0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2024-11-17 16:48:43 +00:00
bird/filter/trie.c
Maria Matejka 4c553c5a5b Filter refactoring: dropped the recursion from the interpreter
This is a major change of how the filters are interpreted. If everything
works how it should, it should not affect you unless you are hacking the
filters themselves.

Anyway, this change should make a huge improvement in the filter performance
as previous benchmarks showed that our major problem lies in the
recursion itself.

There are also some changes in nest and protocols, related mostly to
spreading const declarations throughout the whole BIRD and also to
refactored dynamic attribute definitions. The need of these came up
during the whole work and it is too difficult to split out these
not-so-related changes.
2019-02-20 22:30:54 +01:00

349 lines
9.6 KiB
C

/*
* Filters: Trie for prefix sets
*
* Copyright 2009 Ondrej Zajicek <santiago@crfreenet.org>
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
/**
* DOC: Trie for prefix sets
*
* We use a (compressed) trie to represent prefix sets. Every node
* in the trie represents one prefix (&addr/&plen) and &plen also
* indicates the index of the bit in the address that is used to
* branch at the node. If we need to represent just a set of
* prefixes, it would be simple, but we have to represent a
* set of prefix patterns. Each prefix pattern consists of
* &ppaddr/&pplen and two integers: &low and &high, and a prefix
* &paddr/&plen matches that pattern if the first MIN(&plen, &pplen)
* bits of &paddr and &ppaddr are the same and &low <= &plen <= &high.
*
* We use a bitmask (&accept) to represent accepted prefix lengths
* at a node. As there are 33 prefix lengths (0..32 for IPv4), but
* there is just one prefix of zero length in the whole trie so we
* have &zero flag in &f_trie (indicating whether the trie accepts
* prefix 0.0.0.0/0) as a special case, and &accept bitmask
* represents accepted prefix lengths from 1 to 32.
*
* There are two cases in prefix matching - a match when the length
* of the prefix is smaller that the length of the prefix pattern,
* (&plen < &pplen) and otherwise. The second case is simple - we
* just walk through the trie and look at every visited node
* whether that prefix accepts our prefix length (&plen). The
* first case is tricky - we don't want to examine every descendant
* of a final node, so (when we create the trie) we have to propagate
* that information from nodes to their ascendants.
*
* Suppose that we have two masks (M1 and M2) for a node. Mask M1
* represents accepted prefix lengths by just the node and mask M2
* represents accepted prefix lengths by the node or any of its
* descendants. Therefore M2 is a bitwise or of M1 and children's
* M2 and this is a maintained invariant during trie building.
* Basically, when we want to match a prefix, we walk through the trie,
* check mask M1 for our prefix length and when we came to
* final node, we check mask M2.
*
* There are two differences in the real implementation. First,
* we use a compressed trie so there is a case that we skip our
* final node (if it is not in the trie) and we came to node that
* is either extension of our prefix, or completely out of path
* In the first case, we also have to check M2.
*
* Second, we really need not to maintain two separate bitmasks.
* Checks for mask M1 are always larger than &applen and we need
* just the first &pplen bits of mask M2 (if trie compression
* hadn't been used it would suffice to know just $applen-th bit),
* so we have to store them together in &accept mask - the first
* &pplen bits of mask M2 and then mask M1.
*
* There are four cases when we walk through a trie:
*
* - we are in NULL
* - we are out of path (prefixes are inconsistent)
* - we are in the wanted (final) node (node length == &plen)
* - we are beyond the end of path (node length > &plen)
* - we are still on path and keep walking (node length < &plen)
*
* The walking code in trie_match_prefix() is structured according to
* these cases.
*/
#include "nest/bird.h"
#include "lib/string.h"
#include "conf/conf.h"
#include "filter/filter.h"
/*
* In the trie code, the prefix length is internally treated as for the whole
* ip_addr, regardless whether it contains an IPv4 or IPv6 address. Therefore,
* remaining definitions make sense.
*/
#define ipa_mkmask(x) ip6_mkmask(x)
#define ipa_masklen(x) ip6_masklen(&x)
#define ipa_pxlen(x,y) ip6_pxlen(x,y)
#define ipa_getbit(x,n) ip6_getbit(x,n)
/**
* f_new_trie - allocates and returns a new empty trie
* @lp: linear pool to allocate items from
* @node_size: node size to be used (&f_trie_node and user data)
*/
struct f_trie *
f_new_trie(linpool *lp, uint node_size)
{
struct f_trie * ret;
ret = lp_allocz(lp, sizeof(struct f_trie) + node_size);
ret->lp = lp;
ret->node_size = node_size;
return ret;
}
static inline struct f_trie_node *
new_node(struct f_trie *t, int plen, ip_addr paddr, ip_addr pmask, ip_addr amask)
{
struct f_trie_node *n = lp_allocz(t->lp, t->node_size);
n->plen = plen;
