mirror of
https://gitlab.nic.cz/labs/bird.git
synced 2025-01-03 15:41:54 +00:00
7d767c5a3d
The old code stored route verdicts and temporary routes directly in rtable. The new code do not store received routes (it immediately compares them with exported routes and resolves conflicts) and uses internal bitmap to keep track of which routes were received and which needs to be reinstalled. By not putting 'invalid' temporary routes to rtable, we keep rtable in consistent state, therefore scan no longer needs to be atomic operation and could be splitted to multiple events.
751 lines
18 KiB
C
751 lines
18 KiB
C
/*
|
|
* BIRD -- Forwarding Information Base -- Data Structures
|
|
*
|
|
* (c) 1998--2000 Martin Mares <mj@ucw.cz>
|
|
*
|
|
* Can be freely distributed and used under the terms of the GNU GPL.
|
|
*/
|
|
|
|
/**
|
|
* DOC: Forwarding Information Base
|
|
*
|
|
* FIB is a data structure designed for storage of routes indexed by their
|
|
* network prefixes. It supports insertion, deletion, searching by prefix,
|
|
* `routing' (in CIDR sense, that is searching for a longest prefix matching
|
|
* a given IP address) and (which makes the structure very tricky to implement)
|
|
* asynchronous reading, that is enumerating the contents of a FIB while other
|
|
* modules add, modify or remove entries.
|
|
*
|
|
* Internally, each FIB is represented as a collection of nodes of type &fib_node
|
|
* indexed using a sophisticated hashing mechanism.
|
|
* We use two-stage hashing where we calculate a 16-bit primary hash key independent
|
|
* on hash table size and then we just divide the primary keys modulo table size
|
|
* to get a real hash key used for determining the bucket containing the node.
|
|
* The lists of nodes in each bucket are sorted according to the primary hash
|
|
* key, hence if we keep the total number of buckets to be a power of two,
|
|
* re-hashing of the structure keeps the relative order of the nodes.
|
|
*
|
|
* To get the asynchronous reading consistent over node deletions, we need to
|
|
* keep a list of readers for each node. When a node gets deleted, its readers
|
|
* are automatically moved to the next node in the table.
|
|
*
|
|
* Basic FIB operations are performed by functions defined by this module,
|
|
* enumerating of FIB contents is accomplished by using the FIB_WALK() macro
|
|
* or FIB_ITERATE_START() if you want to do it asynchronously.
|
|
*
|
|
* For simple iteration just place the body of the loop between FIB_WALK() and
|
|
* FIB_WALK_END(). You can't modify the FIB during the iteration (you can modify
|
|
* data in the node, but not add or remove nodes).
|
|
*
|
|
* If you need more freedom, you can use the FIB_ITERATE_*() group of macros.
|
|
* First, you initialize an iterator with FIB_ITERATE_INIT(). Then you can put
|
|
* the loop body in between FIB_ITERATE_START() and FIB_ITERATE_END(). In
|
|
* addition, the iteration can be suspended by calling FIB_ITERATE_PUT().
|
|
* This'll link the iterator inside the FIB. While suspended, you may modify the
|
|
* FIB, exit the current function, etc. To resume the iteration, enter the loop
|
|
* again. You can use FIB_ITERATE_UNLINK() to unlink the iterator (while
|
|
* iteration is suspended) in cases like premature end of FIB iteration.
|
|
*
|
|
* Note that the iterator must not be destroyed when the iteration is suspended,
|
|
* the FIB would then contain a pointer to invalid memory. Therefore, after each
|
|
* FIB_ITERATE_INIT() or FIB_ITERATE_PUT() there must be either
|
|
* FIB_ITERATE_START() or FIB_ITERATE_UNLINK() before the iterator is destroyed.
|
|
*/
|
|
|
|
#undef LOCAL_DEBUG
|
|
|
|
#include "nest/bird.h"
|
|
#include "nest/route.h"
|
|
#include "lib/string.h"
|
|
|
|
/*
|
|
* The FIB rehash values are maintaining FIB count between N/5 and 2N. What
|
|
* does it mean?
