0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2024-11-13 22:58:42 +00:00
bird/proto/rip/rip.c
Maria Matejka c354e8f4c1 Interface updates are asynchronous
Instead of propagating interface updates as they are loaded from kernel,
they are enqueued and all the notifications are called from a
protocol-specific event. This change allows to break the locking loop
between protocols and interfaces.

Anyway, this change is based on v2 branch to keep the changes between v2
and v3 smaller.
2023-02-02 15:57:21 +01:00

1371 lines
34 KiB
C

/*
* BIRD -- Routing Information Protocol (RIP)
*
* (c) 1998--1999 Pavel Machek <pavel@ucw.cz>
* (c) 2004--2013 Ondrej Filip <feela@network.cz>
* (c) 2009--2015 Ondrej Zajicek <santiago@crfreenet.org>
* (c) 2009--2015 CZ.NIC z.s.p.o.
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
/**
* DOC: Routing Information Protocol (RIP)
*
* The RIP protocol is implemented in two files: |rip.c| containing the protocol
* logic, route management and the protocol glue with BIRD core, and |packets.c|
* handling RIP packet processing, RX, TX and protocol sockets.
*
* Each instance of RIP is described by a structure &rip_proto, which contains
* an internal RIP routing table, a list of protocol interfaces and the main
* timer responsible for RIP routing table cleanup.
*
* RIP internal routing table contains incoming and outgoing routes. For each
* network (represented by structure &rip_entry) there is one outgoing route
* stored directly in &rip_entry and an one-way linked list of incoming routes
* (structures &rip_rte). The list contains incoming routes from different RIP
* neighbors, but only routes with the lowest metric are stored (i.e., all
* stored incoming routes have the same metric).
*
* Note that RIP itself does not select outgoing route, that is done by the core
* routing table. When a new incoming route is received, it is propagated to the
* RIP table by rip_update_rte() and possibly stored in the list of incoming
* routes. Then the change may be propagated to the core by rip_announce_rte().
* The core selects the best route and propagate it to RIP by rip_rt_notify(),
* which updates outgoing route part of &rip_entry and possibly triggers route
* propagation by rip_trigger_update().
*
* RIP interfaces are represented by structures &rip_iface. A RIP interface
* contains a per-interface socket, a list of associated neighbors, interface
* configuration, and state information related to scheduled interface events
* and running update sessions. RIP interfaces are added and removed based on
* core interface notifications.
*
* There are two RIP interface events - regular updates and triggered updates.
* Both are managed from the RIP interface timer (rip_iface_timer()). Regular
* updates are called at fixed interval and propagate the whole routing table,
* while triggered updates are scheduled by rip_trigger_update() due to some
* routing table change and propagate only the routes modified since the time
* they were scheduled. There are also unicast-destined requested updates, but
* these are sent directly as a reaction to received RIP request message. The
* update session is started by rip_send_table(). There may be at most one
* active update session per interface, as the associated state (including the
* fib iterator) is stored directly in &rip_iface structure.
*
* RIP neighbors are represented by structures &rip_neighbor. Compared to
* neighbor handling in other routing protocols, RIP does not have explicit
* neighbor discovery and adjacency maintenance, which makes the &rip_neighbor
* related code a bit peculiar. RIP neighbors are interlinked with core neighbor
* structures (&neighbor) and use core neighbor notifications to ensure that RIP
* neighbors are timely removed. RIP neighbors are added based on received route
* notifications and removed based on core neighbor and RIP interface events.
*
* RIP neighbors are linked by RIP routes and use counter to track the number of
* associated routes, but when these RIP routes timeout, associated RIP neighbor
* is still alive (with zero counter). When RIP neighbor is removed but still
* has some associated routes, it is not freed, just changed to detached state
* (core neighbors and RIP ifaces are unlinked), then during the main timer
* cleanup phase the associated routes are removed and the &rip_neighbor
* structure is finally freed.
*
* Supported standards:
* RFC 1058 - RIPv1
* RFC 2453 - RIPv2
* RFC 2080 - RIPng
* RFC 2091 - Triggered RIP for demand circuits
* RFC 4822 - RIP cryptographic authentication
*/
#include <stdlib.h>
#include "rip.h"
static inline void rip_lock_neighbor(struct rip_neighbor *n);
static inline void rip_unlock_neighbor(struct rip_neighbor *n);
static inline int rip_iface_link_up(struct rip_iface *ifa);
static inline void rip_kick_timer(struct rip_proto *p);
static inline void rip_iface_kick_timer(struct rip_iface *ifa);
static void rip_iface_timer(timer *timer);
static void rip_trigger_update(struct rip_proto *p);
/*
* RIP routes
*/
static struct rip_rte *
rip_add_rte(struct rip_proto *p, struct rip_rte **rp, struct rip_rte *src)
{
struct rip_rte *rt = sl_alloc(p->rte_slab);
memcpy(rt, src, sizeof(struct rip_rte));
rt->next = *rp;
*rp = rt;
rip_lock_neighbor(rt->from);
return rt;
}
static inline void
rip_remove_rte(struct rip_proto *p UNUSED, struct rip_rte **rp)
{
struct rip_rte *rt = *rp;
rip_unlock_neighbor(rt->from);
*rp = rt->next;
sl_free(rt);
}
static inline int rip_same_rte(struct rip_rte *a, struct rip_rte *b)
{ return a->metric == b->metric && a->tag == b->tag && ipa_equal(a->next_hop, b->next_hop); }
static inline int rip_valid_rte(struct rip_rte *rt)
{ return rt->from->ifa != NULL; }
struct rip_iface_adata {
struct adata ad;
struct iface *iface;
};
/**
* rip_announce_rte - announce route from RIP routing table to the core
* @p: RIP instance
* @en: related network
*
* The function takes a list of incoming routes from @en, prepare appropriate
* &rte for the core and propagate it by rte_update().
