mirror of
https://gitlab.nic.cz/labs/bird.git
synced 2025-01-04 08:01:54 +00:00
349 lines
8.7 KiB
C
349 lines
8.7 KiB
C
/*
|
|
* BIRD Library -- SHA-1 Hash Function (FIPS 180-1, RFC 3174) and HMAC-SHA-1
|
|
*
|
|
* (c) 2015 CZ.NIC z.s.p.o.
|
|
*
|
|
* Based on the code from libucw-6.4
|
|
* (c) 2008--2009 Martin Mares <mj@ucw.cz>
|
|
*
|
|
* Based on the code from libgcrypt-1.2.3, which is
|
|
* (c) 1998, 2001, 2002, 2003 Free Software Foundation, Inc.
|
|
*
|
|
* Can be freely distributed and used under the terms of the GNU GPL.
|
|
*/
|
|
|
|
#include "lib/sha1.h"
|
|
#include "lib/unaligned.h"
|
|
|
|
|
|
void
|
|
sha1_init(struct sha1_context *ctx)
|
|
{
|
|
ctx->h0 = 0x67452301;
|
|
ctx->h1 = 0xefcdab89;
|
|
ctx->h2 = 0x98badcfe;
|
|
ctx->h3 = 0x10325476;
|
|
ctx->h4 = 0xc3d2e1f0;
|
|
|
|
ctx->nblocks = 0;
|
|
ctx->count = 0;
|
|
}
|
|
|
|
/*
|
|
* Transform the message X which consists of 16 32-bit-words
|
|
*/
|
|
static void
|
|
sha1_transform(struct sha1_context *ctx, const byte *data)
|
|
{
|
|
u32 a,b,c,d,e,tm;
|
|
u32 x[16];
|
|
|
|
/* Get values from the chaining vars. */
|
|
a = ctx->h0;
|
|
b = ctx->h1;
|
|
c = ctx->h2;
|
|
d = ctx->h3;
|
|
e = ctx->h4;
|
|
|
|
#ifdef CPU_BIG_ENDIAN
|
|
memcpy(x, data, 64);
|
|
#else
|
|
int i;
|
|
for (i = 0; i < 16; i++)
|
|
x[i] = get_u32(data+4*i);
|
|
#endif
|
|
|
|
#define K1 0x5A827999L
|
|
#define K2 0x6ED9EBA1L
|
|
#define K3 0x8F1BBCDCL
|
|
#define K4 0xCA62C1D6L
|
|
#define F1(x,y,z) ( z ^ ( x & ( y ^ z ) ) )
|
|
#define F2(x,y,z) ( x ^ y ^ z )
|
|
#define F3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) )
|
|
#define F4(x,y,z) ( x ^ y ^ z )
|
|
|
|
#define M(i) (tm = x[i&0x0f] ^ x[(i-14)&0x0f] ^ x[(i-8)&0x0f] ^ x[(i-3)&0x0f], (x[i&0x0f] = ROL(tm, 1)))
|
|
|
|
/* Bitwise rotation of an unsigned int to the left **/
|
|
#define ROL(x, bits) (((x) << (bits)) | ((uint)(x) >> (sizeof(uint)*8 - (bits))))
|
|
|
|
#define R(a, b, c, d, e, f, k, m) \
|
|
do \
|
|
{ \
|
|
e += ROL(a, 5) + f(b, c, d) + k + m; \
|
|
b = ROL(b, 30); \
|
|
} while(0)
|
|
|
|
R( a, b, c, d, e, F1, K1, x[ 0] );
|
|
R( e, a, b, c, d, F1, K1, x[ 1] );
|
|
R( d, e, a, b, c, F1, K1, x[ 2] );
|
|
R( c, d, e, a, b, F1, K1, x[ 3] );
|
|
R( b, c, d, e, a, F1, K1, x[ 4] );
|
|
R( a, b, c, d, e, F1, K1, x[ 5] );
|
|
R( e, a, b, c, d, F1, K1, x[ 6] );
|
|
R( d, e, a, b, c, F1, K1, x[ 7] );
|
|
R( c, d, e, a, b, F1, K1, x[ 8] );
|
|
R( b, c, d, e, a, F1, K1, x[ 9] );
|
|
R( a, b, c, d, e, F1, K1, x[10] );
|
|
R( e, a, b, c, d, F1, K1, x[11] );
|
|
R( d, e, a, b, c, F1, K1, x[12] );
|
|
R( c, d, e, a, b, F1, K1, x[13] );
|
|
R( b, c, d, e, a, F1, K1, x[14] );
|
|
R( a, b, c, d, e, F1, K1, x[15] );
|
|
R( e, a, b, c, d, F1, K1, M(16) );