|
|
*
|
|
* +------------+--------+---------+-----------+----------+-----------+
|
|
* | Table size | Memory | Min cnt | net + rte | Max cnt | net + rte |
|
|
* +------------+--------+---------+-----------+----------+-----------+
|
|
* | 1k | 8k | 0 | 0 | 2k | 192 k |
|
|
* | 2k | 16k | 409 | 38.3k | 4k | 384 k |
|
|
* | 4k | 32k | 819 | 76.8k | 8k | 768 k |
|
|
* | 8k | 64k | 1.6k | 153.6k | 16k | 1.5M |
|
|
* | 16k | 128k | 3.2k | 307.1k | 32k | 3 M |
|
|
* | 32k | 256k | 6.4k | 614.3k | 64k | 6 M |
|
|
* | 64k | 512k | 12.8k | 1.2M | 128k | 12 M |
|
|
* | 128k | 1024k | 25.6k | 2.4M | 256k | 24 M |
|
|
* | 256k | 2M | 51.2k | 4.8M | 512k | 48 M |
|
|
* | 512k | 4M | 102.4k | 9.6M | 1M | 96 M |
|
|
* | 1M | 8M | 204.8k | 19.2M | 2M | 192 M |
|
|
* | 2M | 16M | 409.6k | 38.4M | 4M | 384 M |
|
|
* | 4M | 32M | 819.2k | 76.8M | 8M | 768 M |
|
|
* | 8M | 64M | 1.6M | 153.6M | infinity | infinity |
|
|
* +------------+--------+---------+-----------+----------+-----------+
|
|
*
|
|
* Table size shows how many slots are in FIB table.
|
|
* Memory shows how much memory is eaten by FIB table.
|
|
* Min cnt minimal number of nets in table of given size
|
|
* Max cnt maximal number of nets in table of given size
|
|
* net + rte memory eaten by 1 net and one route in it for min cnt and max cnt
|
|
*
|
|
* Example: If we have 750,000 network entries in a table:
|
|
* * the table size may be 512k if we have never had more
|
|
* * the table size may be 1M or 2M if we at least happened to have more
|
|
* * 256k is too small, 8M is too big
|
|
*
|
|
* When growing, rehash is done on demand so we do it on every power of 2.
|
|
* When shrinking, rehash is done on delete which is done (in global tables)
|
|
* in a scheduled event. Rehashing down 2 steps.
|
|
*
|
|
*/
|
|
|
|
|
|
#define HASH_DEF_ORDER 10
|
|
#define HASH_HI_MARK * 2
|
|
#define HASH_HI_STEP 1
|
|
#define HASH_HI_MAX 24
|
|
#define HASH_LO_MARK / 5
|
|
#define HASH_LO_STEP 2
|
|
#define HASH_LO_MIN 10
|
|
|
|
|
|
static void
|
|
fib_ht_alloc(struct fib *f)
|
|
{
|
|
f->hash_size = 1 << f->hash_order;
|
|
f->hash_shift = 32 - f->hash_order;
|
|
if (f->hash_order > HASH_HI_MAX - HASH_HI_STEP)
|
|
f->entries_max = ~0;
|
|
else
|
|
f->entries_max = f->hash_size HASH_HI_MARK;
|
|
if (f->hash_order < HASH_LO_MIN + HASH_LO_STEP)
|
|
f->entries_min = 0;
|
|
else
|
|
f->entries_min = f->hash_size HASH_LO_MARK;
|
|
DBG("Allocating FIB hash of order %d: %d entries, %d low, %d high\n",
|
|
f->hash_order, f->hash_size, f->entries_min, f->entries_max);
|
|
f->hash_table = mb_alloc(f->fib_pool, f->hash_size * sizeof(struct fib_node *));
|
|
}
|
|
|
|
static inline void
|
|
fib_ht_free(struct fib_node **h)
|
|
{
|
|
mb_free(h);
|
|
}
|
|
|
|
|
|
static inline u32 fib_hash(struct fib *f, const net_addr *a);
|
|
|
|
/**
|
|
* fib_init - initialize a new FIB
|
|
* @f: the FIB to be initialized (the structure itself being allocated by the caller)
|
|
* @p: pool to allocate the nodes in
|
|
* @node_size: node size to be used (each node consists of a standard header &fib_node
|
|
* followed by user data)
|
|
* @hash_order: initial hash order (a binary logarithm of hash table size), 0 to use default order
|
|
* (recommended)
|
|
* @init: pointer a function to be called to initialize a newly created node
|
|
*
|
|
* This function initializes a newly allocated FIB and prepares it for use.