*/
static void
rip_announce_rte(struct rip_proto *p, struct rip_entry *en)
{
struct rip_rte *rt = en->routes;
/* Find first valid rte */
while (rt && !rip_valid_rte(rt))
rt = rt->next;
if (rt)
{
/* Update */
rta a0 = {
.pref = p->p.main_channel->preference,
.source = RTS_RIP,
.scope = SCOPE_UNIVERSE,
.dest = RTD_UNICAST,
};
u8 rt_metric = rt->metric;
u16 rt_tag = rt->tag;
if (p->ecmp)
{
/* ECMP route */
struct nexthop *nhs = NULL;
int num = 0;
for (rt = en->routes; rt && (num < p->ecmp); rt = rt->next)
{
if (!rip_valid_rte(rt))
continue;
struct nexthop *nh = allocz(sizeof(struct nexthop));
nh->gw = rt->next_hop;
nh->iface = rt->from->ifa->iface;
nh->weight = rt->from->ifa->cf->ecmp_weight;
nexthop_insert(&nhs, nh);
num++;
if (rt->tag != rt_tag)
rt_tag = 0;
}
a0.nh = *nhs;
}
else
{
/* Unipath route */
a0.from = rt->from->nbr->addr;
a0.nh.gw = rt->next_hop;
a0.nh.iface = rt->from->ifa->iface;
}
struct {
ea_list l;
eattr e[3];
struct rip_iface_adata riad;
} ea_block = {
.l = { .count = 3, },
.e = {
{
.id = EA_RIP_METRIC,
.type = EAF_TYPE_INT,
.u.data = rt_metric,
},
{
.id = EA_RIP_TAG,
.type = EAF_TYPE_INT,
.u.data = rt_tag,
},
{
.id = EA_RIP_FROM,
.type = EAF_TYPE_IFACE,
.u.ptr = &ea_block.riad.ad,
}
},
.riad = {
.ad = { .length = sizeof(struct rip_iface_adata) - sizeof(struct adata) },
.iface = a0.nh.iface,
},
};
a0.eattrs = &ea_block.l;
rta *a = rta_lookup(&a0);
rte *e = rte_get_temp(a, p->p.main_source);
rte_update(&p->p, en->n.addr, e);
}
else
{
/* Withdraw */
rte_update(&p->p, en->n.addr, NULL);
}
}
/**
* rip_update_rte - enter a route update to RIP routing table
* @p: RIP instance
* @addr: network address
* @new: a &rip_rte representing the new route
*
* The function is called by the RIP packet processing code whenever it receives
* a reachable route. The appropriate routing table entry is found and the list
* of incoming routes is updated. Eventually, the change is also propagated to
* the core by rip_announce_rte(). Note that for unreachable routes,
* rip_withdraw_rte() should be called instead of rip_update_rte().
*/
void
rip_update_rte(struct rip_proto *p, net_addr *n, struct rip_rte *new)
{
struct rip_entry *en = fib_get(&p->rtable, n);
struct rip_rte *rt, **rp;
int changed = 0;
/* If the new route is better, remove all current routes */
if (en->routes && new->metric < en->routes->metric)
while (en->routes)
rip_remove_rte(p, &en->routes);
/* Find the old route (also set rp for later) */
for (rp = &en->routes; rt = *rp; rp = &rt->next)
if (rt->from == new->from)
{
if (rip_same_rte(rt, new))
{
rt->expires = new->expires;
return;
}
/* Remove the old route */
rip_remove_rte(p, rp);
changed = 1;
break;
}
/* If the new route is optimal, add it to the list */
if (!en->routes || new->metric == en->routes->metric)
{
rt = rip_add_rte(p, rp, new);
changed = 1;
}
/* Announce change if on relevant position (the first or any for ECMP) */
if (changed && (rp == &en->routes || p->ecmp))
rip_announce_rte(p, en);
}
/**
* rip_withdraw_rte - enter a route withdraw to RIP routing table
* @p: RIP instance
* @addr: network address
* @from: a &rip_neighbor propagating the withdraw
*
* The function is called by the RIP packet processing code whenever it receives
* an unreachable route. The incoming route for given network from nbr @from is
* removed. Eventually, the change is also propagated by rip_announce_rte().
