mirror of
https://gitlab.nic.cz/labs/bird.git
synced 2024-11-15 07:38:43 +00:00
586c1800c4
Simplify neighbor cache code, fix several minor bugs, and improve handling of ONLINK flag.
1858 lines
45 KiB
C
1858 lines
45 KiB
C
/*
|
|
* Filters: utility functions
|
|
*
|
|
* Copyright 1998 Pavel Machek <pavel@ucw.cz>
|
|
*
|
|
* Can be freely distributed and used under the terms of the GNU GPL.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* DOC: Filters
|
|
*
|
|
* You can find sources of the filter language in |filter/|
|
|
* directory. File |filter/config.Y| contains filter grammar and basically translates
|
|
* the source from user into a tree of &f_inst structures. These trees are
|
|
* later interpreted using code in |filter/filter.c|.
|
|
*
|
|
* A filter is represented by a tree of &f_inst structures, one structure per
|
|
* "instruction". Each &f_inst contains @code, @aux value which is
|
|
* usually the data type this instruction operates on and two generic
|
|
* arguments (@a1, @a2). Some instructions contain pointer(s) to other
|
|
* instructions in their (@a1, @a2) fields.
|
|
*
|
|
* Filters use a &f_val structure for their data. Each &f_val
|
|
* contains type and value (types are constants prefixed with %T_). Few
|
|
* of the types are special; %T_RETURN can be or-ed with a type to indicate
|
|
* that return from a function or from the whole filter should be
|
|
* forced. Important thing about &f_val's is that they may be copied
|
|
* with a simple |=|. That's fine for all currently defined types: strings
|
|
* are read-only (and therefore okay), paths are copied for each
|
|
* operation (okay too).
|
|
*/
|
|
|
|
#undef LOCAL_DEBUG
|
|
|
|
#include "nest/bird.h"
|
|
#include "lib/lists.h"
|
|
#include "lib/resource.h"
|
|
#include "lib/socket.h"
|
|
#include "lib/string.h"
|
|
#include "lib/unaligned.h"
|
|
#include "lib/net.h"
|
|
#include "lib/ip.h"
|
|
#include "nest/route.h"
|
|
#include "nest/protocol.h"
|
|
#include "nest/iface.h"
|
|
#include "nest/attrs.h"
|
|
#include "conf/conf.h"
|
|
#include "filter/filter.h"
|
|
|
|
#define CMP_ERROR 999
|
|
|
|
void (*bt_assert_hook)(int result, struct f_inst *assert);
|
|
|
|
static struct adata undef_adata; /* adata of length 0 used for undefined */
|
|
|
|
/* Special undef value for paths and clists */
|
|
static inline int
|
|
undef_value(struct f_val v)
|
|
{
|
|
return ((v.type == T_PATH) || (v.type == T_CLIST) ||
|
|
(v.type == T_ECLIST) || (v.type == T_LCLIST)) &&
|
|
(v.val.ad == &undef_adata);
|
|
}
|
|
|
|
static struct adata *
|
|
adata_empty(struct linpool *pool, int l)
|
|
{
|
|
struct adata *res = lp_alloc(pool, sizeof(struct adata) + l);
|
|
res->length = l;
|
|
return res;
|
|
}
|
|
|
|
static void
|
|
pm_format(struct f_path_mask *p, buffer *buf)
|
|
{
|
|
buffer_puts(buf, "[= ");
|
|
|
|
while (p)
|
|
{
|
|
switch(p->kind)
|
|
{
|
|
case PM_ASN:
|
|
buffer_print(buf, "%u ", p->val);
|
|
break;
|
|
|
|
case PM_QUESTION:
|
|
buffer_puts(buf, "? ");
|
|
break;
|
|
|
|
case PM_ASTERISK:
|
|
buffer_puts(buf, "* ");
|
|
break;
|
|
|
|
case PM_ASN_RANGE:
|
|
buffer_print(buf, "%u..%u ", p->val, p->val2);
|
|
break;
|
|
|
|
case PM_ASN_EXPR:
|
|
ASSERT(0);
|
|
}
|
|
|
|
p = p->next;
|
|
}
|
|
|
|
buffer_puts(buf, "=]");
|
|
}
|
|
|
|
static inline int val_is_ip4(const struct f_val v)
|
|
{ return (v.type == T_IP) && ipa_is_ip4(v.val.ip); }
|
|
|
|
static inline int
|
|
lcomm_cmp(lcomm v1, lcomm v2)
|
|
{
|
|
if (v1.asn != v2.asn)
|
|
return (v1.asn > v2.asn) ? 1 : -1;
|
|
if (v1.ldp1 != v2.ldp1)
|
|
return (v1.ldp1 > v2.ldp1) ? 1 : -1;
|
|
if (v1.ldp2 != v2.ldp2)
|
|
return (v1.ldp2 > v2.ldp2) ? 1 : -1;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* val_compare - compare two values
|
|
* @v1: first value
|
|
* @v2: second value
|
|
*
|
|
* Compares two values and returns -1, 0, 1 on <, =, > or CMP_ERROR on
|
|
* error. Tree module relies on this giving consistent results so
|
|
* that it can be used for building balanced trees.
|
|
*/
|
|
int
|
|
val_compare(struct f_val v1, struct f_val v2)
|
|
{
|
|
if (v1.type != v2.type) {
|
|
if (v1.type == T_VOID) /* Hack for else */
|
|
return -1;
|
|
if (v2.type == T_VOID)
|
|
return 1;
|
|
|
|
/* IP->Quad implicit conversion */
|
|
if ((v1.type == T_QUAD) && val_is_ip4(v2))
|
|
return uint_cmp(v1.val.i, ipa_to_u32(v2.val.ip));
|
|
if (val_is_ip4(v1) && (v2.type == T_QUAD))
|
|
return uint_cmp(ipa_to_u32(v1.val.ip), v2.val.i);
|
|
|
|
debug( "Types do not match in val_compare\n" );
|
|
return CMP_ERROR;
|
|
}
|
|
|
|
switch (v1.type) {
|
|
case T_VOID:
|
|
return 0;
|
|
case T_ENUM:
|
|
case T_INT:
|
|
case T_BOOL:
|
|
case T_PAIR:
|
|
case T_QUAD:
|
|
return uint_cmp(v1.val.i, v2.val.i);
|
|
case T_EC:
|
|
case T_RD:
|
|
return u64_cmp(v1.val.ec, v2.val.ec);
|
|
case T_LC:
|
|
return lcomm_cmp(v1.val.lc, v2.val.lc);
|
|
case T_IP:
|
|
return ipa_compare(v1.val.ip, v2.val.ip);
|
|
case T_NET:
|
|
return net_compare(v1.val.net, v2.val.net);
|
|
case T_STRING:
|
|
return strcmp(v1.val.s, v2.val.s);
|
|
default:
|
|
return CMP_ERROR;
|
|
}
|
|
}
|
|
|
|
static int
|
|
pm_same(struct f_path_mask *m1, struct f_path_mask *m2)
|
|
{
|
|
while (m1 && m2)
|
|
{
|
|
if (m1->kind != m2->kind)
|
|
return 0;
|
|
|
|
if (m1->kind == PM_ASN_EXPR)
|
|
{
|
|
if (!i_same((struct f_inst *) m1->val, (struct f_inst *) m2->val))
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
if ((m1->val != m2->val) || (m1->val2 != m2->val2))
|
|
return 0;
|
|
}
|
|
|
|
m1 = m1->next;
|
|
m2 = m2->next;
|
|
}
|
|
|
|
return !m1 && !m2;
|
|
}
|
|
|
|
/**
|
|
* val_same - compare two values
|
|
* @v1: first value
|
|
* @v2: second value
|
|
*
|
|
* Compares two values and returns 1 if they are same and 0 if not.
|
|
* Comparison of values of different types is valid and returns 0.