|
|
*/
|
|
void
|
|
fib_init(struct fib *f, pool *p, uint addr_type, uint node_size, uint node_offset, uint hash_order, fib_init_fn init)
|
|
{
|
|
uint addr_length = net_addr_length[addr_type];
|
|
|
|
if (!hash_order)
|
|
hash_order = HASH_DEF_ORDER;
|
|
f->fib_pool = p;
|
|
f->fib_slab = addr_length ? sl_new(p, node_size + addr_length) : NULL;
|
|
f->addr_type = addr_type;
|
|
f->node_size = node_size;
|
|
f->node_offset = node_offset;
|
|
f->hash_order = hash_order;
|
|
fib_ht_alloc(f);
|
|
bzero(f->hash_table, f->hash_size * sizeof(struct fib_node *));
|
|
f->entries = 0;
|
|
f->entries_min = 0;
|
|
f->init = init;
|
|
}
|
|
|
|
static void
|
|
fib_rehash(struct fib *f, int step)
|
|
{
|
|
unsigned old, new, oldn, newn, ni, nh;
|
|
struct fib_node **n, *e, *x, **t, **m, **h;
|
|
|
|
old = f->hash_order;
|
|
oldn = f->hash_size;
|
|
new = old + step;
|
|
m = h = f->hash_table;
|
|
DBG("Re-hashing FIB from order %d to %d\n", old, new);
|
|
f->hash_order = new;
|
|
fib_ht_alloc(f);
|
|
t = n = f->hash_table;
|
|
newn = f->hash_size;
|
|
ni = 0;
|
|
|
|
while (oldn--)
|
|
{
|
|
x = *h++;
|
|
while (e = x)
|
|
{
|
|
x = e->next;
|
|
nh = fib_hash(f, e->addr);
|
|
while (nh > ni)
|
|
{
|
|
*t = NULL;
|
|
ni++;
|
|
t = ++n;
|
|
}
|
|
*t = e;
|
|
t = &e->next;
|
|
}
|
|
}
|
|
while (ni < newn)
|
|
{
|
|
*t = NULL;
|
|
ni++;
|
|
t = ++n;
|
|
}
|
|
fib_ht_free(m);
|
|
}
|
|
|
|
#define CAST(t) (const net_addr_##t *)
|
|
#define CAST2(t) (net_addr_##t *)
|
|
|
|
#define FIB_HASH(f,a,t) (net_hash_##t(CAST(t) a) >> f->hash_shift)
|
|
|
|
#define FIB_FIND(f,a,t) \
|
|
({ \
|
|
struct fib_node *e = f->hash_table[FIB_HASH(f, a, t)]; \
|
|
while (e && !net_equal_##t(CAST(t) e->addr, CAST(t) a)) \
|
|
e = e->next; \
|
|
fib_node_to_user(f, e); \
|
|
})
|
|
|
|
#define FIB_INSERT(f,a,e,t) \
|
|
({ \
|
|
u32 h = net_hash_##t(CAST(t) a); \
|
|
struct fib_node **ee = f->hash_table + (h >> f->hash_shift); \
|
|
struct fib_node *g; \
|
|
\
|
|
while ((g = *ee) && (net_hash_##t(CAST(t) g->addr) < h)) \
|
|
ee = &g->next; \
|
|
\
|
|
net_copy_##t(CAST2(t) e->addr, CAST(t) a); \
|
|
e->next = *ee; \
|
|
*ee = e; \
|
|
})
|
|
|
|
|
|
static inline u32
|
|
fib_hash(struct fib *f, const net_addr *a)
|
|
{
|
|
/* Same as FIB_HASH() */
|
|
return net_hash(a) >> f->hash_shift;
|
|
}
|
|
|
|
void *
|
|
fib_get_chain(struct fib *f, const net_addr *a)
|
|
{
|
|
ASSERT(f->addr_type == a->type);
|
|
|
|
struct fib_node *e = f->hash_table[fib_hash(f, a)];
|
|
return e;
|
|
}
|
|
|
|
/**
|
|
* fib_find - search for FIB node by prefix
|
|
* @f: FIB to search in
|
|
* @n: network address
|
|
*
|
|
* Search for a FIB node corresponding to the given prefix, return
|
|
* a pointer to it or %NULL if no such node exists.