*/
void
rip_withdraw_rte(struct rip_proto *p, net_addr *n, struct rip_neighbor *from)
{
struct rip_entry *en = fib_find(&p->rtable, n);
struct rip_rte *rt, **rp;
if (!en)
return;
/* Find the old route */
for (rp = &en->routes; rt = *rp; rp = &rt->next)
if (rt->from == from)
break;
if (!rt)
return;
/* Remove the old route */
rip_remove_rte(p, rp);
/* Announce change if on relevant position */
if (rp == &en->routes || p->ecmp)
rip_announce_rte(p, en);
}
/*
* rip_rt_notify - core tells us about new route, so store
* it into our data structures.
*/
static void
rip_rt_notify(struct proto *P, struct channel *ch UNUSED, struct network *net, struct rte *new,
struct rte *old UNUSED)
{
struct rip_proto *p = (struct rip_proto *) P;
struct rip_entry *en;
int old_metric;
if (new)
{
/* Update */
u32 rt_tag = ea_get_int(new->attrs->eattrs, EA_RIP_TAG, 0);
u32 rt_metric = ea_get_int(new->attrs->eattrs, EA_RIP_METRIC, 1);
const eattr *rie = ea_find(new->attrs->eattrs, EA_RIP_FROM);
struct iface *rt_from = rie ? ((struct rip_iface_adata *) rie->u.ptr)->iface : NULL;
if (rt_metric > p->infinity)
{
log(L_WARN "%s: Invalid rip_metric value %u for route %N",
p->p.name, rt_metric, net->n.addr);
rt_metric = p->infinity;
}
if (rt_tag > 0xffff)
{
log(L_WARN "%s: Invalid rip_tag value %u for route %N",
p->p.name, rt_tag, net->n.addr);
rt_metric = p->infinity;
rt_tag = 0;
}
/*
* Note that we accept exported routes with infinity metric (this could
* happen if rip_metric is modified in filters). Such entry has infinity
* metric but is RIP_ENTRY_VALID and therefore is not subject to garbage
* collection.
*/
en = fib_get(&p->rtable, net->n.addr);
old_metric = en->valid ? en->metric : -1;
en->valid = RIP_ENTRY_VALID;
en->metric = rt_metric;
en->tag = rt_tag;
en->from = (new->src->proto == P) ? rt_from : NULL;
en->iface = new->attrs->nh.iface;
en->next_hop = new->attrs->nh.gw;
}
else
{
/* Withdraw */
en = fib_find(&p->rtable, net->n.addr);
if (!en || en->valid != RIP_ENTRY_VALID)
return;
old_metric = en->metric;
en->valid = RIP_ENTRY_STALE;
en->metric = p->infinity;
en->tag = 0;
en->from = NULL;
en->iface = NULL;
en->next_hop = IPA_NONE;
}
/* Activate triggered updates */
if (en->metric != old_metric)
{
en->changed = current_time();
rip_trigger_update(p);
}
}
void
rip_flush_table(struct rip_proto *p, struct rip_neighbor *n)
{
btime expires = current_time() + n->ifa->cf->timeout_time;
FIB_WALK(&p->rtable, struct rip_entry, en)
{
for (struct rip_rte *e = en->routes; e; e = e->next)
if ((e->from == n) && (e->expires == TIME_INFINITY))
e->expires = expires;
}
FIB_WALK_END;
}
/*
* RIP neighbors
*/
struct rip_neighbor *
rip_get_neighbor(struct rip_proto *p, ip_addr *a, struct rip_iface *ifa)
{
neighbor *nbr = neigh_find(&p->p, *a, ifa->iface, 0);
if (!nbr || (nbr->scope == SCOPE_HOST) || !rip_iface_link_up(ifa))
return NULL;
if (nbr->data)
return nbr->data;
TRACE(D_EVENTS, "New neighbor %I on %s", *a, ifa->iface->name);
struct rip_neighbor *n = mb_allocz(p->p.pool, sizeof(struct rip_neighbor));
n->ifa = ifa;
n->nbr = nbr;
nbr->data = n;
n->csn = nbr->aux;
add_tail(&ifa->neigh_list, NODE n);
return n;
}
static void
rip_remove_neighbor(struct rip_proto *p, struct rip_neighbor *n)
{
neighbor *nbr = n->nbr;
TRACE(D_EVENTS, "Removing neighbor %I on %s", nbr->addr, nbr->ifreq->name);
rem_node(NODE n);
n->ifa = NULL;
n->nbr = NULL;
nbr->data = NULL;
nbr->aux = n->csn;
rfree(n->bfd_req);
n->bfd_req = NULL;
n->last_seen = 0;
if (!n->uc)
mb_free(n);
/* Related routes are removed in rip_timer() */
rip_kick_timer(p);
}
static inline void
rip_lock_neighbor(struct rip_neighbor *n)
{
n->uc++;
}
static inline void
rip_unlock_neighbor(struct rip_neighbor *n)
{
n->uc--;
if (!n->nbr && !n->uc)
mb_free(n);
}
static void
rip_neigh_notify(struct neighbor *nbr)
{
struct rip_proto *p = (struct rip_proto *) nbr->proto;
struct rip_neighbor *n = nbr->data;
if (!n)
return;
/*
* We assume that rip_neigh_notify() is called before rip_if_notify() for
* IF_CHANGE_DOWN and therefore n->ifa is still valid. We have no such
* ordering assumption for IF_CHANGE_LINK, so we test link state of the
* underlying iface instead of just rip_iface state.
