mirror of
https://gitlab.nic.cz/labs/bird.git
synced 2025-01-24 09:51:54 +00:00
1757 lines
40 KiB
C
1757 lines
40 KiB
C
/*
|
|
* BIRD -- Route Attribute Cache
|
|
*
|
|
* (c) 1998--2000 Martin Mares <mj@ucw.cz>
|
|
*
|
|
* Can be freely distributed and used under the terms of the GNU GPL.
|
|
*/
|
|
|
|
/**
|
|
* DOC: Route attribute cache
|
|
*
|
|
* Each route entry carries a set of route attributes. Several of them
|
|
* vary from route to route, but most attributes are usually common
|
|
* for a large number of routes. To conserve memory, we've decided to
|
|
* store only the varying ones directly in the &rte and hold the rest
|
|
* in a special structure called &rta which is shared among all the
|
|
* &rte's with these attributes.
|
|
*
|
|
* Each &rta contains all the static attributes of the route (i.e.,
|
|
* those which are always present) as structure members and a list of
|
|
* dynamic attributes represented by a linked list of &ea_list
|
|
* structures, each of them consisting of an array of &eattr's containing
|
|
* the individual attributes. An attribute can be specified more than once
|
|
* in the &ea_list chain and in such case the first occurrence overrides
|
|
* the others. This semantics is used especially when someone (for example
|
|
* a filter) wishes to alter values of several dynamic attributes, but
|
|
* it wants to preserve the original attribute lists maintained by
|
|
* another module.
|
|
*
|
|
* Each &eattr contains an attribute identifier (split to protocol ID and
|
|
* per-protocol attribute ID), protocol dependent flags, a type code (consisting
|
|
* of several bit fields describing attribute characteristics) and either an
|
|
* embedded 32-bit value or a pointer to a &adata structure holding attribute
|
|
* contents.
|
|
*
|
|
* There exist two variants of &rta's -- cached and un-cached ones. Un-cached
|
|
* &rta's can have arbitrarily complex structure of &ea_list's and they
|
|
* can be modified by any module in the route processing chain. Cached
|
|
* &rta's have their attribute lists normalized (that means at most one
|
|
* &ea_list is present and its values are sorted in order to speed up
|
|
* searching), they are stored in a hash table to make fast lookup possible
|
|
* and they are provided with a use count to allow sharing.
|
|
*
|
|
* Routing tables always contain only cached &rta's.
|
|
*/
|
|
|
|
#include "nest/bird.h"
|
|
#include "nest/route.h"
|
|
#include "nest/protocol.h"
|
|
#include "nest/iface.h"
|
|
#include "nest/cli.h"
|
|
#include "lib/attrs.h"
|
|
#include "lib/alloca.h"
|
|
#include "lib/hash.h"
|
|
#include "lib/idm.h"
|
|
#include "lib/resource.h"
|
|
#include "lib/string.h"
|
|
|
|
#include <stddef.h>
|
|
#include <stdlib.h>
|
|
|
|
const adata null_adata; /* adata of length 0 */
|
|
|
|
struct ea_class ea_gen_igp_metric = {
|
|
.name = "igp_metric",
|
|
.type = T_INT,
|
|
};
|
|
|
|
struct ea_class ea_gen_preference = {
|
|
.name = "preference",
|
|
.type = T_INT,
|
|
};
|
|
|
|
struct ea_class ea_gen_from = {
|
|
.name = "from",
|
|
.type = T_IP,
|
|
};
|
|
|
|
const char * const rta_src_names[RTS_MAX] = {
|
|
[RTS_STATIC] = "static",
|
|
[RTS_INHERIT] = "inherit",
|
|
[RTS_DEVICE] = "device",
|
|
[RTS_STATIC_DEVICE] = "static-device",
|
|
[RTS_REDIRECT] = "redirect",
|
|
[RTS_RIP] = "RIP",
|
|
[RTS_OSPF] = "OSPF",
|
|
[RTS_OSPF_IA] = "OSPF-IA",
|
|
[RTS_OSPF_EXT1] = "OSPF-E1",
|
|
[RTS_OSPF_EXT2] = "OSPF-E2",
|
|
[RTS_BGP] = "BGP",
|
|
[RTS_PIPE] = "pipe",
|
|
[RTS_BABEL] = "Babel",
|
|
[RTS_RPKI] = "RPKI",
|
|
[RTS_PERF] = "Perf",
|
|
[RTS_L3VPN] = "L3VPN",
|
|
[RTS_AGGREGATED] = "aggregated",
|
|
};
|
|
|
|
static void
|
|
ea_gen_source_format(const eattr *a, byte *buf, uint size)
|
|
{
|
|
if ((a->u.data >= RTS_MAX) || !rta_src_names[a->u.data])
|
|
bsnprintf(buf, size, "unknown");
|
|
else
|
|
bsnprintf(buf, size, "%s", rta_src_names[a->u.data]);
|
|
}
|
|
|
|
struct ea_class ea_gen_source = {
|
|
.name = "source",
|
|
.type = T_ENUM_RTS,
|
|
.readonly = 1,
|
|
.format = ea_gen_source_format,
|
|
};
|
|
|
|
struct ea_class ea_gen_nexthop = {
|
|
.name = "nexthop",
|
|
.type = T_NEXTHOP_LIST,
|
|
};
|
|
|
|
/*
|
|
* ea_set_hostentry() acquires hostentry from hostcache.