|
|
*/
|
|
void *
|
|
fib_find(struct fib *f, const net_addr *a)
|
|
{
|
|
ASSERT(f->addr_type == a->type);
|
|
|
|
switch (f->addr_type)
|
|
{
|
|
case NET_IP4: return FIB_FIND(f, a, ip4);
|
|
case NET_IP6: return FIB_FIND(f, a, ip6);
|
|
case NET_VPN4: return FIB_FIND(f, a, vpn4);
|
|
case NET_VPN6: return FIB_FIND(f, a, vpn6);
|
|
case NET_ROA4: return FIB_FIND(f, a, roa4);
|
|
case NET_ROA6: return FIB_FIND(f, a, roa6);
|
|
case NET_FLOW4: return FIB_FIND(f, a, flow4);
|
|
case NET_FLOW6: return FIB_FIND(f, a, flow6);
|
|
case NET_IP6_SADR: return FIB_FIND(f, a, ip6_sadr);
|
|
case NET_MPLS: return FIB_FIND(f, a, mpls);
|
|
default: bug("invalid type");
|
|
}
|
|
}
|
|
|
|
static void
|
|
fib_insert(struct fib *f, const net_addr *a, struct fib_node *e)
|
|
{
|
|
ASSERT(f->addr_type == a->type);
|
|
|
|
switch (f->addr_type)
|
|
{
|
|
case NET_IP4: FIB_INSERT(f, a, e, ip4); return;
|
|
case NET_IP6: FIB_INSERT(f, a, e, ip6); return;
|
|
case NET_VPN4: FIB_INSERT(f, a, e, vpn4); return;
|
|
case NET_VPN6: FIB_INSERT(f, a, e, vpn6); return;
|
|
case NET_ROA4: FIB_INSERT(f, a, e, roa4); return;
|
|
case NET_ROA6: FIB_INSERT(f, a, e, roa6); return;
|
|
case NET_FLOW4: FIB_INSERT(f, a, e, flow4); return;
|
|
case NET_FLOW6: FIB_INSERT(f, a, e, flow6); return;
|
|
case NET_IP6_SADR: FIB_INSERT(f, a, e, ip6_sadr); return;
|
|
case NET_MPLS: FIB_INSERT(f, a, e, mpls); return;
|
|
default: bug("invalid type");
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* fib_get - find or create a FIB node
|
|
* @f: FIB to work with
|
|
* @n: network address
|
|
*
|
|
* Search for a FIB node corresponding to the given prefix and
|
|
* return a pointer to it. If no such node exists, create it.
|
|
*/
|
|
void *
|
|
fib_get(struct fib *f, const net_addr *a)
|
|
{
|
|
void *b = fib_find(f, a);
|
|
if (b)
|
|
return b;
|
|
|
|
if (f->fib_slab)
|
|
b = sl_alloc(f->fib_slab);
|
|
else
|
|
b = mb_alloc(f->fib_pool, f->node_size + a->length);
|
|
|
|
struct fib_node *e = fib_user_to_node(f, b);
|
|
e->readers = NULL;
|
|
fib_insert(f, a, e);
|
|
|
|
memset(b, 0, f->node_offset);
|
|
if (f->init)
|
|
f->init(b);
|
|
|
|
if (f->entries++ > f->entries_max)
|
|
fib_rehash(f, HASH_HI_STEP);
|
|
|
|
return b;
|
|
}
|
|
|
|
static inline void *
|
|
fib_route_ip4(struct fib *f, net_addr_ip4 *n)
|
|
{
|
|
void *r;
|
|
|
|
while (!(r = fib_find(f, (net_addr *) n)) && (n->pxlen > 0))
|
|
{
|
|
n->pxlen--;
|
|
ip4_clrbit(&n->prefix, n->pxlen);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static inline void *
|
|
fib_route_ip6(struct fib *f, net_addr_ip6 *n)
|
|
{
|
|
void *r;
|
|
|
|
while (!(r = fib_find(f, (net_addr *) n)) && (n->pxlen > 0))
|
|
{
|
|
n->pxlen--;
|
|
ip6_clrbit(&n->prefix, n->pxlen);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* fib_route - CIDR routing lookup
|
|
* @f: FIB to search in
|
|
* @n: network address
|
|
*
|
|
* Search for a FIB node with longest prefix matching the given
|
|
* network, that is a node which a CIDR router would use for routing
|
|
* that network.