*/
if ((nbr->scope <= 0) || !rip_iface_link_up(n->ifa))
rip_remove_neighbor(p, n);
}
static void
rip_bfd_notify(struct bfd_request *req)
{
struct rip_neighbor *n = req->data;
struct rip_proto *p = n->ifa->rip;
if (req->down)
{
TRACE(D_EVENTS, "BFD session down for nbr %I on %s",
n->nbr->addr, n->ifa->iface->name);
rip_remove_neighbor(p, n);
}
}
void
rip_update_bfd(struct rip_proto *p, struct rip_neighbor *n)
{
int use_bfd = n->ifa->cf->bfd && n->last_seen;
if (use_bfd && !n->bfd_req)
{
/*
* For RIPv2, use the same address as rip_open_socket(). For RIPng, neighbor
* should contain an address from the same prefix, thus also link-local. It
* may cause problems if two link-local addresses are assigned to one iface.
*/
ip_addr saddr = rip_is_v2(p) ? n->ifa->sk->saddr : n->nbr->ifa->ip;
n->bfd_req = bfd_request_session(p->p.pool, n->nbr->addr, saddr,
n->nbr->iface, p->p.vrf,
rip_bfd_notify, n, NULL);
}
if (!use_bfd && n->bfd_req)
{
rfree(n->bfd_req);
n->bfd_req = NULL;
}
}
/*
* RIP interfaces
*/
static void
rip_iface_start(struct rip_iface *ifa)
{
struct rip_proto *p = ifa->rip;
TRACE(D_EVENTS, "Starting interface %s", ifa->iface->name);
if (! ifa->cf->demand_circuit)
{
ifa->next_regular = current_time() + (random() % ifa->cf->update_time) + 100 MS;
tm_set(ifa->timer, ifa->next_regular);
}
else
{
ifa->next_regular = TIME_INFINITY;
}
ifa->up = 1;
if (ifa->cf->passive)
return;
rip_send_request(p, ifa);
rip_send_table(p, ifa, ifa->addr, 0);
}
static void
rip_iface_stop(struct rip_iface *ifa)
{
struct rip_proto *p = ifa->rip;
struct rip_neighbor *n;
TRACE(D_EVENTS, "Stopping interface %s", ifa->iface->name);
rip_reset_tx_session(p, ifa);
ifa->next_regular = 0;
ifa->next_triggered = 0;
ifa->want_triggered = 0;
if (ifa->tx_pending)
ifa->tx_seqnum++;
ifa->tx_pending = 0;
ifa->req_pending = 0;
if (ifa->cf->demand_circuit && !ifa->cf->passive)
rip_send_flush(p, ifa);
WALK_LIST_FIRST(n, ifa->neigh_list)
rip_remove_neighbor(p, n);
tm_stop(ifa->timer);
tm_stop(ifa->rxmt_timer);
ifa->up = 0;
}
static inline int
rip_iface_link_up(struct rip_iface *ifa)
{
return !ifa->cf->check_link || (ifa->iface->flags & IF_LINK_UP);
}
static void
rip_iface_update_state(struct rip_iface *ifa)
{
int up = ifa->sk && rip_iface_link_up(ifa);
if (up == ifa->up)
return;
if (up)
rip_iface_start(ifa);
else
rip_iface_stop(ifa);
}
static void
rip_iface_update_buffers(struct rip_iface *ifa)
{
if (!ifa->sk)
return;
uint rbsize = ifa->cf->rx_buffer ?: ifa->iface->mtu;
uint tbsize = ifa->cf->tx_length ?: ifa->iface->mtu;
rbsize = MAX(rbsize, tbsize);
sk_set_rbsize(ifa->sk, rbsize);
sk_set_tbsize(ifa->sk, tbsize);
uint headers = (rip_is_v2(ifa->rip) ? IP4_HEADER_LENGTH : IP6_HEADER_LENGTH) + UDP_HEADER_LENGTH;
ifa->tx_plen = tbsize - headers;
if (ifa->cf->auth_type == RIP_AUTH_CRYPTO)
ifa->tx_plen -= RIP_AUTH_TAIL_LENGTH + max_mac_length(ifa->cf->passwords);
}
static inline void
rip_iface_update_bfd(struct rip_iface *ifa)
{
struct rip_proto *p = ifa->rip;
struct rip_neighbor *n;
WALK_LIST(n, ifa->neigh_list)
rip_update_bfd(p, n);
}
static void
rip_iface_locked(void *_ifa)
{
struct rip_iface *ifa = _ifa;
struct rip_proto *p = ifa->rip;
if (!rip_open_socket(ifa))
{
log(L_ERR "%s: Cannot open socket for %s", p->p.name, ifa->iface->name);
return;
}
rip_iface_update_buffers(ifa);
rip_iface_update_state(ifa);
}
static struct rip_iface *
rip_find_iface(struct rip_proto *p, struct iface *what)
{
struct rip_iface *ifa;
WALK_LIST(ifa, p->iface_list)
if (ifa->iface == what)
return ifa;
return NULL;
}
static void
rip_add_iface(struct rip_proto *p, struct iface *iface, struct rip_iface_config *ic)
{
struct rip_iface *ifa;
TRACE(D_EVENTS, "Adding interface %s", iface->name);
ifa = mb_allocz(p->p.pool, sizeof(struct rip_iface));
ifa->rip = p;
ifa->iface = iface;
ifa->cf = ic;
if (ipa_nonzero(ic->address))
ifa->addr = ic->address;
else if (ic->mode == RIP_IM_MULTICAST)
ifa->addr = rip_is_v2(p) ? IP4_RIP_ROUTERS : IP6_RIP_ROUTERS;
else /* Broadcast */
ifa->addr = iface->addr4->brd;
/*
* The above is just a workaround for BSD as it can't send broadcasts
* to 255.255.255.255. BSD systems need the network broadcast address instead.