|
|
R( d, e, a, b, c, F1, K1, M(17) );
|
|
R( c, d, e, a, b, F1, K1, M(18) );
|
|
R( b, c, d, e, a, F1, K1, M(19) );
|
|
R( a, b, c, d, e, F2, K2, M(20) );
|
|
R( e, a, b, c, d, F2, K2, M(21) );
|
|
R( d, e, a, b, c, F2, K2, M(22) );
|
|
R( c, d, e, a, b, F2, K2, M(23) );
|
|
R( b, c, d, e, a, F2, K2, M(24) );
|
|
R( a, b, c, d, e, F2, K2, M(25) );
|
|
R( e, a, b, c, d, F2, K2, M(26) );
|
|
R( d, e, a, b, c, F2, K2, M(27) );
|
|
R( c, d, e, a, b, F2, K2, M(28) );
|
|
R( b, c, d, e, a, F2, K2, M(29) );
|
|
R( a, b, c, d, e, F2, K2, M(30) );
|
|
R( e, a, b, c, d, F2, K2, M(31) );
|
|
R( d, e, a, b, c, F2, K2, M(32) );
|
|
R( c, d, e, a, b, F2, K2, M(33) );
|
|
R( b, c, d, e, a, F2, K2, M(34) );
|
|
R( a, b, c, d, e, F2, K2, M(35) );
|
|
R( e, a, b, c, d, F2, K2, M(36) );
|
|
R( d, e, a, b, c, F2, K2, M(37) );
|
|
R( c, d, e, a, b, F2, K2, M(38) );
|
|
R( b, c, d, e, a, F2, K2, M(39) );
|
|
R( a, b, c, d, e, F3, K3, M(40) );
|
|
R( e, a, b, c, d, F3, K3, M(41) );
|
|
R( d, e, a, b, c, F3, K3, M(42) );
|
|
R( c, d, e, a, b, F3, K3, M(43) );
|
|
R( b, c, d, e, a, F3, K3, M(44) );
|
|
R( a, b, c, d, e, F3, K3, M(45) );
|
|
R( e, a, b, c, d, F3, K3, M(46) );
|
|
R( d, e, a, b, c, F3, K3, M(47) );
|
|
R( c, d, e, a, b, F3, K3, M(48) );
|
|
R( b, c, d, e, a, F3, K3, M(49) );
|
|
R( a, b, c, d, e, F3, K3, M(50) );
|
|
R( e, a, b, c, d, F3, K3, M(51) );
|
|
R( d, e, a, b, c, F3, K3, M(52) );
|
|
R( c, d, e, a, b, F3, K3, M(53) );
|
|
R( b, c, d, e, a, F3, K3, M(54) );
|
|
R( a, b, c, d, e, F3, K3, M(55) );
|
|
R( e, a, b, c, d, F3, K3, M(56) );
|
|
R( d, e, a, b, c, F3, K3, M(57) );
|
|
R( c, d, e, a, b, F3, K3, M(58) );
|
|
R( b, c, d, e, a, F3, K3, M(59) );
|
|
R( a, b, c, d, e, F4, K4, M(60) );
|
|
R( e, a, b, c, d, F4, K4, M(61) );
|
|
R( d, e, a, b, c, F4, K4, M(62) );
|
|
R( c, d, e, a, b, F4, K4, M(63) );
|
|
R( b, c, d, e, a, F4, K4, M(64) );
|
|
R( a, b, c, d, e, F4, K4, M(65) );
|
|
R( e, a, b, c, d, F4, K4, M(66) );
|
|
R( d, e, a, b, c, F4, K4, M(67) );
|
|
R( c, d, e, a, b, F4, K4, M(68) );
|
|
R( b, c, d, e, a, F4, K4, M(69) );
|
|
R( a, b, c, d, e, F4, K4, M(70) );
|
|
R( e, a, b, c, d, F4, K4, M(71) );
|
|
R( d, e, a, b, c, F4, K4, M(72) );
|
|
R( c, d, e, a, b, F4, K4, M(73) );
|
|
R( b, c, d, e, a, F4, K4, M(74) );
|
|
R( a, b, c, d, e, F4, K4, M(75) );
|
|
R( e, a, b, c, d, F4, K4, M(76) );
|
|
R( d, e, a, b, c, F4, K4, M(77) );
|
|
R( c, d, e, a, b, F4, K4, M(78) );
|
|
R( b, c, d, e, a, F4, K4, M(79) );
|
|
|
|
/* Update chaining vars. */
|
|
ctx->h0 += a;
|
|
ctx->h1 += b;
|
|
ctx->h2 += c;
|
|
ctx->h3 += d;
|
|
ctx->h4 += e;
|
|
}
|
|
|
|
/*
|
|
* Update the message digest with the contents of BUF with length LEN.