|
|
*/
|
|
int
|
|
val_same(struct f_val v1, struct f_val v2)
|
|
{
|
|
int rc;
|
|
|
|
rc = val_compare(v1, v2);
|
|
if (rc != CMP_ERROR)
|
|
return !rc;
|
|
|
|
if (v1.type != v2.type)
|
|
return 0;
|
|
|
|
switch (v1.type) {
|
|
case T_PATH_MASK:
|
|
return pm_same(v1.val.path_mask, v2.val.path_mask);
|
|
case T_PATH:
|
|
case T_CLIST:
|
|
case T_ECLIST:
|
|
case T_LCLIST:
|
|
return adata_same(v1.val.ad, v2.val.ad);
|
|
case T_SET:
|
|
return same_tree(v1.val.t, v2.val.t);
|
|
case T_PREFIX_SET:
|
|
return trie_same(v1.val.ti, v2.val.ti);
|
|
default:
|
|
bug("Invalid type in val_same(): %x", v1.type);
|
|
}
|
|
}
|
|
|
|
static int
|
|
clist_set_type(struct f_tree *set, struct f_val *v)
|
|
{
|
|
switch (set->from.type)
|
|
{
|
|
case T_PAIR:
|
|
v->type = T_PAIR;
|
|
return 1;
|
|
|
|
case T_QUAD:
|
|
v->type = T_QUAD;
|
|
return 1;
|
|
|
|
case T_IP:
|
|
if (val_is_ip4(set->from) && val_is_ip4(set->to))
|
|
{
|
|
v->type = T_QUAD;
|
|
return 1;
|
|
}
|
|
/* Fall through */
|
|
default:
|
|
v->type = T_VOID;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
eclist_set_type(struct f_tree *set)
|
|
{ return set->from.type == T_EC; }
|
|
|
|
static inline int
|
|
lclist_set_type(struct f_tree *set)
|
|
{ return set->from.type == T_LC; }
|
|
|
|
static int
|
|
clist_match_set(struct adata *clist, struct f_tree *set)
|
|
{
|
|
if (!clist)
|
|
return 0;
|
|
|
|
struct f_val v;
|
|
if (!clist_set_type(set, &v))
|
|
return CMP_ERROR;
|
|
|
|
u32 *l = (u32 *) clist->data;
|
|
u32 *end = l + clist->length/4;
|
|
|
|
while (l < end) {
|
|
v.val.i = *l++;
|
|
if (find_tree(set, v))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eclist_match_set(struct adata *list, struct f_tree *set)
|
|
{
|
|
if (!list)
|
|
return 0;
|
|
|
|
if (!eclist_set_type(set))
|
|
return CMP_ERROR;
|
|
|
|
struct f_val v;
|
|
u32 *l = int_set_get_data(list);
|
|
int len = int_set_get_size(list);
|
|
int i;
|
|
|
|
v.type = T_EC;
|
|
for (i = 0; i < len; i += 2) {
|
|
v.val.ec = ec_get(l, i);
|
|
if (find_tree(set, v))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
lclist_match_set(struct adata *list, struct f_tree *set)
|
|
{
|
|
if (!list)
|
|
return 0;
|
|
|
|
if (!lclist_set_type(set))
|
|
return CMP_ERROR;
|
|
|
|
struct f_val v;
|
|
u32 *l = int_set_get_data(list);
|
|
int len = int_set_get_size(list);
|
|
int i;
|
|
|
|
v.type = T_LC;
|
|
for (i = 0; i < len; i += 3) {
|
|
v.val.lc = lc_get(l, i);
|
|
if (find_tree(set, v))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct adata *
|
|
clist_filter(struct linpool *pool, struct adata *list, struct f_val set, int pos)
|
|
{
|
|
if (!list)
|
|
return NULL;
|
|
|
|
int tree = (set.type == T_SET); /* 1 -> set is T_SET, 0 -> set is T_CLIST */
|
|
struct f_val v;
|
|
if (tree)
|
|
clist_set_type(set.val.t, &v);
|
|
else
|
|
v.type = T_PAIR;
|
|
|
|
int len = int_set_get_size(list);
|
|
u32 *l = int_set_get_data(list);
|
|
u32 tmp[len];
|
|
u32 *k = tmp;
|
|
u32 *end = l + len;
|
|
|
|
while (l < end) {
|
|
v.val.i = *l++;
|
|
/* pos && member(val, set) || !pos && !member(val, set), member() depends on tree */
|
|
if ((tree ? !!find_tree(set.val.t, v) : int_set_contains(set.val.ad, v.val.i)) == pos)
|
|
*k++ = v.val.i;
|
|
}
|
|
|
|
uint nl = (k - tmp) * sizeof(u32);
|
|
if (nl == list->length)
|
|
return list;
|
|
|
|
struct adata *res = adata_empty(pool, nl);
|
|
memcpy(res->data, tmp, nl);
|
|
return res;
|
|
}
|
|
|
|
static struct adata *
|
|
eclist_filter(struct linpool *pool, struct adata *list, struct f_val set, int pos)
|
|
{
|
|
if (!list)
|
|
return NULL;
|
|
|
|
int tree = (set.type == T_SET); /* 1 -> set is T_SET, 0 -> set is T_CLIST */
|
|
struct f_val v;
|
|
|
|
int len = int_set_get_size(list);
|
|
u32 *l = int_set_get_data(list);
|
|
u32 tmp[len];
|
|
u32 *k = tmp;
|
|
int i;
|
|
|
|
v.type = T_EC;
|
|
for (i = 0; i < len; i += 2) {
|
|
v.val.ec = ec_get(l, i);
|
|
/* pos && member(val, set) || !pos && !member(val, set), member() depends on tree */
|
|
if ((tree ? !!find_tree(set.val.t, v) : ec_set_contains(set.val.ad, v.val.ec)) == pos) {
|
|
*k++ = l[i];
|
|
*k++ = l[i+1];
|
|
}
|
|
}
|
|
|
|
uint nl = (k - tmp) * sizeof(u32);
|
|
if (nl == list->length)
|
|
return list;
|
|
|
|
struct adata *res = adata_empty(pool, nl);
|
|
memcpy(res->data, tmp, nl);
|
|
return res;
|
|
}
|
|
|
|
static struct adata *
|
|
lclist_filter(struct linpool *pool, struct adata *list, struct f_val set, int pos)
|
|
{
|
|
if (!list)
|
|
return NULL;
|
|
|
|
int tree = (set.type == T_SET); /* 1 -> set is T_SET, 0 -> set is T_CLIST */
|
|
struct f_val v;
|
|
|
|
int len = int_set_get_size(list);
|
|
u32 *l = int_set_get_data(list);
|
|
u32 tmp[len];
|
|
u32 *k = tmp;
|
|
int i;
|
|
|
|
v.type = T_LC;
|
|
for (i = 0; i < len; i += 3) {
|
|
v.val.lc = lc_get(l, i);
|
|
/* pos && member(val, set) || !pos && !member(val, set), member() depends on tree */
|
|
if ((tree ? !!find_tree(set.val.t, v) : lc_set_contains(set.val.ad, v.val.lc)) == pos)
|
|
k = lc_copy(k, l+i);
|
|
}
|
|
|
|
uint nl = (k - tmp) * sizeof(u32);
|
|
if (nl == list->length)
|
|
return list;
|
|
|
|
struct adata *res = adata_empty(pool, nl);
|
|
memcpy(res->data, tmp, nl);
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* val_in_range - implement |~| operator
|
|
* @v1: element
|
|
* @v2: set
|
|
*
|
|
* Checks if @v1 is element (|~| operator) of @v2.
|
|
*/
|
|
static int
|
|
val_in_range(struct f_val v1, struct f_val v2)
|
|
{
|
|
if ((v1.type == T_PATH) && (v2.type == T_PATH_MASK))
|
|
return as_path_match(v1.val.ad, v2.val.path_mask);
|
|
|
|
if ((v1.type == T_INT) && (v2.type == T_PATH))
|
|
return as_path_contains(v2.val.ad, v1.val.i, 1);
|
|
|
|
if (((v1.type == T_PAIR) || (v1.type == T_QUAD)) && (v2.type == T_CLIST))
|
|
return int_set_contains(v2.val.ad, v1.val.i);
|
|
/* IP->Quad implicit conversion */
|
|
if (val_is_ip4(v1) && (v2.type == T_CLIST))
|
|