n->addr = paddr;
n->mask = pmask;
n->accept = amask;
return n;
}
static inline void
attach_node(struct f_trie_node *parent, struct f_trie_node *child)
{
parent->c[ipa_getbit(child->addr, parent->plen) ? 1 : 0] = child;
}
/**
* trie_add_prefix
* @t: trie to add to
* @net: IP network prefix
* @l: prefix lower bound
* @h: prefix upper bound
*
* Adds prefix (prefix pattern) @n to trie @t. @l and @h are lower
* and upper bounds on accepted prefix lengths, both inclusive.
* 0 <= l, h <= 32 (128 for IPv6).
*
* Returns a pointer to the allocated node. The function can return a pointer to
* an existing node if @px and @plen are the same. If px/plen == 0/0 (or ::/0),
* a pointer to the root node is returned.
*/
void *
trie_add_prefix(struct f_trie *t, const net_addr *net, uint l, uint h)
{
ip_addr px = net_prefix(net);
uint plen = net_pxlen(net);
if (net->type == NET_IP4)
{
const uint delta = IP6_MAX_PREFIX_LENGTH - IP4_MAX_PREFIX_LENGTH;
plen += delta;
l += delta;
h += delta;
}
if (l == 0)
t->zero = 1;
else
l--;
if (h < plen)
plen = h;
ip_addr amask = ipa_xor(ipa_mkmask(l), ipa_mkmask(h));
ip_addr pmask = ipa_mkmask(plen);
ip_addr paddr = ipa_and(px, pmask);
struct f_trie_node *o = NULL;
struct f_trie_node *n = t->root;
while (n)
{
ip_addr cmask = ipa_and(n->mask, pmask);
if (ipa_compare(ipa_and(paddr, cmask), ipa_and(n->addr, cmask)))
{
/* We are out of path - we have to add branching node 'b'
between node 'o' and node 'n', and attach new node 'a'
as the other child of 'b'. */
int blen = ipa_pxlen(paddr, n->addr);
ip_addr bmask = ipa_mkmask(blen);
ip_addr baddr = ipa_and(px, bmask);
/* Merge accept masks from children to get accept mask for node 'b' */
ip_addr baccm = ipa_and(ipa_or(amask, n->accept), bmask);
struct f_trie_node *a = new_node(t, plen, paddr, pmask, amask);
struct f_trie_node *b = new_node(t, blen, baddr, bmask, baccm);
attach_node(o, b);
attach_node(b, n);
attach_node(b, a);
return a;
}
if (plen < n->plen)
{
/* We add new node 'a' between node 'o' and node 'n' */
amask = ipa_or(amask, ipa_and(n->accept, pmask));
struct f_trie_node *a = new_node(t, plen, paddr, pmask, amask);
attach_node(o, a);
attach_node(a, n);
return a;
}
if (plen == n->plen)
{
/* We already found added node in trie. Just update accept mask */
n->accept = ipa_or(n->accept, amask);
return n;
}
/* Update accept mask part M2 and go deeper */
n->accept = ipa_or(n->accept, ipa_and(amask, n->mask));
/* n->plen < plen and plen <= 32 (128) */
o = n;
n = n->c[ipa_getbit(paddr, n->plen) ? 1 : 0];
}
/* We add new tail node 'a' after node 'o' */
struct f_trie_node *a = new_node(t, plen, paddr, pmask, amask);
attach_node(o, a);
return a;
}
static int
trie_match_prefix(const struct f_trie *t, ip_addr px, uint plen)
{
ip_addr pmask = ipa_mkmask(plen);
ip_addr paddr = ipa_and(px, pmask);
if (plen == 0)
return t->zero;
int plentest = plen - 1;
const struct f_trie_node *n = t->root;
while(n)
{
ip_addr cmask = ipa_and(n->mask, pmask);
/* We are out of path */
if (ipa_compare(ipa_and(paddr, cmask), ipa_and(n->addr, cmask)))
return 0;
/* Check accept mask */
if (ipa_getbit(n->accept, plentest))
return 1;
/* We finished trie walk and still no match */
if (plen <= n->plen)
return 0;
/* Choose children */
n = n->c[(ipa_getbit(paddr, n->plen)) ? 1 : 0];
}
return 0;
}
/**
* trie_match_net
* @t: trie
* @n: net address
*
* Tries to find a matching net in the trie such that
* prefix @n matches that prefix pattern. Returns 1 if there
* is such prefix pattern in the trie.
*/
int
trie_match_net(const struct f_trie *t, const net_addr *n)
{
uint add = 0;
switch (n->type) {
case NET_IP4:
case NET_VPN4:
case NET_ROA4:
add = IP6_MAX_PREFIX_LENGTH - IP4_MAX_PREFIX_LENGTH;
}
return trie_match_prefix(t, net_prefix(n), net_pxlen(n) + add);
}
static int
trie_node_same(const struct f_trie_node *t1, const struct f_trie_node *t2)
{
if ((t1 == NULL) && (t2 == NULL))
return 1;
if ((t1 == NULL) || (t2 == NULL))
return 0;
if ((t1->plen != t2->plen) ||
(! ipa_equal(t1->addr, t2->addr)) ||
(! ipa_equal(t1->accept, t2->accept)))
return 0;
return trie_node_same(t1->c[0], t2->c[0]) && trie_node_same(t1->c[1], t2->c[1]);
}
/**
* trie_same
* @t1: first trie to be compared
* @t2: second one
*
* Compares two tries and returns 1 if they are same
*/
int
trie_same(const struct f_trie *t1, const struct f_trie *t2)
{
return (t1->zero == t2->zero) && trie_node_same(t1->root, t2->root);
}
static void
trie_node_format(const struct f_trie_node *t, buffer *buf)
{
if (t == NULL)
return;
if (ipa_nonzero(t->accept))
buffer_print(buf, "%I/%d{%I}, ", t->addr, t->plen, t->accept);
trie_node_format(t->c[0], buf);
trie_node_format(t->c[1], buf);
}
/**
* trie_format
* @t: trie to be formatted
* @buf: destination buffer
*
* Prints the trie to the supplied buffer.
*/
void
trie_format(const struct f_trie *t, buffer *buf)
{
buffer_puts(buf, "[");
if (t->zero)
buffer_print(buf, "%I/%d, ", IPA_NONE, 0);
trie_node_format(t->root, buf);
if (buf->pos == buf->end)
return;
/* Undo last separator */
if (buf->pos[-1] != '[')
buf->pos -= 2;
buffer_puts(buf, "]");
}