|
|
*/
|
|
void
|
|
sha1_update(struct sha1_context *ctx, const byte *buf, uint len)
|
|
{
|
|
if (ctx->count)
|
|
{
|
|
/* Fill rest of internal buffer */
|
|
for (; len && ctx->count < SHA1_BLOCK_SIZE; len--)
|
|
ctx->buf[ctx->count++] = *buf++;
|
|
|
|
if (ctx->count < SHA1_BLOCK_SIZE)
|
|
return;
|
|
|
|
/* Process data from internal buffer */
|
|
sha1_transform(ctx, ctx->buf);
|
|
ctx->nblocks++;
|
|
ctx->count = 0;
|
|
}
|
|
|
|
if (!len)
|
|
return;
|
|
|
|
/* Process data from input buffer */
|
|
while (len >= SHA1_BLOCK_SIZE)
|
|
{
|
|
sha1_transform(ctx, buf);
|
|
ctx->nblocks++;
|
|
buf += SHA1_BLOCK_SIZE;
|
|
len -= SHA1_BLOCK_SIZE;
|
|
}
|
|
|
|
/* Copy remaining data to internal buffer */
|
|
memcpy(ctx->buf, buf, len);
|
|
ctx->count = len;
|
|
}
|
|
|
|
/*
|
|
* The routine final terminates the computation and returns the digest. The
|
|
* handle is prepared for a new cycle, but adding bytes to the handle will the
|
|
* destroy the returned buffer.
|
|
*
|
|
* Returns: 20 bytes representing the digest.
|
|
*/
|
|
byte *
|
|
sha1_final(struct sha1_context *ctx)
|
|
{
|
|
u32 t, msb, lsb;
|
|
|
|
sha1_update(ctx, NULL, 0); /* flush */
|
|
|
|
t = ctx->nblocks;
|
|
/* multiply by 64 to make a byte count */
|
|
lsb = t << 6;
|
|
msb = t >> 26;
|
|
/* add the count */
|
|
t = lsb;
|
|
if ((lsb += ctx->count) < t)
|
|
msb++;
|
|
/* multiply by 8 to make a bit count */
|
|
t = lsb;
|
|
lsb <<= 3;
|
|
msb <<= 3;
|
|
msb |= t >> 29;
|
|
|
|
if (ctx->count < 56)
|
|
{
|
|
/* enough room */
|
|
ctx->buf[ctx->count++] = 0x80; /* pad */
|
|
while (ctx->count < 56)
|
|
ctx->buf[ctx->count++] = 0; /* pad */
|
|
}
|
|
else
|
|
{
|
|
/* need one extra block */
|
|
ctx->buf[ctx->count++] = 0x80; /* pad character */
|
|
while (ctx->count < 64)
|
|
ctx->buf[ctx->count++] = 0;
|
|
sha1_update(ctx, NULL, 0); /* flush */
|
|
memset(ctx->buf, 0, 56); /* fill next block with zeroes */
|
|
}
|
|
|
|
/* append the 64 bit count */
|
|
ctx->buf[56] = msb >> 24;
|
|
ctx->buf[57] = msb >> 16;
|
|
ctx->buf[58] = msb >> 8;
|
|
ctx->buf[59] = msb;
|
|
ctx->buf[60] = lsb >> 24;
|
|
ctx->buf[61] = lsb >> 16;
|
|
ctx->buf[62] = lsb >> 8;
|
|
ctx->buf[63] = lsb;
|
|
sha1_transform(ctx, ctx->buf);
|
|
|
|
byte *p = ctx->buf;
|
|
#define X(a) do { put_u32(p, ctx->h##a); p += 4; } while(0)
|
|
X(0);
|
|
X(1);
|
|
X(2);
|
|
X(3);
|
|
X(4);
|
|
#undef X
|
|
|
|
return ctx->buf;
|
|
}
|
|
|
|
|
|
/*
|
|
* SHA1-HMAC
|
|
*/
|
|
|
|
/*
|
|
* Shortcut function which puts the hash value of the supplied buffer
|
|
* into outbuf which must have a size of 20 bytes.