return int_set_contains(v2.val.ad, ipa_to_u32(v1.val.ip));
|
|
|
|
if ((v1.type == T_EC) && (v2.type == T_ECLIST))
|
|
return ec_set_contains(v2.val.ad, v1.val.ec);
|
|
|
|
if ((v1.type == T_LC) && (v2.type == T_LCLIST))
|
|
return lc_set_contains(v2.val.ad, v1.val.lc);
|
|
|
|
if ((v1.type == T_STRING) && (v2.type == T_STRING))
|
|
return patmatch(v2.val.s, v1.val.s);
|
|
|
|
if ((v1.type == T_IP) && (v2.type == T_NET))
|
|
return ipa_in_netX(v1.val.ip, v2.val.net);
|
|
|
|
if ((v1.type == T_NET) && (v2.type == T_NET))
|
|
return net_in_netX(v1.val.net, v2.val.net);
|
|
|
|
if ((v1.type == T_NET) && (v2.type == T_PREFIX_SET))
|
|
return trie_match_net(v2.val.ti, v1.val.net);
|
|
|
|
if (v2.type != T_SET)
|
|
return CMP_ERROR;
|
|
|
|
/* With integrated Quad<->IP implicit conversion */
|
|
if ((v1.type == v2.val.t->from.type) ||
|
|
((v1.type == T_QUAD) && val_is_ip4(v2.val.t->from) && val_is_ip4(v2.val.t->to)))
|
|
return !!find_tree(v2.val.t, v1);
|
|
|
|
if (v1.type == T_CLIST)
|
|
return clist_match_set(v1.val.ad, v2.val.t);
|
|
|
|
if (v1.type == T_ECLIST)
|
|
return eclist_match_set(v1.val.ad, v2.val.t);
|
|
|
|
if (v1.type == T_LCLIST)
|
|
return lclist_match_set(v1.val.ad, v2.val.t);
|
|
|
|
if (v1.type == T_PATH)
|
|
return as_path_match_set(v1.val.ad, v2.val.t);
|
|
|
|
return CMP_ERROR;
|
|
}
|
|
|
|
/*
|
|
* val_format - format filter value
|
|
*/
|
|
void
|
|
val_format(struct f_val v, buffer *buf)
|
|
{
|
|
char buf2[1024];
|
|
switch (v.type)
|
|
{
|
|
case T_VOID: buffer_puts(buf, "(void)"); return;
|
|
case T_BOOL: buffer_puts(buf, v.val.i ? "TRUE" : "FALSE"); return;
|
|
case T_INT: buffer_print(buf, "%u", v.val.i); return;
|
|
case T_STRING: buffer_print(buf, "%s", v.val.s); return;
|
|
case T_IP: buffer_print(buf, "%I", v.val.ip); return;
|
|
case T_NET: buffer_print(buf, "%N", v.val.net); return;
|
|
case T_PAIR: buffer_print(buf, "(%u,%u)", v.val.i >> 16, v.val.i & 0xffff); return;
|
|
case T_QUAD: buffer_print(buf, "%R", v.val.i); return;
|
|
case T_EC: ec_format(buf2, v.val.ec); buffer_print(buf, "%s", buf2); return;
|
|
case T_LC: lc_format(buf2, v.val.lc); buffer_print(buf, "%s", buf2); return;
|
|
case T_RD: rd_format(v.val.ec, buf2, 1024); buffer_print(buf, "%s", buf2); return;
|
|
case T_PREFIX_SET: trie_format(v.val.ti, buf); return;
|
|
case T_SET: tree_format(v.val.t, buf); return;
|
|
case T_ENUM: buffer_print(buf, "(enum %x)%u", v.type, v.val.i); return;
|
|
case T_PATH: as_path_format(v.val.ad, buf2, 1000); buffer_print(buf, "(path %s)", buf2); return;
|
|
case T_CLIST: int_set_format(v.val.ad, 1, -1, buf2, 1000); buffer_print(buf, "(clist %s)", buf2); return;
|
|
case T_ECLIST: ec_set_format(v.val.ad, -1, buf2, 1000); buffer_print(buf, "(eclist %s)", buf2); return;
|
|
case T_LCLIST: lc_set_format(v.val.ad, -1, buf2, 1000); buffer_print(buf, "(lclist %s)", buf2); return;
|
|
case T_PATH_MASK: pm_format(v.val.path_mask, buf); return;
|
|
default: buffer_print(buf, "[unknown type %x]", v.type); return;
|
|
}
|
|
}
|
|
|
|
static struct rte **f_rte;
|
|
static struct rta *f_old_rta;
|
|
static struct ea_list **f_eattrs;
|
|
static struct linpool *f_pool;
|
|
static struct buffer f_buf;
|
|
static int f_flags;
|
|
|
|
static inline void f_cache_eattrs(void)
|
|
{
|
|
f_eattrs = &((*f_rte)->attrs->eattrs);
|
|
}
|
|
|
|
static inline void f_rte_cow(void)
|
|
{
|
|
if (!((*f_rte)->flags & REF_COW))
|
|
return;
|
|
|
|
*f_rte = rte_do_cow(*f_rte);
|
|
}
|
|
|
|
/*
|
|
* rta_cow - prepare rta for modification by filter
|
|
*/
|
|
static void
|
|
f_rta_cow(void)
|
|
{
|
|
if (!rta_is_cached((*f_rte)->attrs))
|
|
return;
|
|
|
|
/* Prepare to modify rte */
|
|
f_rte_cow();
|
|
|
|
/* Store old rta to free it later, it stores reference from rte_cow() */
|
|
f_old_rta = (*f_rte)->attrs;
|
|
|
|
/*
|
|
* Get shallow copy of rta. Fields eattrs and nexthops of rta are shared
|
|
* with f_old_rta (they will be copied when the cached rta will be obtained
|
|
* at the end of f_run()), also the lock of hostentry is inherited (we
|
|
* suppose hostentry is not changed by filters).
|
|
*/
|
|
(*f_rte)->attrs = rta_do_cow((*f_rte)->attrs, f_pool);
|
|
|
|
/* Re-cache the ea_list */
|
|
f_cache_eattrs();
|
|
}
|
|
|
|
static char *
|
|
val_format_str(struct f_val v) {
|
|
buffer b;
|
|
LOG_BUFFER_INIT(b);
|
|
val_format(v, &b);
|
|
return lp_strdup(f_pool, b.start);
|
|
}
|
|
|
|
static struct tbf rl_runtime_err = TBF_DEFAULT_LOG_LIMITS;
|
|
|
|
#define runtime(fmt, ...) do { \
|
|
if (!(f_flags & FF_SILENT)) \
|
|
log_rl(&rl_runtime_err, L_ERR "filters, line %d: " fmt, what->lineno, ##__VA_ARGS__); \
|
|
res.type = T_RETURN; \
|
|
res.val.i = F_ERROR; \
|
|
return res; \
|
|
} while(0)
|
|
|
|
#define ARG_ANY(n) INTERPRET(v##n, what->a##n.p)
|
|
|
|
#define ARG(n,t) ARG_ANY(n) \
|
|
if (v##n.type != t) \
|
|
runtime("Argument %d of instruction %s must be of type %02x, got %02x", \
|
|
n, f_instruction_name(what->fi_code), t, v##n.type);
|
|
|
|
#define INTERPRET(val, what_) \
|
|
val = interpret(what_); \
|
|
if (val.type & T_RETURN) \
|
|
return val;
|
|
|
|
#define ACCESS_RTE \
|
|
do { if (!f_rte) runtime("No route to access"); } while (0)
|
|
|
|
#define ACCESS_EATTRS \
|
|
do { if (!f_eattrs) f_cache_eattrs(); } while (0)
|
|
|
|
#define BITFIELD_MASK(what) \
|
|
(1u << (what->a2.i >> 24))
|
|
|
|
/**
|
|
* interpret
|
|
* @what: filter to interpret
|
|
*
|
|
* Interpret given tree of filter instructions. This is core function
|
|
* of filter system and does all the hard work.
|
|
*
|
|
* Each instruction has 4 fields: code (which is instruction code),
|
|
* aux (which is extension to instruction code, typically type),
|
|
* arg1 and arg2 - arguments. Depending on instruction, arguments
|
|
* are either integers, or pointers to instruction trees. Common
|
|
* instructions like +, that have two expressions as arguments use
|
|