*
* TODO: move this to sysdep code
*/
init_list(&ifa->neigh_list);
add_tail(&p->iface_list, NODE ifa);
ifa->timer = tm_new_init(p->p.pool, rip_iface_timer, ifa, 0, 0);
ifa->rxmt_timer = tm_new_init(p->p.pool, rip_rxmt_timeout, ifa, 0, 0);
struct object_lock *lock = olock_new(p->p.pool);
lock->type = OBJLOCK_UDP;
lock->port = ic->port;
lock->iface = iface;
lock->event = (event) {
.hook = rip_iface_locked,
.data = ifa,
};
ifa->lock = lock;
olock_acquire(lock);
}
static void
rip_remove_iface(struct rip_proto *p, struct rip_iface *ifa)
{
rip_iface_stop(ifa);
TRACE(D_EVENTS, "Removing interface %s", ifa->iface->name);
rem_node(NODE ifa);
rfree(ifa->sk);
rfree(ifa->lock);
rfree(ifa->timer);
mb_free(ifa);
}
static int
rip_reconfigure_iface(struct rip_proto *p, struct rip_iface *ifa, struct rip_iface_config *new)
{
struct rip_iface_config *old = ifa->cf;
/* Change of these options would require to reset the iface socket */
if ((new->mode != old->mode) ||
(new->port != old->port) ||
(new->tx_tos != old->tx_tos) ||
(new->tx_priority != old->tx_priority) ||
(new->ttl_security != old->ttl_security) ||
(new->demand_circuit != old->demand_circuit))
return 0;
TRACE(D_EVENTS, "Reconfiguring interface %s", ifa->iface->name);
ifa->cf = new;
rip_iface_update_buffers(ifa);
if ((! ifa->cf->demand_circuit) &&
(ifa->next_regular > (current_time() + new->update_time)))
ifa->next_regular = current_time() + (random() % new->update_time) + 100 MS;
if (ifa->up && new->demand_circuit && (new->passive != old->passive))
{
if (new->passive)
rip_send_flush(p, ifa);
else
{
rip_send_request(p, ifa);
rip_send_table(p, ifa, ifa->addr, 0);
}
}
if (new->check_link != old->check_link)
rip_iface_update_state(ifa);
if (new->bfd != old->bfd)
rip_iface_update_bfd(ifa);
if (ifa->up)
rip_iface_kick_timer(ifa);
return 1;
}
static void
rip_reconfigure_ifaces(struct rip_proto *p, struct rip_config *cf)
{
struct iface *iface;
WALK_LIST(iface, iface_list)
{
if (p->p.vrf && p->p.vrf != iface->master)
continue;
if (!(iface->flags & IF_UP))
continue;
/* Ignore ifaces without appropriate address */
if (rip_is_v2(p) ? !iface->addr4 : !iface->llv6)
continue;
struct rip_iface *ifa = rip_find_iface(p, iface);
struct rip_iface_config *ic = (void *) iface_patt_find(&cf->patt_list, iface, NULL);
if (ifa && ic)
{
if (rip_reconfigure_iface(p, ifa, ic))
continue;
/* Hard restart */
log(L_INFO "%s: Restarting interface %s", p->p.name, ifa->iface->name);
rip_remove_iface(p, ifa);
rip_add_iface(p, iface, ic);
}
if (ifa && !ic)
rip_remove_iface(p, ifa);
if (!ifa && ic)
rip_add_iface(p, iface, ic);
}
}
static void
rip_if_notify(struct proto *P, unsigned flags, struct iface *iface)
{
struct rip_proto *p = (void *) P;
struct rip_config *cf = (void *) P->cf;
struct rip_iface *ifa = rip_find_iface(p, iface);
if (iface->flags & IF_IGNORE)
return;
/* Add, remove or restart interface */
if (flags & (IF_CHANGE_UPDOWN | (rip_is_v2(p) ? IF_CHANGE_ADDR4 : IF_CHANGE_LLV6)))
{
if (ifa)
rip_remove_iface(p, ifa);
if (!(iface->flags & IF_UP))
return;
/* Ignore ifaces without appropriate address */
if (rip_is_v2(p) ? !iface->addr4 : !iface->llv6)
return;
struct rip_iface_config *ic = (void *) iface_patt_find(&cf->patt_list, iface, NULL);
if (ic)
rip_add_iface(p, iface, ic);
return;
}
if (!ifa)
return;
if (flags & IF_CHANGE_MTU)
rip_iface_update_buffers(ifa);
if (flags & IF_CHANGE_LINK)
rip_iface_update_state(ifa);
}
/*
* RIP timer events
*/
/**
* rip_timer - RIP main timer hook
* @t: timer
*
* The RIP main timer is responsible for routing table maintenance. Invalid or
* expired routes (&rip_rte) are removed and garbage collection of stale routing
* table entries (&rip_entry) is done. Changes are propagated to core tables,
* route reload is also done here. Note that garbage collection uses a maximal
* GC time, while interfaces maintain an illusion of per-interface GC times in
* rip_send_response().