|
|
*/
|
|
void *
|
|
fib_route(struct fib *f, const net_addr *n)
|
|
{
|
|
ASSERT(f->addr_type == n->type);
|
|
|
|
net_addr *n0 = alloca(n->length);
|
|
net_copy(n0, n);
|
|
|
|
switch (n->type)
|
|
{
|
|
case NET_IP4:
|
|
case NET_VPN4:
|
|
case NET_ROA4:
|
|
case NET_FLOW4:
|
|
return fib_route_ip4(f, (net_addr_ip4 *) n0);
|
|
|
|
case NET_IP6:
|
|
case NET_VPN6:
|
|
case NET_ROA6:
|
|
case NET_FLOW6:
|
|
return fib_route_ip6(f, (net_addr_ip6 *) n0);
|
|
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
static inline void
|
|
fib_merge_readers(struct fib_iterator *i, struct fib_node *to)
|
|
{
|
|
if (to)
|
|
{
|
|
struct fib_iterator *j = to->readers;
|
|
if (!j)
|
|
{
|
|
/* Fast path */
|
|
to->readers = i;
|
|
i->prev = (struct fib_iterator *) to;
|
|
}
|
|
else
|
|
{
|
|
/* Really merging */
|
|
while (j->next)
|
|
j = j->next;
|
|
j->next = i;
|
|
i->prev = j;
|
|
}
|
|
while (i && i->node)
|
|
{
|
|
i->node = NULL;
|
|
i = i->next;
|
|
}
|
|
}
|
|
else /* No more nodes */
|
|
while (i)
|
|
{
|
|
i->prev = NULL;
|
|
i = i->next;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* fib_delete - delete a FIB node
|
|
* @f: FIB to delete from
|
|
* @E: entry to delete
|
|
*
|
|
* This function removes the given entry from the FIB,
|
|
* taking care of all the asynchronous readers by shifting
|
|
* them to the next node in the canonical reading order.
|
|
*/
|
|
void
|
|
fib_delete(struct fib *f, void *E)
|
|
{
|
|
struct fib_node *e = fib_user_to_node(f, E);
|
|
uint h = fib_hash(f, e->addr);
|
|
struct fib_node **ee = f->hash_table + h;
|
|
struct fib_iterator *it;
|
|
|
|
while (*ee)
|
|
{
|
|
if (*ee == e)
|
|
{
|
|
*ee = e->next;
|
|
if (it = e->readers)
|
|
{
|
|
struct fib_node *l = e->next;
|
|
while (!l)
|
|
{
|
|
h++;
|
|
if (h >= f->hash_size)
|
|
break;
|
|
else
|
|
l = f->hash_table[h];
|
|
}
|
|
fib_merge_readers(it, l);
|
|
}
|
|
|
|
if (f->fib_slab)
|
|
sl_free(f->fib_slab, E);
|
|
else
|
|
mb_free(E);
|
|
|
|
if (f->entries-- < f->entries_min)
|
|
fib_rehash(f, -HASH_LO_STEP);
|
|
return;
|
|
}
|
|
ee = &((*ee)->next);
|
|
}
|
|
bug("fib_delete() called for invalid node");
|
|
}
|
|
|
|
/**
|
|
* fib_free - delete a FIB
|
|
* @f: FIB to be deleted
|
|
*
|
|
* This function deletes a FIB -- it frees all memory associated
|
|
* with it and all its entries.