* TWOARGS macro to get both of them evaluated.
|
|
*
|
|
* &f_val structures are copied around, so there are no problems with
|
|
* memory managment.
|
|
*/
|
|
static struct f_val
|
|
interpret(struct f_inst *what)
|
|
{
|
|
struct symbol *sym;
|
|
struct f_val v1, v2, v3, res = { .type = T_VOID }, *vp;
|
|
unsigned u1, u2;
|
|
int i;
|
|
u32 as;
|
|
|
|
for ( ; what; what = what->next) {
|
|
res.type = T_VOID;
|
|
switch(what->fi_code) {
|
|
/* Binary operators */
|
|
case FI_ADD:
|
|
ARG(1,T_INT);
|
|
ARG(2,T_INT);
|
|
res.type = T_INT;
|
|
res.val.i = v1.val.i + v2.val.i;
|
|
break;
|
|
case FI_SUBTRACT:
|
|
ARG(1,T_INT);
|
|
ARG(2,T_INT);
|
|
res.type = T_INT;
|
|
res.val.i = v1.val.i - v2.val.i;
|
|
break;
|
|
case FI_MULTIPLY:
|
|
ARG(1,T_INT);
|
|
ARG(2,T_INT);
|
|
res.type = T_INT;
|
|
res.val.i = v1.val.i * v2.val.i;
|
|
break;
|
|
case FI_DIVIDE:
|
|
ARG(1,T_INT);
|
|
ARG(2,T_INT);
|
|
res.type = T_INT;
|
|
if (v2.val.i == 0) runtime( "Mother told me not to divide by 0" );
|
|
res.val.i = v1.val.i / v2.val.i;
|
|
break;
|
|
case FI_AND:
|
|
case FI_OR:
|
|
ARG(1,T_BOOL);
|
|
if (v1.val.i == (what->fi_code == FI_OR)) {
|
|
res.type = T_BOOL;
|
|
res.val.i = v1.val.i;
|
|
} else {
|
|
ARG(2,T_BOOL);
|
|
res = v2;
|
|
}
|
|
break;
|
|
case FI_PAIR_CONSTRUCT:
|
|
ARG(1,T_INT);
|
|
ARG(2,T_INT);
|
|
u1 = v1.val.i;
|
|
u2 = v2.val.i;
|
|
if ((u1 > 0xFFFF) || (u2 > 0xFFFF))
|
|
runtime( "Can't operate with value out of bounds in pair constructor" );
|
|
res.val.i = (u1 << 16) | u2;
|
|
res.type = T_PAIR;
|
|
break;
|
|
|
|
case FI_EC_CONSTRUCT:
|
|
{
|
|
ARG_ANY(1);
|
|
ARG(2, T_INT);
|
|
|
|
int check, ipv4_used;
|
|
u32 key, val;
|
|
|
|
if (v1.type == T_INT) {
|
|
ipv4_used = 0; key = v1.val.i;
|
|
}
|
|
else if (v1.type == T_QUAD) {
|
|
ipv4_used = 1; key = v1.val.i;
|
|
}
|
|
/* IP->Quad implicit conversion */
|
|
else if (val_is_ip4(v1)) {
|
|
ipv4_used = 1; key = ipa_to_u32(v1.val.ip);
|
|
}
|
|
else
|
|
runtime("Can't operate with key of non-integer/IPv4 type in EC constructor");
|
|
|
|
val = v2.val.i;
|
|
|
|
/* XXXX */
|
|
res.type = T_EC;
|
|
|
|
if (what->aux == EC_GENERIC) {
|
|
check = 0; res.val.ec = ec_generic(key, val);
|
|
}
|
|
else if (ipv4_used) {
|
|
check = 1; res.val.ec = ec_ip4(what->aux, key, val);
|
|
}
|
|
else if (key < 0x10000) {
|
|
check = 0; res.val.ec = ec_as2(what->aux, key, val);
|
|
}
|
|
else {
|
|
check = 1; res.val.ec = ec_as4(what->aux, key, val);
|
|
}
|
|
|
|
if (check && (val > 0xFFFF))
|
|
runtime("Can't operate with value out of bounds in EC constructor");
|
|
|
|
break;
|
|
}
|
|
|
|
case FI_LC_CONSTRUCT:
|
|
{
|
|
ARG(1, T_INT);
|
|
ARG(2, T_INT);
|
|
ARG(3, T_INT);
|
|
|
|
res.type = T_LC;
|
|
res.val.lc = (lcomm) { v1.val.i, v2.val.i, v3.val.i };
|
|
|
|
break;
|
|
}
|
|
|
|
case FI_PATHMASK_CONSTRUCT:
|
|
{
|
|
struct f_path_mask *tt = what->a1.p, *vbegin, **vv = &vbegin;
|
|
|
|
while (tt) {
|
|
*vv = lp_alloc(f_pool, sizeof(struct f_path_mask));
|
|
if (tt->kind == PM_ASN_EXPR) {
|
|
struct f_val res;
|
|
INTERPRET(res, (struct f_inst *) tt->val);
|
|
(*vv)->kind = PM_ASN;
|
|
if (res.type != T_INT) {
|
|
runtime( "Error resolving path mask template: value not an integer" );
|
|
return (struct f_val) { .type = T_VOID };
|
|
}
|
|
|
|
(*vv)->val = res.val.i;
|
|
} else {
|
|
**vv = *tt;
|
|
}
|
|
tt = tt->next;
|
|
vv = &((*vv)->next);
|
|
}
|
|
|
|
res = (struct f_val) { .type = T_PATH_MASK, .val.path_mask = vbegin };
|
|
break;
|
|
}
|
|
|
|
/* Relational operators */
|
|
|
|
#define COMPARE(x) \
|
|
ARG_ANY(1); \
|
|
ARG_ANY(2); \
|
|
i = val_compare(v1, v2); \
|
|
if (i==CMP_ERROR) \
|
|
runtime( "Can't compare values of incompatible types" ); \
|
|
res.type = T_BOOL; \
|
|
res.val.i = (x); \
|
|
break;
|
|
|
|
#define SAME(x) \
|
|
ARG_ANY(1); \
|
|
ARG_ANY(2); \
|
|
i = val_same(v1, v2); \
|
|
res.type = T_BOOL; \
|
|
res.val.i = (x); \
|
|
break;
|
|
|
|
case FI_NEQ: SAME(!i);
|
|
case FI_EQ: SAME(i);
|
|
case FI_LT: COMPARE(i==-1);
|
|
case FI_LTE: COMPARE(i!=1);
|
|
|
|
case FI_NOT:
|
|
ARG(1,T_BOOL);
|
|
res = v1;
|
|
res.val.i = !res.val.i;
|
|
break;
|
|
|
|
case FI_MATCH:
|
|
ARG_ANY(1);
|
|
ARG_ANY(2);
|
|
res.type = T_BOOL;
|
|
res.val.i = val_in_range(v1, v2);
|
|
if (res.val.i == CMP_ERROR)
|
|
runtime( "~ applied on unknown type pair" );
|
|
res.val.i = !!res.val.i;
|
|
break;
|
|
|
|
case FI_NOT_MATCH:
|
|
ARG_ANY(1);
|
|
ARG_ANY(2);
|
|
res.type = T_BOOL;
|
|
res.val.i = val_in_range(v1, v2);
|
|
if (res.val.i == CMP_ERROR)
|
|
runtime( "!~ applied on unknown type pair" );
|
|
res.val.i = !res.val.i;
|
|
break;
|
|
|
|
case FI_DEFINED:
|
|
ARG_ANY(1);
|
|
res.type = T_BOOL;
|
|
res.val.i = (v1.type != T_VOID) && !undef_value(v1);
|
|
break;
|
|
case FI_TYPE:
|
|
ARG_ANY(1); /* There may be more types supporting this operation */
|
|
switch (v1.type)
|
|
{
|
|
case T_NET:
|
|
res.type = T_ENUM_NETTYPE;
|
|
res.val.i = v1.val.net->type;
|
|
break;
|
|
default:
|
|
runtime( "Can't determine type of this item" );
|
|
}
|
|
break;
|
|
case FI_IS_V4:
|
|
ARG(1, T_IP);
|
|
res.type = T_BOOL;
|
|
res.val.i = ipa_is_ip4(v1.val.ip);
|
|
break;
|
|
|
|
/* Set to indirect value, a1 = variable, a2 = value */
|
|
case FI_SET:
|
|
ARG_ANY(2);
|
|
sym = what->a1.p;
|
|
vp = sym->def;
|
|
if ((sym->class != (SYM_VARIABLE | v2.type)) && (v2.type != T_VOID))
|
|
{
|
|
/* IP->Quad implicit conversion */
|
|
if ((sym->class == (SYM_VARIABLE | T_QUAD)) && val_is_ip4(v2))
|
|
{
|
|
vp->type = T_QUAD;
|
|
vp->val.i = ipa_to_u32(v2.val.ip);
|
|
break;
|
|
}
|
|
runtime( "Assigning to variable of incompatible type" );
|
|
}
|
|
*vp = v2;
|
|
break;
|
|
|
|
/* some constants have value in a2, some in *a1.p, strange. */
|
|
case FI_CONSTANT: /* integer (or simple type) constant, string, set, or prefix_set */
|
|
res.type = what->aux;
|
|
|
|
if (res.type == T_PREFIX_SET)
|
|
res.val.ti = what->a2.p;
|
|
else if (res.type == T_SET)
|
|