*
* Keeping incoming routes and the selected outgoing route are two independent
* functions, therefore after garbage collection some entries now considered
* invalid (RIP_ENTRY_DUMMY) still may have non-empty list of incoming routes,
* while some valid entries (representing an outgoing route) may have that list
* empty.
*
* The main timer is not scheduled periodically but it uses the time of the
* current next event and the minimal interval of any possible event to compute
* the time of the next run.
*/
static void
rip_timer(timer *t)
{
struct rip_proto *p = t->data;
struct rip_config *cf = (void *) (p->p.cf);
struct rip_iface *ifa;
struct rip_neighbor *n, *nn;
struct fib_iterator fit;
btime now_ = current_time();
btime next = now_ + MIN(cf->min_timeout_time, cf->max_garbage_time);
btime expires = 0;
TRACE(D_EVENTS, "Main timer fired");
FIB_ITERATE_INIT(&fit, &p->rtable);
loop:
FIB_ITERATE_START(&p->rtable, &fit, struct rip_entry, en)
{
struct rip_rte *rt, **rp;
int changed = 0;
/* Checking received routes for timeout and for dead neighbors */
for (rp = &en->routes; rt = *rp; /* rp = &rt->next */)
{
if (!rip_valid_rte(rt) || (rt->expires <= now_))
{
rip_remove_rte(p, rp);
changed = 1;
continue;
}
next = MIN(next, rt->expires);
rp = &rt->next;
}
/* Propagating eventual change */
if (changed || p->rt_reload)
{
/*
* We have to restart the iteration because there may be a cascade of
* synchronous events rip_announce_rte() -> nest table change ->
* rip_rt_notify() -> p->rtable change, invalidating hidden variables.
*/
FIB_ITERATE_PUT_NEXT(&fit, &p->rtable);
rip_announce_rte(p, en);
goto loop;
}
/* Checking stale entries for garbage collection timeout */
if (en->valid == RIP_ENTRY_STALE)
{
expires = en->changed + cf->max_garbage_time;
if (expires <= now_)
{
// TRACE(D_EVENTS, "entry is too old: %N", en->n.addr);
en->valid = 0;
}
else
next = MIN(next, expires);
}
/* Remove empty nodes */
if (!en->valid && !en->routes)
{
FIB_ITERATE_PUT(&fit);
fib_delete(&p->rtable, en);
goto loop;
}
}
FIB_ITERATE_END;
p->rt_reload = 0;
/* Handling neighbor expiration */
WALK_LIST(ifa, p->iface_list)
{
/* No expiration for demand circuit ifaces */
if (ifa->cf->demand_circuit)
continue;
WALK_LIST_DELSAFE(n, nn, ifa->neigh_list)
if (n->last_seen)
{
expires = n->last_seen + n->ifa->cf->timeout_time;
if (expires <= now_)
rip_remove_neighbor(p, n);
else
next = MIN(next, expires);
}
}
tm_start(p->timer, MAX(next - now_, 100 MS));
}
static inline void
rip_kick_timer(struct rip_proto *p)
{
if ((p->timer->expires > (current_time() + 100 MS)))
tm_start(p->timer, 100 MS);
}
/**
* rip_iface_timer - RIP interface timer hook
* @t: timer
*
* RIP interface timers are responsible for scheduling both regular and
* triggered updates. Fixed, delay-independent period is used for regular
* updates, while minimal separating interval is enforced for triggered updates.
* The function also ensures that a new update is not started when the old one
* is still running.