|
|
*/
|
|
void
|
|
fib_free(struct fib *f)
|
|
{
|
|
fib_ht_free(f->hash_table);
|
|
rfree(f->fib_slab);
|
|
}
|
|
|
|
void
|
|
fit_init(struct fib_iterator *i, struct fib *f)
|
|
{
|
|
unsigned h;
|
|
struct fib_node *n;
|
|
|
|
i->efef = 0xff;
|
|
for(h=0; h<f->hash_size; h++)
|
|
if (n = f->hash_table[h])
|
|
{
|
|
i->prev = (struct fib_iterator *) n;
|
|
if (i->next = n->readers)
|
|
i->next->prev = i;
|
|
n->readers = i;
|
|
i->node = n;
|
|
return;
|
|
}
|
|
/* The fib is empty, nothing to do */
|
|
i->prev = i->next = NULL;
|
|
i->node = NULL;
|
|
}
|
|
|
|
struct fib_node *
|
|
fit_get(struct fib *f, struct fib_iterator *i)
|
|
{
|
|
struct fib_node *n;
|
|
struct fib_iterator *j, *k;
|
|
|
|
if (!i->prev)
|
|
{
|
|
/* We are at the end */
|
|
i->hash = ~0 - 1;
|
|
return NULL;
|
|
}
|
|
if (!(n = i->node))
|
|
{
|
|
/* No node info available, we are a victim of merging. Try harder. */
|
|
j = i;
|
|
while (j->efef == 0xff)
|
|
j = j->prev;
|
|
n = (struct fib_node *) j;
|
|
}
|
|
j = i->prev;
|
|
if (k = i->next)
|
|
k->prev = j;
|
|
j->next = k;
|
|
i->hash = fib_hash(f, n->addr);
|
|
return n;
|
|
}
|
|
|
|
void
|
|
fit_put(struct fib_iterator *i, struct fib_node *n)
|
|
{
|
|
struct fib_iterator *j;
|
|
|
|
i->node = n;
|
|
if (j = n->readers)
|
|
j->prev = i;
|
|
i->next = j;
|
|
n->readers = i;
|
|
i->prev = (struct fib_iterator *) n;
|
|
}
|
|
|
|
void
|
|
fit_put_next(struct fib *f, struct fib_iterator *i, struct fib_node *n, uint hpos)
|
|
{
|
|
if (n = n->next)
|
|
goto found;
|
|
|
|
while (++hpos < f->hash_size)
|
|
if (n = f->hash_table[hpos])
|
|
goto found;
|
|
|
|
/* We are at the end */
|
|
i->prev = i->next = NULL;
|
|
i->node = NULL;
|
|
return;
|
|
|
|
found:
|
|
fit_put(i, n);
|
|
}
|
|
|
|
#ifdef DEBUGGING
|
|
|
|
/**
|
|
* fib_check - audit a FIB
|
|
* @f: FIB to be checked
|
|
*
|
|
* This debugging function audits a FIB by checking its internal consistency.
|
|
* Use when you suspect somebody of corrupting innocent data structures.