res.val.t = what->a2.p;
|
|
else if (res.type == T_STRING)
|
|
res.val.s = what->a2.p;
|
|
else
|
|
res.val.i = what->a2.i;
|
|
break;
|
|
case FI_VARIABLE:
|
|
case FI_CONSTANT_INDIRECT:
|
|
res = * ((struct f_val *) what->a1.p);
|
|
break;
|
|
case FI_PRINT:
|
|
ARG_ANY(1);
|
|
val_format(v1, &f_buf);
|
|
break;
|
|
case FI_CONDITION: /* ? has really strange error value, so we can implement if ... else nicely :-) */
|
|
ARG(1, T_BOOL);
|
|
if (v1.val.i) {
|
|
ARG_ANY(2);
|
|
res.val.i = 0;
|
|
} else
|
|
res.val.i = 1;
|
|
res.type = T_BOOL;
|
|
break;
|
|
case FI_NOP:
|
|
debug( "No operation\n" );
|
|
break;
|
|
case FI_PRINT_AND_DIE:
|
|
ARG_ANY(1);
|
|
if ((what->a2.i == F_NOP || (what->a2.i != F_NONL && what->a1.p)) &&
|
|
!(f_flags & FF_SILENT))
|
|
log_commit(*L_INFO, &f_buf);
|
|
|
|
switch (what->a2.i) {
|
|
case F_QUITBIRD:
|
|
die( "Filter asked me to die" );
|
|
case F_ACCEPT:
|
|
/* Should take care about turning ACCEPT into MODIFY */
|
|
case F_ERROR:
|
|
case F_REJECT: /* FIXME (noncritical) Should print complete route along with reason to reject route */
|
|
res.type = T_RETURN;
|
|
res.val.i = what->a2.i;
|
|
return res; /* We have to return now, no more processing. */
|
|
case F_NONL:
|
|
case F_NOP:
|
|
break;
|
|
default:
|
|
bug( "unknown return type: Can't happen");
|
|
}
|
|
break;
|
|
case FI_RTA_GET: /* rta access */
|
|
{
|
|
ACCESS_RTE;
|
|
struct rta *rta = (*f_rte)->attrs;
|
|
res.type = what->aux;
|
|
|
|
switch (what->a2.i)
|
|
{
|
|
case SA_FROM: res.val.ip = rta->from; break;
|
|
case SA_GW: res.val.ip = rta->nh.gw; break;
|
|
case SA_NET: res.val.net = (*f_rte)->net->n.addr; break;
|
|
case SA_PROTO: res.val.s = rta->src->proto->name; break;
|
|
case SA_SOURCE: res.val.i = rta->source; break;
|
|
case SA_SCOPE: res.val.i = rta->scope; break;
|
|
case SA_DEST: res.val.i = rta->dest; break;
|
|
case SA_IFNAME: res.val.s = rta->nh.iface ? rta->nh.iface->name : ""; break;
|
|
case SA_IFINDEX: res.val.i = rta->nh.iface ? rta->nh.iface->index : 0; break;
|
|
|
|
default:
|
|
bug("Invalid static attribute access (%x)", res.type);
|
|
}
|
|
}
|
|
break;
|
|
case FI_RTA_SET:
|
|
ACCESS_RTE;
|
|
ARG_ANY(1);
|
|
if (what->aux != v1.type)
|
|
runtime( "Attempt to set static attribute to incompatible type" );
|
|
|
|
f_rta_cow();
|
|
{
|
|
struct rta *rta = (*f_rte)->attrs;
|
|
|
|
switch (what->a2.i)
|
|
{
|
|
case SA_FROM:
|
|
rta->from = v1.val.ip;
|
|
break;
|
|
|
|
case SA_GW:
|
|
{
|
|
ip_addr ip = v1.val.ip;
|
|
neighbor *n = neigh_find(rta->src->proto, ip, NULL, 0);
|
|
if (!n || (n->scope == SCOPE_HOST))
|
|
runtime( "Invalid gw address" );
|
|
|
|
rta->dest = RTD_UNICAST;
|
|
rta->nh.gw = ip;
|
|
rta->nh.iface = n->iface;
|
|
rta->nh.next = NULL;
|
|
rta->hostentry = NULL;
|
|
}
|
|
break;
|
|
|
|
case SA_SCOPE:
|
|
rta->scope = v1.val.i;
|
|
break;
|
|
|
|
case SA_DEST:
|
|
i = v1.val.i;
|
|
if ((i != RTD_BLACKHOLE) && (i != RTD_UNREACHABLE) && (i != RTD_PROHIBIT))
|
|
runtime( "Destination can be changed only to blackhole, unreachable or prohibit" );
|
|
|
|
rta->dest = i;
|
|
rta->nh.gw = IPA_NONE;
|
|
rta->nh.iface = NULL;
|
|
rta->nh.next = NULL;
|
|
rta->hostentry = NULL;
|
|
break;
|
|
|
|
default:
|
|
bug("Invalid static attribute access (%x)", res.type);
|
|
}
|
|
}
|
|
break;
|
|
case FI_EA_GET: /* Access to extended attributes */
|
|
ACCESS_RTE;
|
|
ACCESS_EATTRS;
|
|
{
|
|
u16 code = what->a2.i;
|
|
int f_type = what->aux >> 8;
|
|
eattr *e = ea_find(*f_eattrs, code);
|
|
|
|
if (!e) {
|
|
/* A special case: undefined as_path looks like empty as_path */
|
|
if ((what->aux & EAF_TYPE_MASK) == EAF_TYPE_AS_PATH) {
|
|
res.type = T_PATH;
|
|
res.val.ad = &undef_adata;
|
|
break;
|
|
}
|
|
|
|
/* The same special case for int_set */
|
|
if ((what->aux & EAF_TYPE_MASK) == EAF_TYPE_INT_SET) {
|
|
res.type = T_CLIST;
|
|
res.val.ad = &undef_adata;
|
|
break;
|
|
}
|
|
|
|
/* The same special case for ec_set */
|
|
if ((what->aux & EAF_TYPE_MASK) == EAF_TYPE_EC_SET) {
|
|
res.type = T_ECLIST;
|
|
res.val.ad = &undef_adata;
|
|
break;
|
|
}
|
|
|
|
/* The same special case for lc_set */
|
|
if ((what->aux & EAF_TYPE_MASK) == EAF_TYPE_LC_SET) {
|
|
res.type = T_LCLIST;
|
|
res.val.ad = &undef_adata;
|
|
break;
|
|
}
|
|
|
|
/* Undefined value */
|
|
res.type = T_VOID;
|
|
break;
|
|
}
|
|
|
|
switch (what->aux & EAF_TYPE_MASK) {
|
|
case EAF_TYPE_INT:
|
|
res.type = f_type;
|
|
res.val.i = e->u.data;
|
|
break;
|
|
case EAF_TYPE_ROUTER_ID:
|
|
res.type = T_QUAD;
|
|
res.val.i = e->u.data;
|
|
break;
|
|
case EAF_TYPE_OPAQUE:
|
|
res.type = T_ENUM_EMPTY;
|
|
res.val.i = 0;
|
|
break;
|
|
case EAF_TYPE_IP_ADDRESS:
|
|
res.type = T_IP;
|
|
struct adata * ad = e->u.ptr;
|
|
res.val.ip = * (ip_addr *) ad->data;
|
|
break;
|
|
case EAF_TYPE_AS_PATH:
|
|
res.type = T_PATH;
|
|
res.val.ad = e->u.ptr;
|
|
break;
|
|
case EAF_TYPE_BITFIELD:
|
|
res.type = T_BOOL;
|
|
res.val.i = !!(e->u.data & BITFIELD_MASK(what));
|
|
break;
|
|
case EAF_TYPE_INT_SET:
|
|
res.type = T_CLIST;
|
|
res.val.ad = e->u.ptr;
|
|
break;
|
|
case EAF_TYPE_EC_SET:
|
|
res.type = T_ECLIST;
|
|
res.val.ad = e->u.ptr;
|
|
break;
|
|
case EAF_TYPE_LC_SET:
|
|
res.type = T_LCLIST;
|
|
res.val.ad = e->u.ptr;
|
|
break;
|
|
case EAF_TYPE_UNDEF:
|
|
res.type = T_VOID;
|
|
break;
|
|
default:
|
|
bug("Unknown type in e,a");
|
|
}
|
|
}
|
|
break;
|
|
case FI_EA_SET:
|
|
ACCESS_RTE;
|
|
ACCESS_EATTRS;
|
|
ARG_ANY(1);
|
|
{
|
|
struct ea_list *l = lp_alloc(f_pool, sizeof(struct ea_list) + sizeof(eattr));
|
|
u16 code = what->a2.i;
|
|
int f_type = what->aux >> 8;
|
|
|
|
l->next = NULL;
|
|
l->flags = EALF_SORTED;
|
|
l->count = 1;
|
|
l->attrs[0].id = code;
|
|
l->attrs[0].flags = 0;
|
|
l->attrs[0].type = (what->aux & 0xff) | EAF_ORIGINATED | EAF_FRESH;
|
|
|
|
switch (what->aux & EAF_TYPE_MASK) {
|
|
case EAF_TYPE_INT:
|
|
if (v1.type != f_type)
|
|
runtime( "Setting int attribute to non-int value" );
