c->table->name);
cli_msg(-1006, " Preference: %d", c->preference);
cli_msg(-1006, " Input filter: %s", filter_name(c->in_filter));
cli_msg(-1006, " Output filter: %s", filter_name(c->out_filter));
if (graceful_restart_state == GRS_ACTIVE)
cli_msg(-1006, " GR recovery: %s%s",
c->gr_lock ? " pending" : "",
c->gr_wait ? " waiting" : "");
channel_show_limit(&c->rx_limit, "Receive limit:", c->limit_active & (1 << PLD_RX), c->limit_actions[PLD_RX]);
channel_show_limit(&c->in_limit, "Import limit:", c->limit_active & (1 << PLD_IN), c->limit_actions[PLD_IN]);
channel_show_limit(&c->out_limit, "Export limit:", c->limit_active & (1 << PLD_OUT), c->limit_actions[PLD_OUT]);
if (c->channel_state != CS_DOWN)
channel_show_stats(c);
}
void
channel_cmd_debug(struct channel *c, uint mask)
{
if (cli_access_restricted())
return;
c->debug = mask;
cli_msg(0, "");
}
void
proto_cmd_show(struct proto *p, uintptr_t verbose, int cnt)
{
byte buf[256], tbuf[TM_DATETIME_BUFFER_SIZE];
/* First protocol - show header */
if (!cnt)
cli_msg(-2002, "%-10s %-10s %-10s %-6s %-12s %s",
"Name", "Proto", "Table", "State", "Since", "Info");
buf[0] = 0;
if (p->proto->get_status)
p->proto->get_status(p, buf);
tm_format_time(tbuf, &config->tf_proto, p->last_state_change);
cli_msg(-1002, "%-10s %-10s %-10s %-6s %-12s %s",
p->name,
p->proto->name,
p->main_channel ? p->main_channel->table->name : "---",
proto_state_name(p),
tbuf,
buf);
if (verbose)
{
if (p->cf->dsc)
cli_msg(-1006, " Description: %s", p->cf->dsc);
if (p->message)
cli_msg(-1006, " Message: %s", p->message);
if (p->cf->router_id)
cli_msg(-1006, " Router ID: %R", p->cf->router_id);
if (p->vrf)
cli_msg(-1006, " VRF: %s", p->vrf->name);
if (p->proto->show_proto_info)
p->proto->show_proto_info(p);
else
{
struct channel *c;
WALK_LIST(c, p->channels)
channel_show_info(c);
}
cli_msg(-1006, "");
}
}
void
proto_cmd_disable(struct proto *p, uintptr_t arg, int cnt UNUSED)
{
if (p->disabled)
{
cli_msg(-8, "%s: already disabled", p->name);
return;
}
log(L_INFO "Disabling protocol %s", p->name);
p->disabled = 1;
p->down_code = PDC_CMD_DISABLE;
proto_set_message(p, (char *) arg, -1);
proto_shutdown(p);
cli_msg(-9, "%s: disabled", p->name);
}
void
proto_cmd_enable(struct proto *p, uintptr_t arg, int cnt UNUSED)
{
if (!p->disabled)
{
cli_msg(-10, "%s: already enabled", p->name);
return;
}
log(L_INFO "Enabling protocol %s", p->name);
p->disabled = 0;
proto_set_message(p, (char *) arg, -1);
proto_rethink_goal(p);
cli_msg(-11, "%s: enabled", p->name);
}
void
proto_cmd_restart(struct proto *p, uintptr_t arg, int cnt UNUSED)
{
if (p->disabled)
{
cli_msg(-8, "%s: already disabled", p->name);
return;
}
log(L_INFO "Restarting protocol %s", p->name);
p->disabled = 1;
p->down_code = PDC_CMD_RESTART;
proto_set_message(p, (char *) arg, -1);
proto_shutdown(p);
p->disabled = 0;
/* After the protocol shuts down, proto_rethink_goal() is run from proto_event. */
cli_msg(-12, "%s: restarted", p->name);
}
void
proto_cmd_reload(struct proto *p, uintptr_t dir, int cnt UNUSED)
{
struct channel *c;
if (p->disabled)
{
cli_msg(-8, "%s: already disabled", p->name);
return;
}
/* If the protocol in not UP, it has no routes */
if (p->proto_state != PS_UP)
