0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2025-01-11 19:41:54 +00:00
bird/lib/fletcher16.h
Ondrej Zajicek 77edab6409 OSPF: Redesign LSA checksumming
New LSA checksumming code separates generic Fletcher-16 and OSPF-specific
code and avoids back and forth endianity conversions, making it much more
readable and also several times faster.
2015-05-01 14:40:56 +02:00

197 lines
5.2 KiB
C

/*
* BIRD Library -- Fletcher-16 checksum
*
* (c) 2015 Ondrej Zajicek <santiago@crfreenet.org>
* (c) 2015 CZ.NIC z.s.p.o.
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
/**
* DOC: Fletcher-16 checksum
*
* Fletcher-16 checksum is a position-dependent checksum algorithm used for
* error-detection e.g. in OSPF LSAs.
*
* To generate Fletcher-16 checksum, zero the checksum field in data, initialize
* the context by fletcher16_init(), process the data by fletcher16_update(),
* compute the checksum value by fletcher16_final() and store it to the checksum
* field in data by put_u16() (or other means involving htons() conversion).
*
* To verify Fletcher-16 checksum, initialize the context by fletcher16_init(),
* process the data by fletcher16_update(), compute a passing checksum by
* fletcher16_compute() and check if it is zero.
*/
#ifndef _BIRD_FLETCHER16_H_
#define _BIRD_FLETCHER16_H_
#include "nest/bird.h"
struct fletcher16_context
{
int c0, c1;
};
/**
* fletcher16_init - initialize Fletcher-16 context
* @ctx: the context
*/
static inline void
fletcher16_init(struct fletcher16_context *ctx)
{
ctx->c0 = ctx->c1 = 0;
}
/**
* fletcher16_update - process data to Fletcher-16 context
* @ctx: the context
* @buf: data buffer
* @len: data length
*
* fletcher16_update() reads data from the buffer @buf and updates passing sums
* in the context @ctx. It may be used multiple times for multiple blocks of
* checksummed data.
*/
static inline void
fletcher16_update(struct fletcher16_context *ctx, const u8* buf, int len)
{
/*
* The Fletcher-16 sum is essentially a sequence of
* ctx->c1 += ctx->c0 += *buf++, modulo 255.
*
* In the inner loop, we eliminate modulo operation and we do some loop
* unrolling. MODX is the maximal number of steps that can be done without
* modulo before overflow, see RFC 1008 for details. We use a bit smaller
* value to cover for initial steps due to loop unrolling.
*/
#define MODX 4096
int blen, i;
blen = len % 4;
len -= blen;
for (i = 0; i < blen; i++)
ctx->c1 += ctx->c0 += *buf++;
do {
blen = MIN(len, MODX);
len -= blen;
for (i = 0; i < blen; i += 4)
{
ctx->c1 += ctx->c0 += *buf++;
ctx->c1 += ctx->c0 += *buf++;
ctx->c1 += ctx->c0 += *buf++;
ctx->c1 += ctx->c0 += *buf++;
}
ctx->c0 %= 255;
ctx->c1 %= 255;
} while (len);
}
/**
* fletcher16_update_n32 - process data to Fletcher-16 context, with endianity adjustment
* @ctx: the context
* @buf: data buffer
* @len: data length
*
* fletcher16_update_n32() works like fletcher16_update(), except it applies
* 32-bit host/network endianity swap to the data before they are processed.
* I.e., it assumes that the data is a sequence of u32 that must be converted by
* ntohl() or htonl() before processing. The @buf need not to be aligned, but
* its length (@len) must be multiple of 4. Note that on big endian systems the
* host endianity is the same as the network endianity, therefore there is no
* endianity swap.
*/
static inline void
fletcher16_update_n32(struct fletcher16_context *ctx, const u8* buf, int len)
{
/* See fletcher16_update() for details */
int blen, i;
do {
blen = MIN(len, MODX);
len -= blen;
for (i = 0; i < blen; i += 4)
{
#ifdef CPU_BIG_ENDIAN
ctx->c1 += ctx->c0 += *buf++;
ctx->c1 += ctx->c0 += *buf++;
ctx->c1 += ctx->c0 += *buf++;
ctx->c1 += ctx->c0 += *buf++;
#else
ctx->c1 += ctx->c0 += buf[3];
ctx->c1 += ctx->c0 += buf[2];
ctx->c1 += ctx->c0 += buf[1];
ctx->c1 += ctx->c0 += buf[0];
buf += 4;
#endif
}
ctx->c0 %= 255;
ctx->c1 %= 255;
} while (len);
}
/**
* fletcher16_final - compute final Fletcher-16 checksum value
* @ctx: the context
* @len: total data length
* @pos: offset in data where the checksum will be stored
*
* fletcher16_final() computes the final checksum value and returns it.
* The caller is responsible for storing it in the appropriate position.
* The checksum value depends on @len and @pos, but only their difference
* (i.e. the offset from the end) is significant.
*
* The checksum value is represented as u16, although it is defined as two
* consecutive bytes. We treat them as one u16 in big endian / network order.
* I.e., the returned value is in the form that would be returned by get_u16()
* from the checksum field in the data buffer, therefore the caller should use
* put_u16() or an explicit host-to-network conversion when storing it to the
* checksum field in the data buffer.
*
* Note that the returned checksum value is always nonzero.
*/
static inline u16
fletcher16_final(struct fletcher16_context *ctx, int len, int pos)
{
int x = ((len - pos - 1) * ctx->c0 - ctx->c1) % 255;
if (x <= 0)
x += 255;
int y = 510 - ctx->c0 - x;
if (y > 255)
y -= 255;
return (x << 8) | y;
}
/**
* fletcher16_compute - compute Fletcher-16 sum for verification
* @ctx: the context
*
* fletcher16_compute() returns a passing Fletcher-16 sum for processed data.
* If the data contains the proper Fletcher-16 checksum value, the returned
* value is zero.
*/
static inline u16
fletcher16_compute(struct fletcher16_context *ctx)
{
return (ctx->c0 << 8) | ctx->c1;
}
#endif