|
|
l->attrs[0].u.data = v1.val.i;
|
|
break;
|
|
|
|
case EAF_TYPE_ROUTER_ID:
|
|
/* IP->Quad implicit conversion */
|
|
if (val_is_ip4(v1)) {
|
|
l->attrs[0].u.data = ipa_to_u32(v1.val.ip);
|
|
break;
|
|
}
|
|
/* T_INT for backward compatibility */
|
|
if ((v1.type != T_QUAD) && (v1.type != T_INT))
|
|
runtime( "Setting quad attribute to non-quad value" );
|
|
l->attrs[0].u.data = v1.val.i;
|
|
break;
|
|
|
|
case EAF_TYPE_OPAQUE:
|
|
runtime( "Setting opaque attribute is not allowed" );
|
|
break;
|
|
case EAF_TYPE_IP_ADDRESS:
|
|
if (v1.type != T_IP)
|
|
runtime( "Setting ip attribute to non-ip value" );
|
|
int len = sizeof(ip_addr);
|
|
struct adata *ad = lp_alloc(f_pool, sizeof(struct adata) + len);
|
|
ad->length = len;
|
|
(* (ip_addr *) ad->data) = v1.val.ip;
|
|
l->attrs[0].u.ptr = ad;
|
|
break;
|
|
case EAF_TYPE_AS_PATH:
|
|
if (v1.type != T_PATH)
|
|
runtime( "Setting path attribute to non-path value" );
|
|
l->attrs[0].u.ptr = v1.val.ad;
|
|
break;
|
|
case EAF_TYPE_BITFIELD:
|
|
if (v1.type != T_BOOL)
|
|
runtime( "Setting bit in bitfield attribute to non-bool value" );
|
|
{
|
|
/* First, we have to find the old value */
|
|
eattr *e = ea_find(*f_eattrs, code);
|
|
u32 data = e ? e->u.data : 0;
|
|
|
|
if (v1.val.i)
|
|
l->attrs[0].u.data = data | BITFIELD_MASK(what);
|
|
else
|
|
l->attrs[0].u.data = data & ~BITFIELD_MASK(what);;
|
|
}
|
|
break;
|
|
case EAF_TYPE_INT_SET:
|
|
if (v1.type != T_CLIST)
|
|
runtime( "Setting clist attribute to non-clist value" );
|
|
l->attrs[0].u.ptr = v1.val.ad;
|
|
break;
|
|
case EAF_TYPE_EC_SET:
|
|
if (v1.type != T_ECLIST)
|
|
runtime( "Setting eclist attribute to non-eclist value" );
|
|
l->attrs[0].u.ptr = v1.val.ad;
|
|
break;
|
|
case EAF_TYPE_LC_SET:
|
|
if (v1.type != T_LCLIST)
|
|
runtime( "Setting lclist attribute to non-lclist value" );
|
|
l->attrs[0].u.ptr = v1.val.ad;
|
|
break;
|
|
case EAF_TYPE_UNDEF:
|
|
if (v1.type != T_VOID)
|
|
runtime( "Setting void attribute to non-void value" );
|
|
l->attrs[0].u.data = 0;
|
|
break;
|
|
default: bug("Unknown type in e,S");
|
|
}
|
|
|
|
f_rta_cow();
|
|
l->next = *f_eattrs;
|
|
*f_eattrs = l;
|
|
}
|
|
break;
|
|
case FI_PREF_GET:
|
|
ACCESS_RTE;
|
|
res.type = T_INT;
|
|
res.val.i = (*f_rte)->pref;
|
|
break;
|
|
case FI_PREF_SET:
|
|
ACCESS_RTE;
|
|
ARG(1,T_INT);
|
|
if (v1.val.i > 0xFFFF)
|
|
runtime( "Setting preference value out of bounds" );
|
|
f_rte_cow();
|
|
(*f_rte)->pref = v1.val.i;
|
|
break;
|
|
case FI_LENGTH: /* Get length of */
|
|
ARG_ANY(1);
|
|
res.type = T_INT;
|
|
switch(v1.type) {
|
|
case T_NET: res.val.i = net_pxlen(v1.val.net); break;
|
|
case T_PATH: res.val.i = as_path_getlen(v1.val.ad); break;
|
|
case T_CLIST: res.val.i = int_set_get_size(v1.val.ad); break;
|
|
case T_ECLIST: res.val.i = ec_set_get_size(v1.val.ad); break;
|
|
case T_LCLIST: res.val.i = lc_set_get_size(v1.val.ad); break;
|
|
default: runtime( "Prefix, path, clist or eclist expected" );
|
|
}
|
|
break;
|
|
case FI_SADR_SRC: /* Get SADR src prefix */
|
|
ARG(1, T_NET);
|
|
if (!net_is_sadr(v1.val.net))
|
|
runtime( "SADR expected" );
|
|
|
|
{
|
|
net_addr_ip6_sadr *net = (void *) v1.val.net;
|
|
net_addr *src = lp_alloc(f_pool, sizeof(net_addr_ip6));
|
|
net_fill_ip6(src, net->src_prefix, net->src_pxlen);
|
|
|
|
res.type = T_NET;
|
|
res.val.net = src;
|
|
}
|
|
break;
|
|
case FI_ROA_MAXLEN: /* Get ROA max prefix length */
|
|
ARG(1, T_NET);
|
|
if (!net_is_roa(v1.val.net))
|
|
runtime( "ROA expected" );
|
|
|
|
res.type = T_INT;
|
|
res.val.i = (v1.val.net->type == NET_ROA4) ?
|
|
((net_addr_roa4 *) v1.val.net)->max_pxlen :
|
|
((net_addr_roa6 *) v1.val.net)->max_pxlen;
|
|
break;
|
|
case FI_ROA_ASN: /* Get ROA ASN */
|
|
ARG(1, T_NET);
|
|
if (!net_is_roa(v1.val.net))
|
|
runtime( "ROA expected" );
|
|
|
|
res.type = T_INT;
|
|
res.val.i = (v1.val.net->type == NET_ROA4) ?
|
|
((net_addr_roa4 *) v1.val.net)->asn :
|
|
((net_addr_roa6 *) v1.val.net)->asn;
|
|
break;
|
|
case FI_IP: /* Convert prefix to ... */
|
|
ARG(1, T_NET);
|
|
res.type = T_IP;
|
|
res.val.ip = net_prefix(v1.val.net);
|
|
break;
|
|
case FI_ROUTE_DISTINGUISHER:
|
|
ARG(1, T_NET);
|
|
res.type = T_IP;
|
|
if (!net_is_vpn(v1.val.net))
|
|
runtime( "VPN address expected" );
|
|
res.type = T_RD;
|
|
res.val.ec = net_rd(v1.val.net);
|
|
break;
|
|
case FI_AS_PATH_FIRST: /* Get first ASN from AS PATH */
|
|
ARG(1, T_PATH);
|
|
|
|
as = 0;
|
|
as_path_get_first(v1.val.ad, &as);
|
|
res.type = T_INT;
|
|
res.val.i = as;
|
|
break;
|
|
case FI_AS_PATH_LAST: /* Get last ASN from AS PATH */
|
|
ARG(1, T_PATH);
|
|
|
|
as = 0;
|
|
as_path_get_last(v1.val.ad, &as);
|
|
res.type = T_INT;
|
|
res.val.i = as;
|
|
break;
|
|
case FI_AS_PATH_LAST_NAG: /* Get last ASN from non-aggregated part of AS PATH */
|
|
ARG(1, T_PATH);
|
|
|
|
res.type = T_INT;
|
|
res.val.i = as_path_get_last_nonaggregated(v1.val.ad);
|
|
break;
|
|
case FI_RETURN:
|
|
ARG_ANY(1);
|
|
res = v1;
|
|
res.type |= T_RETURN;
|
|
return res;
|
|
case FI_CALL: /* CALL: this is special: if T_RETURN and returning some value, mask it out */
|
|
ARG_ANY(1);
|
|
res = interpret(what->a2.p);
|
|
if (res.type == T_RETURN)
|
|
return res;
|
|
res.type &= ~T_RETURN;
|
|
break;
|
|
case FI_CLEAR_LOCAL_VARS: /* Clear local variables */
|
|
for (sym = what->a1.p; sym != NULL; sym = sym->aux2)
|
|
((struct f_val *) sym->def)->type = T_VOID;
|
|
break;
|
|
case FI_SWITCH:
|
|
ARG_ANY(1);
|
|
{
|
|
struct f_tree *t = find_tree(what->a2.p, v1);
|
|
if (!t) {
|
|
v1.type = T_VOID;
|
|
t = find_tree(what->a2.p, v1);
|
|
if (!t) {
|
|
debug( "No else statement?\n");
|
|
break;
|
|
}
|
|
}
|
|
/* It is actually possible to have t->data NULL */
|
|
|
|
INTERPRET(res, t->data);
|
|
}
|
|
break;
|
|
case FI_IP_MASK: /* IP.MASK(val) */
|
|
ARG(1, T_IP);
|
|
ARG(2, T_INT);
|
|
|
|
res.type = T_IP;
|
|
res.val.ip = ipa_is_ip4(v1.val.ip) ?