*/
static void
rip_iface_timer(timer *t)
{
struct rip_iface *ifa = t->data;
struct rip_proto *p = ifa->rip;
btime now_ = current_time();
btime period = ifa->cf->update_time;
if (ifa->cf->passive)
return;
TRACE(D_EVENTS, "Interface timer fired for %s", ifa->iface->name);
if (ifa->tx_active)
{
tm_start(ifa->timer, 100 MS);
return;
}
if (now_ >= ifa->next_regular)
{
/* Send regular update, set timer for next period (or following one if necessay) */
TRACE(D_EVENTS, "Sending regular updates for %s", ifa->iface->name);
rip_send_table(p, ifa, ifa->addr, 0);
ifa->next_regular += period * (1 + ((now_ - ifa->next_regular) / period));
ifa->want_triggered = 0;
p->triggered = 0;
}
else if (ifa->want_triggered && (now_ >= ifa->next_triggered))
{
/* Send triggered update, enforce interval between triggered updates */
TRACE(D_EVENTS, "Sending triggered updates for %s", ifa->iface->name);
rip_send_table(p, ifa, ifa->addr, ifa->want_triggered);
ifa->next_triggered = now_ + MIN(5 S, period / 2);
ifa->want_triggered = 0;
p->triggered = 0;
}
if (ifa->want_triggered && (ifa->next_triggered < ifa->next_regular))
tm_set(ifa->timer, ifa->next_triggered);
else if (ifa->next_regular != TIME_INFINITY)
tm_set(ifa->timer, ifa->next_regular);
}
static inline void
rip_iface_kick_timer(struct rip_iface *ifa)
{
if ((! tm_active(ifa->timer)) || (ifa->timer->expires > (current_time() + 100 MS)))
tm_start(ifa->timer, 100 MS);
}
static void
rip_trigger_update(struct rip_proto *p)
{
if (p->triggered)
return;
struct rip_iface *ifa;
WALK_LIST(ifa, p->iface_list)
{
/* Interface not active */
if (! ifa->up)
continue;
/* Already scheduled */
if (ifa->want_triggered)
continue;
TRACE(D_EVENTS, "Scheduling triggered updates for %s", ifa->iface->name);
ifa->want_triggered = current_time();
rip_iface_kick_timer(ifa);
p->triggered = 1;
}
}
/*
* RIP protocol glue
*/
static void
rip_reload_routes(struct channel *C)
{
struct rip_proto *p = (struct rip_proto *) C->proto;
if (p->rt_reload)
return;
TRACE(D_EVENTS, "Scheduling route reload");
p->rt_reload = 1;
rip_kick_timer(p);
}
static u32
rip_rte_igp_metric(struct rte *rt)
{
return ea_get_int(rt->attrs->eattrs, EA_RIP_METRIC, IGP_METRIC_UNKNOWN);
}
static int
rip_rte_better(struct rte *new, struct rte *old)
{
return rip_rte_igp_metric(new) < rip_rte_igp_metric(old);
}
static void
rip_postconfig(struct proto_config *CF)
{
// struct rip_config *cf = (void *) CF;
/* Define default channel */
if (! proto_cf_main_channel(CF))
channel_config_new(NULL, net_label[CF->net_type], CF->net_type, CF);
}
static struct proto *
rip_init(struct proto_config *CF)
{
struct proto *P = proto_new(CF);
P->main_channel = proto_add_channel(P, proto_cf_main_channel(CF));
P->iface_sub.if_notify = rip_if_notify;
P->rt_notify = rip_rt_notify;
P->iface_sub.neigh_notify = rip_neigh_notify;
P->reload_routes = rip_reload_routes;
P->rte_better = rip_rte_better;
P->rte_igp_metric = rip_rte_igp_metric;
return P;
}
static int
rip_start(struct proto *P)
{
struct rip_proto *p = (void *) P;
struct rip_config *cf = (void *) (P->cf);
init_list(&p->iface_list);
fib_init(&p->rtable, P->pool, cf->rip2 ? NET_IP4 : NET_IP6,
sizeof(struct rip_entry), OFFSETOF(struct rip_entry, n), 0, NULL);
p->rte_slab = sl_new(P->pool, sizeof(struct rip_rte));
p->timer = tm_new_init(P->pool, rip_timer, p, 0, 0);
p->rip2 = cf->rip2;
p->ecmp = cf->ecmp;
p->infinity = cf->infinity;
p->triggered = 0;
p->log_pkt_tbf = (struct tbf){ .rate = 1, .burst = 5 };
p->log_rte_tbf = (struct tbf){ .rate = 4, .burst = 20 };
tm_start(p->timer, MIN(cf->min_timeout_time, cf->max_garbage_time));
return PS_UP;
}
static int
rip_shutdown(struct proto *P)
{
struct rip_proto *p = (void *) P;
TRACE(D_EVENTS, "Shutdown requested");
struct rip_iface *ifa;
WALK_LIST(ifa, p->iface_list)
rip_iface_stop(ifa);
return PS_DOWN;
}
static int