|
|
*/
|
|
void
|
|
sha1_hash_buffer(byte *outbuf, const byte *buffer, uint length)
|
|
{
|
|
struct sha1_context ctx;
|
|
|
|
sha1_init(&ctx);
|
|
sha1_update(&ctx, buffer, length);
|
|
memcpy(outbuf, sha1_final(&ctx), SHA1_SIZE);
|
|
}
|
|
|
|
void
|
|
sha1_hmac_init(struct sha1_hmac_context *ctx, const byte *key, uint keylen)
|
|
{
|
|
byte keybuf[SHA1_BLOCK_SIZE], buf[SHA1_BLOCK_SIZE];
|
|
|
|
/* Hash the key if necessary */
|
|
if (keylen <= SHA1_BLOCK_SIZE)
|
|
{
|
|
memcpy(keybuf, key, keylen);
|
|
memset(keybuf + keylen, 0, SHA1_BLOCK_SIZE - keylen);
|
|
}
|
|
else
|
|
{
|
|
sha1_hash_buffer(keybuf, key, keylen);
|
|
memset(keybuf + SHA1_SIZE, 0, SHA1_BLOCK_SIZE - SHA1_SIZE);
|
|
}
|
|
|
|
/* Initialize the inner digest */
|
|
sha1_init(&ctx->ictx);
|
|
int i;
|
|
for (i = 0; i < SHA1_BLOCK_SIZE; i++)
|
|
buf[i] = keybuf[i] ^ 0x36;
|
|
sha1_update(&ctx->ictx, buf, SHA1_BLOCK_SIZE);
|
|
|
|
/* Initialize the outer digest */
|
|
sha1_init(&ctx->octx);
|
|
for (i = 0; i < SHA1_BLOCK_SIZE; i++)
|
|
buf[i] = keybuf[i] ^ 0x5c;
|
|
sha1_update(&ctx->octx, buf, SHA1_BLOCK_SIZE);
|
|
}
|
|
|
|
void
|
|
sha1_hmac_update(struct sha1_hmac_context *ctx, const byte *data, uint datalen)
|
|
{
|
|
/* Just update the inner digest */
|
|
sha1_update(&ctx->ictx, data, datalen);
|
|
}
|
|
|
|
byte *
|
|
sha1_hmac_final(struct sha1_hmac_context *ctx)
|
|
{
|
|
/* Finish the inner digest */
|
|
byte *isha = sha1_final(&ctx->ictx);
|
|
|
|
/* Finish the outer digest */
|
|
sha1_update(&ctx->octx, isha, SHA1_SIZE);
|
|
return sha1_final(&ctx->octx);
|
|
}
|
|
|
|
void
|
|
sha1_hmac(byte *outbuf, const byte *key, uint keylen, const byte *data, uint datalen)
|
|
{
|
|
struct sha1_hmac_context ctx;
|
|
|
|
sha1_hmac_init(&ctx, key, keylen);
|
|
sha1_hmac_update(&ctx, data, datalen);
|
|
memcpy(outbuf, sha1_hmac_final(&ctx), SHA1_SIZE);
|
|
}
|