|
|
ipa_from_ip4(ip4_and(ipa_to_ip4(v1.val.ip), ip4_mkmask(v2.val.i))) :
|
|
ipa_from_ip6(ip6_and(ipa_to_ip6(v1.val.ip), ip6_mkmask(v2.val.i)));
|
|
break;
|
|
|
|
case FI_EMPTY: /* Create empty attribute */
|
|
res.type = what->aux;
|
|
res.val.ad = adata_empty(f_pool, 0);
|
|
break;
|
|
case FI_PATH_PREPEND: /* Path prepend */
|
|
ARG(1, T_PATH);
|
|
ARG(2, T_INT);
|
|
|
|
res.type = T_PATH;
|
|
res.val.ad = as_path_prepend(f_pool, v1.val.ad, v2.val.i);
|
|
break;
|
|
|
|
case FI_CLIST_ADD_DEL: /* (Extended) Community list add or delete */
|
|
ARG_ANY(1);
|
|
ARG_ANY(2);
|
|
if (v1.type == T_PATH)
|
|
{
|
|
struct f_tree *set = NULL;
|
|
u32 key = 0;
|
|
int pos;
|
|
|
|
if (v2.type == T_INT)
|
|
key = v2.val.i;
|
|
else if ((v2.type == T_SET) && (v2.val.t->from.type == T_INT))
|
|
set = v2.val.t;
|
|
else
|
|
runtime("Can't delete non-integer (set)");
|
|
|
|
switch (what->aux)
|
|
{
|
|
case 'a': runtime("Can't add to path");
|
|
case 'd': pos = 0; break;
|
|
case 'f': pos = 1; break;
|
|
default: bug("unknown Ca operation");
|
|
}
|
|
|
|
if (pos && !set)
|
|
runtime("Can't filter integer");
|
|
|
|
res.type = T_PATH;
|
|
res.val.ad = as_path_filter(f_pool, v1.val.ad, set, key, pos);
|
|
}
|
|
else if (v1.type == T_CLIST)
|
|
{
|
|
/* Community (or cluster) list */
|
|
struct f_val dummy;
|
|
int arg_set = 0;
|
|
uint n = 0;
|
|
|
|
if ((v2.type == T_PAIR) || (v2.type == T_QUAD))
|
|
n = v2.val.i;
|
|
/* IP->Quad implicit conversion */
|
|
else if (val_is_ip4(v2))
|
|
n = ipa_to_u32(v2.val.ip);
|
|
else if ((v2.type == T_SET) && clist_set_type(v2.val.t, &dummy))
|
|
arg_set = 1;
|
|
else if (v2.type == T_CLIST)
|
|
arg_set = 2;
|
|
else
|
|
runtime("Can't add/delete non-pair");
|
|
|
|
res.type = T_CLIST;
|
|
switch (what->aux)
|
|
{
|
|
case 'a':
|
|
if (arg_set == 1)
|
|
runtime("Can't add set");
|
|
else if (!arg_set)
|
|
res.val.ad = int_set_add(f_pool, v1.val.ad, n);
|
|
else
|
|
res.val.ad = int_set_union(f_pool, v1.val.ad, v2.val.ad);
|
|
break;
|
|
|
|
case 'd':
|
|
if (!arg_set)
|
|
res.val.ad = int_set_del(f_pool, v1.val.ad, n);
|
|
else
|
|
res.val.ad = clist_filter(f_pool, v1.val.ad, v2, 0);
|
|
break;
|
|
|
|
case 'f':
|
|
if (!arg_set)
|
|
runtime("Can't filter pair");
|
|
res.val.ad = clist_filter(f_pool, v1.val.ad, v2, 1);
|
|
break;
|
|
|
|
default:
|
|
bug("unknown Ca operation");
|
|
}
|
|
}
|
|
else if (v1.type == T_ECLIST)
|
|
{
|
|
/* Extended community list */
|
|
int arg_set = 0;
|
|
|
|
/* v2.val is either EC or EC-set */
|
|
if ((v2.type == T_SET) && eclist_set_type(v2.val.t))
|
|
arg_set = 1;
|
|
else if (v2.type == T_ECLIST)
|
|
arg_set = 2;
|
|
else if (v2.type != T_EC)
|
|
runtime("Can't add/delete non-ec");
|
|
|
|
res.type = T_ECLIST;
|
|
switch (what->aux)
|
|
{
|
|
case 'a':
|
|
if (arg_set == 1)
|
|
runtime("Can't add set");
|
|
else if (!arg_set)
|
|
res.val.ad = ec_set_add(f_pool, v1.val.ad, v2.val.ec);
|
|
else
|
|
res.val.ad = ec_set_union(f_pool, v1.val.ad, v2.val.ad);
|
|
break;
|
|
|
|
case 'd':
|
|
if (!arg_set)
|
|
res.val.ad = ec_set_del(f_pool, v1.val.ad, v2.val.ec);
|
|
else
|
|
res.val.ad = eclist_filter(f_pool, v1.val.ad, v2, 0);
|
|
break;
|
|
|
|
case 'f':
|
|
if (!arg_set)
|
|
runtime("Can't filter ec");
|
|
res.val.ad = eclist_filter(f_pool, v1.val.ad, v2, 1);
|
|
break;
|
|
|
|
default:
|
|
bug("unknown Ca operation");
|
|
}
|
|
}
|
|
else if (v1.type == T_LCLIST)
|
|
{
|
|
/* Large community list */
|
|
int arg_set = 0;
|
|
|
|
/* v2.val is either LC or LC-set */
|
|
if ((v2.type == T_SET) && lclist_set_type(v2.val.t))
|
|
arg_set = 1;
|
|
else if (v2.type == T_LCLIST)
|
|
arg_set = 2;
|
|
else if (v2.type != T_LC)
|
|
runtime("Can't add/delete non-lc");
|
|
|
|
res.type = T_LCLIST;
|
|
switch (what->aux)
|
|
{
|
|
case 'a':
|
|
if (arg_set == 1)
|
|
runtime("Can't add set");
|
|
else if (!arg_set)
|
|
res.val.ad = lc_set_add(f_pool, v1.val.ad, v2.val.lc);
|
|
else
|
|
res.val.ad = lc_set_union(f_pool, v1.val.ad, v2.val.ad);
|
|
break;
|
|
|
|
case 'd':
|
|
if (!arg_set)
|
|
res.val.ad = lc_set_del(f_pool, v1.val.ad, v2.val.lc);
|
|
else
|
|
res.val.ad = lclist_filter(f_pool, v1.val.ad, v2, 0);
|
|
break;
|
|
|
|
case 'f':
|
|
if (!arg_set)
|
|
runtime("Can't filter lc");
|
|
res.val.ad = lclist_filter(f_pool, v1.val.ad, v2, 1);
|
|
break;
|
|
|
|
default:
|
|
bug("unknown Ca operation");
|
|
}
|
|
}
|
|
else
|
|
runtime("Can't add/delete to non-[e|l]clist");
|
|
|
|
break;
|
|
|
|
case FI_ROA_CHECK: /* ROA Check */
|
|
if (what->arg1)
|
|
{
|
|
ARG(1, T_NET);
|
|
ARG(2, T_INT);
|
|
|
|
as = v2.val.i;
|
|
}
|
|
else
|
|
{
|
|
ACCESS_RTE;
|
|
ACCESS_EATTRS;
|
|
v1.val.net = (*f_rte)->net->n.addr;
|
|
|
|
/* We ignore temporary attributes, probably not a problem here */
|
|
/* 0x02 is a value of BA_AS_PATH, we don't want to include BGP headers */
|
|
eattr *e = ea_find(*f_eattrs, EA_CODE(PROTOCOL_BGP, 0x02));
|
|
|
|
if (!e || e->type != EAF_TYPE_AS_PATH)
|
|
runtime("Missing AS_PATH attribute");
|
|
|
|
as_path_get_last(e->u.ptr, &as);
|
|
}
|
|
|
|
struct rtable *table = ((struct f_inst_roa_check *) what)->rtc->table;
|
|
if (!table)
|
|
runtime("Missing ROA table");
|
|
|
|
if (table->addr_type != NET_ROA4 && table->addr_type != NET_ROA6)
|
|
runtime("Table type must be either ROA4 or ROA6");
|
|
|
|
res.type = T_ENUM_ROA;
|
|
|
|
if (table->addr_type != (v1.val.net->type == NET_IP4 ? NET_ROA4 : NET_ROA6))
|
|
res.val.i = ROA_UNKNOWN; /* Prefix and table type mismatch */
|
|
else
|
|
res.val.i = net_roa_check(table, v1.val.net, as);
|
|
|
|
break;
|
|
|
|
case FI_FORMAT: /* Format */
|
|
ARG_ANY(1);
|
|
|
|
res.type = T_STRING;
|
|
res.val.s = val_format_str(v1);
|
|
break;
|
|
|
|
case FI_ASSERT: /* Birdtest Assert */
|
|
ARG(1, T_BOOL);
|
|
|
|
res.type = v1.type;
|
|
res.val = v1.val;
|
|
|
|
CALL(bt_assert_hook, res.val.i, what);
|
|
break;
|
|
|
|
default:
|
|
bug( "Unknown instruction %d (%c)", what->fi_code, what->fi_code & 0xff);
|
|
}}
|
|
return res;
|
|
}
|
|
|
|
#undef ARG
|
|
#undef ARG_ANY
|
|
|
|
#define ARG(n) \
|
|
if (!i_same(f1->a##n.p, f2->a##n.p)) \
|
|
return 0;
|
|
|
|
#define ONEARG ARG(1);
|
|
#define TWOARGS ONEARG; ARG(2);
|
|
#define THREEARGS TWOARGS; ARG(3);
|
|
|
|
#define A2_SAME if (f1->a2.i != f2->a2.i) return 0;
|
|
|
|
/*
|
|
* i_same - function that does real comparing of instruction trees, you should call filter_same from outside
|
|
*/
|
|
int
|
|
i_same(struct f_inst *f1, struct f_inst *f2)
|
|
{
|
|
if ((!!f1) != (!!f2))
|
|
return 0;
|
|
if (!f1)
|
|
return 1;
|
|
if (f1->aux != f2->aux)
|
|
return 0;
|
|
if (f1->fi_code != f2->fi_code)
|
|
return 0;
|
|
if (f1 == f2) /* It looks strange, but it is possible with call rewriting trickery */
|
|
return 1;
|
|
|
|
switch(f1->fi_code) {
|
|
case FI_ADD: /* fall through */
|
|
case FI_SUBTRACT:
|
|
case FI_MULTIPLY:
|
|
case FI_DIVIDE:
|
|
case FI_OR:
|
|
case FI_AND:
|
|
case FI_PAIR_CONSTRUCT:
|
|
case FI_EC_CONSTRUCT:
|
|
case FI_NEQ:
|
|
case FI_EQ:
|
|
case FI_LT:
|
|
case FI_LTE: TWOARGS; break;
|
|
|
|