rip_reconfigure(struct proto *P, struct proto_config *CF)
{
struct rip_proto *p = (void *) P;
struct rip_config *new = (void *) CF;
// struct rip_config *old = (void *) (P->cf);
if (new->rip2 != p->rip2)
return 0;
if (new->infinity != p->infinity)
return 0;
if (!proto_configure_channel(P, &P->main_channel, proto_cf_main_channel(CF)))
return 0;
TRACE(D_EVENTS, "Reconfiguring");
p->p.cf = CF;
p->ecmp = new->ecmp;
rip_reconfigure_ifaces(p, new);
p->rt_reload = 1;
rip_kick_timer(p);
return 1;
}
static void
rip_get_route_info(rte *rte, byte *buf)
{
struct rip_proto *p = (struct rip_proto *) rte->src->proto;
u32 rt_metric = ea_get_int(rte->attrs->eattrs, EA_RIP_METRIC, p->infinity);
u32 rt_tag = ea_get_int(rte->attrs->eattrs, EA_RIP_TAG, 0);
buf += bsprintf(buf, " (%d/%d)", rte->attrs->pref, rt_metric);
if (rt_tag)
bsprintf(buf, " [%04x]", rt_tag);
}
static int
rip_get_attr(const eattr *a, byte *buf, int buflen UNUSED)
{
switch (a->id)
{
case EA_RIP_METRIC:
bsprintf(buf, "metric: %d", a->u.data);
return GA_FULL;
case EA_RIP_TAG:
bsprintf(buf, "tag: %04x", a->u.data);
return GA_FULL;
case EA_RIP_FROM:
return GA_HIDDEN;
default:
return GA_UNKNOWN;
}
}
void
rip_show_interfaces(struct proto *P, const char *iff)
{
struct rip_proto *p = (void *) P;
struct rip_iface *ifa = NULL;
struct rip_neighbor *n = NULL;
if (p->p.proto_state != PS_UP)
{
cli_msg(-1021, "%s: is not up", p->p.name);
return;
}
cli_msg(-1021, "%s:", p->p.name);
cli_msg(-1021, "%-10s %-6s %6s %6s %7s",
"Interface", "State", "Metric", "Nbrs", "Timer");
WALK_LIST(ifa, p->iface_list)
{
if (iff && !patmatch(iff, ifa->iface->name))
continue;
int nbrs = 0;
WALK_LIST(n, ifa->neigh_list)
if (n->last_seen)
nbrs++;
btime now_ = current_time();
btime timer = ((ifa->next_regular < TIME_INFINITY) && (ifa->next_regular > now_)) ?
(ifa->next_regular - now_) : 0;
cli_msg(-1021, "%-10s %-6s %6u %6u %7t",
ifa->iface->name, (ifa->up ? "Up" : "Down"), ifa->cf->metric, nbrs, timer);
}
}
void
rip_show_neighbors(struct proto *P, const char *iff)
{
struct rip_proto *p = (void *) P;
struct rip_iface *ifa = NULL;
struct rip_neighbor *n = NULL;
if (p->p.proto_state != PS_UP)
{
cli_msg(-1022, "%s: is not up", p->p.name);
return;
}
cli_msg(-1022, "%s:", p->p.name);
cli_msg(-1022, "%-25s %-10s %6s %6s %7s",
"IP address", "Interface", "Metric", "Routes", "Seen");
WALK_LIST(ifa, p->iface_list)
{
if (iff && !patmatch(iff, ifa->iface->name))
continue;
WALK_LIST(n, ifa->neigh_list)
{
if (!n->last_seen)
continue;
btime timer = current_time() - n->last_seen;
cli_msg(-1022, "%-25I %-10s %6u %6u %7t",
n->nbr->addr, ifa->iface->name, ifa->cf->metric, n->uc, timer);
}
}
}
static void
rip_dump(struct proto *P)
{
struct rip_proto *p = (struct rip_proto *) P;
struct rip_iface *ifa;
int i;
i = 0;
FIB_WALK(&p->rtable, struct rip_entry, en)
{
debug("RIP: entry #%d: %N via %I dev %s valid %d metric %d age %t\n",
i++, en->n.addr, en->next_hop, en->iface ? en->iface->name : "(null)",
en->valid, en->metric, current_time() - en->changed);
for (struct rip_rte *e = en->routes; e; e = e->next)
debug("RIP: via %I metric %d expires %t\n",
e->next_hop, e->metric, e->expires - current_time());
}
FIB_WALK_END;
i = 0;
WALK_LIST(ifa, p->iface_list)
{
debug("RIP: interface #%d: %s, %I, up = %d, busy = %d\n",
i++, ifa->iface->name, ifa->sk ? ifa->sk->daddr : IPA_NONE,
ifa->up, ifa->tx_active);
}
}
struct protocol proto_rip = {
.name = "RIP",
.template = "rip%d",
.class = PROTOCOL_RIP,
.preference = DEF_PREF_RIP,
.channel_mask = NB_IP,
.proto_size = sizeof(struct rip_proto),
.config_size = sizeof(struct rip_config),
.postconfig = rip_postconfig,
.init = rip_init,
.dump = rip_dump,
.start = rip_start,
.shutdown = rip_shutdown,
.reconfigure = rip_reconfigure,
.get_route_info = rip_get_route_info,
.get_attr = rip_get_attr
};
void
rip_build(void)
{
proto_build(&proto_rip);
}