|
|
*/
|
|
void
|
|
fib_check(struct fib *f)
|
|
{
|
|
uint i, ec, nulls;
|
|
|
|
ec = 0;
|
|
for(i=0; i<f->hash_size; i++)
|
|
{
|
|
struct fib_node *n;
|
|
for(n=f->hash_table[i]; n; n=n->next)
|
|
{
|
|
struct fib_iterator *j, *j0;
|
|
uint h0 = fib_hash(f, n->addr);
|
|
if (h0 != i)
|
|
bug("fib_check: mishashed %x->%x (order %d)", h0, i, f->hash_order);
|
|
j0 = (struct fib_iterator *) n;
|
|
nulls = 0;
|
|
for(j=n->readers; j; j=j->next)
|
|
{
|
|
if (j->prev != j0)
|
|
bug("fib_check: iterator->prev mismatch");
|
|
j0 = j;
|
|
if (!j->node)
|
|
nulls++;
|
|
else if (nulls)
|
|
bug("fib_check: iterator nullified");
|
|
else if (j->node != n)
|
|
bug("fib_check: iterator->node mismatch");
|
|
}
|
|
ec++;
|
|
}
|
|
}
|
|
if (ec != f->entries)
|
|
bug("fib_check: invalid entry count (%d != %d)", ec, f->entries);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
int
|
|
fib_histogram(struct fib *f)
|
|
{
|
|
log(L_WARN "Histogram dump start %d %d", f->hash_size, f->entries);
|
|
|
|
int i, j;
|
|
struct fib_node *e;
|
|
|
|
for (i = 0; i < f->hash_size; i++)
|
|
{
|
|
j = 0;
|
|
for (e = f->hash_table[i]; e != NULL; e = e->next)
|
|
j++;
|
|
if (j > 0)
|
|
log(L_WARN "Histogram line %d: %d", i, j);
|
|
}
|
|
|
|
log(L_WARN "Histogram dump end");
|
|
}
|
|
*/
|
|
|
|
#endif
|
|
|
|
#ifdef TEST
|
|
|
|
#include "lib/resource.h"
|
|
|
|
struct fib f;
|
|
|
|
void dump(char *m)
|
|
{
|
|
uint i;
|
|
|
|
debug("%s ... order=%d, size=%d, entries=%d\n", m, f.hash_order, f.hash_size, f.hash_size);
|
|
for(i=0; i<f.hash_size; i++)
|
|
{
|
|
struct fib_node *n;
|
|
struct fib_iterator *j;
|
|
for(n=f.hash_table[i]; n; n=n->next)
|
|
{
|
|
debug("%04x %08x %p %N", i, ipa_hash(n->prefix), n, n->addr);
|
|
for(j=n->readers; j; j=j->next)
|
|
debug(" %p[%p]", j, j->node);
|
|
debug("\n");
|
|
}
|
|
}
|
|
fib_check(&f);
|
|
debug("-----\n");
|
|
}
|
|
|
|
void init(struct fib_node *n)
|
|
{
|
|
}
|
|
|
|
int main(void)
|
|
{
|
|
struct fib_node *n;
|
|
struct fib_iterator i, j;
|
|
ip_addr a;
|
|
int c;
|
|
|
|
log_init_debug(NULL);
|
|
resource_init();
|
|
fib_init(&f, &root_pool, sizeof(struct fib_node), 4, init);
|
|
dump("init");
|
|
|
|
a = ipa_from_u32(0x01020304); n = fib_get(&f, &a, 32);
|
|
a = ipa_from_u32(0x02030405); n = fib_get(&f, &a, 32);
|
|
a = ipa_from_u32(0x03040506); n = fib_get(&f, &a, 32);
|
|
a = ipa_from_u32(0x00000000); n = fib_get(&f, &a, 32);
|
|
a = ipa_from_u32(0x00000c01); n = fib_get(&f, &a, 32);
|
|
a = ipa_from_u32(0xffffffff); n = fib_get(&f, &a, 32);
|
|
dump("fill");
|
|
|
|
fit_init(&i, &f);
|
|
dump("iter init");
|
|
|
|
fib_rehash(&f, 1);
|
|
dump("rehash up");
|
|
|
|
fib_rehash(&f, -1);
|
|
dump("rehash down");
|
|
|
|
next:
|
|
c = 0;
|
|
FIB_ITERATE_START(&f, &i, z)
|
|
{
|
|
if (c)
|
|
{
|
|
FIB_ITERATE_PUT(&i, z);
|
|
dump("iter");
|
|
goto next;
|
|
}
|
|
c = 1;
|
|
debug("got %p\n", z);
|
|
}
|
|
FIB_ITERATE_END(z);
|
|
dump("iter end");
|
|
|
|
fit_init(&i, &f);
|
|
fit_init(&j, &f);
|
|
dump("iter init 2");
|
|
|
|
n = fit_get(&f, &i);
|
|
dump("iter step 2");
|
|
|
|
fit_put(&i, n->next);
|
|
dump("iter step 3");
|
|
|
|
a = ipa_from_u32(0xffffffff); n = fib_get(&f, &a, 32);
|
|
fib_delete(&f, n);
|
|
dump("iter step 3");
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|