return;
/* All channels must support reload */
if (dir != CMD_RELOAD_OUT)
WALK_LIST(c, p->channels)
if ((c->channel_state == CS_UP) && !channel_reloadable(c))
{
cli_msg(-8006, "%s: reload failed", p->name);
return;
}
log(L_INFO "Reloading protocol %s", p->name);
/* re-importing routes */
if (dir != CMD_RELOAD_OUT)
WALK_LIST(c, p->channels)
if (c->channel_state == CS_UP)
channel_request_reload(c);
/* re-exporting routes */
if (dir != CMD_RELOAD_IN)
WALK_LIST(c, p->channels)
if (c->channel_state == CS_UP)
channel_request_feeding_dynamic(c, CFRT_AUXILIARY);
cli_msg(-15, "%s: reloading", p->name);
}
extern void pipe_update_debug(struct proto *P);
void
proto_cmd_debug(struct proto *p, uintptr_t mask, int cnt UNUSED)
{
p->debug = mask;
#ifdef CONFIG_PIPE
if (p->proto == &proto_pipe)
pipe_update_debug(p);
#endif
}
void
proto_cmd_mrtdump(struct proto *p, uintptr_t mask, int cnt UNUSED)
{
p->mrtdump = mask;
}
static void
proto_apply_cmd_symbol(const struct symbol *s, void (* cmd)(struct proto *, uintptr_t, int), uintptr_t arg)
{
if (s->class != SYM_PROTO)
{
cli_msg(9002, "%s is not a protocol", s->name);
return;
}
if (s->proto->proto)
{
struct proto *p = s->proto->proto;
PROTO_LOCKED_FROM_MAIN(p)
cmd(p, arg, 0);
cli_msg(0, "");
}
else
cli_msg(9002, "%s does not exist", s->name);
}
static void
proto_apply_cmd_patt(const char *patt, void (* cmd)(struct proto *, uintptr_t, int), uintptr_t arg)
{
int cnt = 0;
WALK_TLIST(proto, p, &global_proto_list)
if (!patt || patmatch(patt, p->name))
PROTO_LOCKED_FROM_MAIN(p)
cmd(p, arg, cnt++);
if (!cnt)
cli_msg(8003, "No protocols match");
else
cli_msg(0, "");
}
void
proto_apply_cmd(struct proto_spec ps, void (* cmd)(struct proto *, uintptr_t, int),
int restricted, uintptr_t arg)
{
if (restricted && cli_access_restricted())
return;
if (ps.patt)
proto_apply_cmd_patt(ps.ptr, cmd, arg);
else
proto_apply_cmd_symbol(ps.ptr, cmd, arg);
}
struct proto *
proto_get_named(struct symbol *sym, struct protocol *pr)
{
struct proto *p;
if (sym)
{
if (sym->class != SYM_PROTO)
cf_error("%s: Not a protocol", sym->name);
p = sym->proto->proto;
if (!p || p->proto != pr)
cf_error("%s: Not a %s protocol", sym->name, pr->name);
}
else
{
p = NULL;
WALK_TLIST(proto, q, &global_proto_list)
if ((q->proto == pr) && (q->proto_state != PS_DOWN))
{
if (p)
cf_error("There are multiple %s protocols running", pr->name);
p = q;
}
if (!p)
cf_error("There is no %s protocol running", pr->name);
}
return p;
}
struct proto *
proto_iterate_named(struct symbol *sym, struct protocol *proto, struct proto *old)
{
if (sym)
{
/* Just the first pass */
if (old)
{
cli_msg(0, "");
return NULL;
}
if (sym->class != SYM_PROTO)
cf_error("%s: Not a protocol", sym->name);
struct proto *p = sym->proto->proto;
if (!p || (p->proto != proto))
cf_error("%s: Not a %s protocol", sym->name, proto->name);
return p;
}
else
{
for (struct proto *p = old ? old->n.next : global_proto_list.first;
p;
p = p->n.next)
{
if ((p->proto == proto) && (p->proto_state != PS_DOWN))
{
cli_separator(this_cli);
return p;
}
}
/* Not found anything during first pass */
if (!old)
cf_error("There is no %s protocol running", proto->name);
/* No more items */
cli_msg(0, "");
return NULL;
}
}