case FI_PATHMASK_CONSTRUCT: if (!pm_same(f1->a1.p, f2->a1.p)) return 0; break;
|
|
|
|
case FI_NOT: ONEARG; break;
|
|
case FI_NOT_MATCH:
|
|
case FI_MATCH: TWOARGS; break;
|
|
case FI_DEFINED: ONEARG; break;
|
|
case FI_TYPE: ONEARG; break;
|
|
|
|
case FI_LC_CONSTRUCT:
|
|
THREEARGS;
|
|
break;
|
|
|
|
case FI_SET:
|
|
ARG(2);
|
|
{
|
|
struct symbol *s1, *s2;
|
|
s1 = f1->a1.p;
|
|
s2 = f2->a1.p;
|
|
if (strcmp(s1->name, s2->name))
|
|
return 0;
|
|
if (s1->class != s2->class)
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
case FI_CONSTANT:
|
|
switch (f1->aux) {
|
|
|
|
case T_PREFIX_SET:
|
|
if (!trie_same(f1->a2.p, f2->a2.p))
|
|
return 0;
|
|
break;
|
|
|
|
case T_SET:
|
|
if (!same_tree(f1->a2.p, f2->a2.p))
|
|
return 0;
|
|
break;
|
|
|
|
case T_STRING:
|
|
if (strcmp(f1->a2.p, f2->a2.p))
|
|
return 0;
|
|
break;
|
|
|
|
default:
|
|
A2_SAME;
|
|
}
|
|
break;
|
|
|
|
case FI_CONSTANT_INDIRECT:
|
|
if (!val_same(* (struct f_val *) f1->a1.p, * (struct f_val *) f2->a1.p))
|
|
return 0;
|
|
break;
|
|
|
|
case FI_VARIABLE:
|
|
if (strcmp((char *) f1->a2.p, (char *) f2->a2.p))
|
|
return 0;
|
|
break;
|
|
case FI_PRINT: case FI_LENGTH: ONEARG; break;
|
|
case FI_CONDITION: TWOARGS; break;
|
|
case FI_NOP: case FI_EMPTY: break;
|
|
case FI_PRINT_AND_DIE: ONEARG; A2_SAME; break;
|
|
case FI_PREF_GET:
|
|
case FI_RTA_GET: A2_SAME; break;
|
|
case FI_EA_GET: A2_SAME; break;
|
|
case FI_PREF_SET:
|
|
case FI_RTA_SET:
|
|
case FI_EA_SET: ONEARG; A2_SAME; break;
|
|
|
|
case FI_RETURN: ONEARG; break;
|
|
case FI_ROA_MAXLEN: ONEARG; break;
|
|
case FI_ROA_ASN: ONEARG; break;
|
|
case FI_SADR_SRC: ONEARG; break;
|
|
case FI_IP: ONEARG; break;
|
|
case FI_IS_V4: ONEARG; break;
|
|
case FI_ROUTE_DISTINGUISHER: ONEARG; break;
|
|
case FI_CALL: /* Call rewriting trickery to avoid exponential behaviour */
|
|
ONEARG;
|
|
if (!i_same(f1->a2.p, f2->a2.p))
|
|
return 0;
|
|
f2->a2.p = f1->a2.p;
|
|
break;
|
|
case FI_CLEAR_LOCAL_VARS: break; /* internal instruction */
|
|
case FI_SWITCH: ONEARG; if (!same_tree(f1->a2.p, f2->a2.p)) return 0; break;
|
|
case FI_IP_MASK: TWOARGS; break;
|
|
case FI_PATH_PREPEND: TWOARGS; break;
|
|
case FI_CLIST_ADD_DEL: TWOARGS; break;
|
|
case FI_AS_PATH_FIRST:
|
|
case FI_AS_PATH_LAST:
|
|
case FI_AS_PATH_LAST_NAG: ONEARG; break;
|
|
case FI_ROA_CHECK:
|
|
TWOARGS;
|
|
/* Does not really make sense - ROA check results may change anyway */
|
|
if (strcmp(((struct f_inst_roa_check *) f1)->rtc->name,
|
|
((struct f_inst_roa_check *) f2)->rtc->name))
|
|
return 0;
|
|
break;
|
|
case FI_FORMAT: ONEARG; break;
|
|
case FI_ASSERT: ONEARG; break;
|
|
default:
|
|
bug( "Unknown instruction %d in same (%c)", f1->fi_code, f1->fi_code & 0xff);
|
|
}
|
|
return i_same(f1->next, f2->next);
|
|
}
|
|
|
|
/**
|
|
* f_run - run a filter for a route
|
|
* @filter: filter to run
|
|
* @rte: route being filtered, may be modified
|
|
* @tmp_pool: all filter allocations go from this pool
|
|
* @flags: flags
|
|
*
|
|
* If filter needs to modify the route, there are several
|
|
* posibilities. @rte might be read-only (with REF_COW flag), in that
|
|
* case rw copy is obtained by rte_cow() and @rte is replaced. If
|
|
* @rte is originally rw, it may be directly modified (and it is never
|
|
* copied).
|
|
*
|
|
* The returned rte may reuse the (possibly cached, cloned) rta, or
|
|
* (if rta was modificied) contains a modified uncached rta, which
|
|
* uses parts allocated from @tmp_pool and parts shared from original
|
|
* rta. There is one exception - if @rte is rw but contains a cached
|
|
* rta and that is modified, rta in returned rte is also cached.
|
|
*
|
|
* Ownership of cached rtas is consistent with rte, i.e.
|
|
* if a new rte is returned, it has its own clone of cached rta
|
|
* (and cached rta of read-only source rte is intact), if rte is
|
|
* modified in place, old cached rta is possibly freed.
|
|
*/
|
|
int
|
|
f_run(struct filter *filter, struct rte **rte, struct linpool *tmp_pool, int flags)
|
|
{
|
|
if (filter == FILTER_ACCEPT)
|
|
return F_ACCEPT;
|
|
|
|
if (filter == FILTER_REJECT)
|
|
return F_REJECT;
|
|
|
|
int rte_cow = ((*rte)->flags & REF_COW);
|
|
DBG( "Running filter `%s'...", filter->name );
|
|
|
|
f_rte = rte;
|
|
f_eattrs = NULL;
|
|
f_old_rta = NULL;
|
|
f_pool = tmp_pool;
|
|
f_flags = flags;
|
|
|
|
LOG_BUFFER_INIT(f_buf);
|
|
|
|
struct f_val res = interpret(filter->root);
|
|
|
|
if (f_old_rta) {
|
|
/*
|
|
* Cached rta was modified and f_rte contains now an uncached one,
|
|
* sharing some part with the cached one. The cached rta should
|
|
* be freed (if rte was originally COW, f_old_rta is a clone
|
|
* obtained during rte_cow()).
|
|
*
|
|
* This also implements the exception mentioned in f_run()
|
|
* description. The reason for this is that rta reuses parts of
|
|
* f_old_rta, and these may be freed during rta_free(f_old_rta).
|
|
* This is not the problem if rte was COW, because original rte
|
|
* also holds the same rta.
|
|
*/
|
|
if (!rte_cow)
|
|
(*f_rte)->attrs = rta_lookup((*f_rte)->attrs);
|
|
|
|
rta_free(f_old_rta);
|
|
}
|
|
|
|
|
|
if (res.type != T_RETURN) {
|
|
if (!(f_flags & FF_SILENT))
|
|
log_rl(&rl_runtime_err, L_ERR "Filter %s did not return accept nor reject. Make up your mind", filter->name);
|
|
return F_ERROR;
|
|
}
|
|
DBG( "done (%u)\n", res.val.i );
|
|
return res.val.i;
|
|
}
|
|
|
|
/* TODO: perhaps we could integrate f_eval(), f_eval_rte() and f_run() */
|
|
|
|
struct f_val
|
|
f_eval_rte(struct f_inst *expr, struct rte **rte, struct linpool *tmp_pool)
|
|
{
|
|
|
|
f_rte = rte;
|
|
f_eattrs = NULL;
|
|
f_old_rta = NULL;
|
|
f_pool = tmp_pool;
|
|
f_flags = 0;
|
|
|
|
LOG_BUFFER_INIT(f_buf);
|
|
|
|
/* Note that in this function we assume that rte->attrs is private / uncached */
|
|
struct f_val res = interpret(expr);
|
|
|
|
return res;
|
|
}
|
|
|
|
struct f_val
|
|
f_eval(struct f_inst *expr, struct linpool *tmp_pool)
|
|
{
|
|
f_flags = 0;
|
|
f_eattrs = NULL;
|
|
f_rte = NULL;
|
|
f_pool = tmp_pool;
|
|
|
|
LOG_BUFFER_INIT(f_buf);
|
|
|
|
return interpret(expr);
|
|
}
|
|
|
|
uint
|
|
f_eval_int(struct f_inst *expr)
|
|
{
|
|
/* Called independently in parse-time to eval expressions */
|
|
struct f_val res = f_eval(expr, cfg_mem);
|
|
|
|
if (res.type != T_INT)
|
|
cf_error("Integer expression expected");
|
|
|
|
return res.val.i;
|
|
}
|
|
|
|
/**
|
|
* filter_same - compare two filters
|
|
* @new: first filter to be compared
|
|
* @old: second filter to be compared, notice that this filter is
|
|
* damaged while comparing.
|
|
*
|
|
* Returns 1 in case filters are same, otherwise 0. If there are
|
|
* underlying bugs, it will rather say 0 on same filters than say
|
|
* 1 on different.
|
|
*/
|
|
int
|
|
filter_same(struct filter *new, struct filter *old)
|
|
{
|
|
if (old == new) /* Handle FILTER_ACCEPT and FILTER_REJECT */
|
|
return 1;
|
|
if (old == FILTER_ACCEPT || old == FILTER_REJECT ||
|
|
new == FILTER_ACCEPT || new == FILTER_REJECT)
|
|
return 0;
|
|
return i_same(new->root, old->root);
|
|
}
|