|
|
* New hostentry has zero use count. Cached rta locks its
|
|
* hostentry (increases its use count), uncached rta does not lock it.
|
|
* Hostentry with zero use count is removed asynchronously
|
|
* during host cache update, therefore it is safe to hold
|
|
* such hostentry temporarily as long as you hold the table lock.
|
|
*
|
|
* There is no need to hold a lock for hostentry->dep table, because that table
|
|
* contains routes responsible for that hostentry, and therefore is non-empty if
|
|
* given hostentry has non-zero use count. If the hostentry has zero use count,
|
|
* the entry is removed before dep is referenced.
|
|
*
|
|
* The protocol responsible for routes with recursive next hops should hold a
|
|
* lock for a 'source' table governing that routes (argument tab),
|
|
* because its routes reference hostentries related to the governing table.
|
|
* When all such routes are
|
|
* removed, rtas are immediately removed achieving zero uc. Then the 'source'
|
|
* table lock could be immediately released, although hostentries may still
|
|
* exist - they will be freed together with the 'source' table.
|
|
*/
|
|
|
|
static void
|
|
ea_gen_hostentry_stored(const eattr *ea)
|
|
{
|
|
struct hostentry_adata *had = (struct hostentry_adata *) ea->u.ptr;
|
|
had->he->uc++;
|
|
}
|
|
|
|
static void
|
|
ea_gen_hostentry_freed(const eattr *ea)
|
|
{
|
|
struct hostentry_adata *had = (struct hostentry_adata *) ea->u.ptr;
|
|
had->he->uc--;
|
|
}
|
|
|
|
struct ea_class ea_gen_hostentry = {
|
|
.name = "hostentry",
|
|
.type = T_HOSTENTRY,
|
|
.readonly = 1,
|
|
.stored = ea_gen_hostentry_stored,
|
|
.freed = ea_gen_hostentry_freed,
|
|
};
|
|
|
|
const char * rta_dest_names[RTD_MAX] = {
|
|
[RTD_NONE] = "",
|
|
[RTD_UNICAST] = "unicast",
|
|
[RTD_BLACKHOLE] = "blackhole",
|
|
[RTD_UNREACHABLE] = "unreachable",
|
|
[RTD_PROHIBIT] = "prohibited",
|
|
};
|
|
|
|
struct ea_class ea_gen_flowspec_valid = {
|
|
.name = "flowspec_valid",
|
|
.type = T_ENUM_FLOWSPEC_VALID,
|
|
.readonly = 1,
|
|
};
|
|
|
|
const char * flowspec_valid_names[FLOWSPEC__MAX] = {
|
|
[FLOWSPEC_UNKNOWN] = "unknown",
|
|
[FLOWSPEC_VALID] = "",
|
|
[FLOWSPEC_INVALID] = "invalid",
|
|
};
|
|
|
|
DOMAIN(attrs) attrs_domain;
|
|
|
|
pool *rta_pool;
|
|
|
|
/* Assuming page size of 4096, these are magic values for slab allocation */
|
|
static const uint ea_slab_sizes[] = { 56, 112, 168, 288, 448, 800, 1344 };
|
|
static slab *ea_slab[ARRAY_SIZE(ea_slab_sizes)];
|
|
|
|
static slab *rte_src_slab;
|
|
|
|
static struct idm src_ids;
|
|
#define SRC_ID_INIT_SIZE 4
|
|
|
|
/* rte source hash */
|
|
|
|
#define RSH_KEY(n) n->private_id
|
|
#define RSH_NEXT(n) n->next
|
|
#define RSH_EQ(n1,n2) n1 == n2
|
|
#define RSH_FN(n) u64_hash(n)
|
|
|
|
#define RSH_REHASH rte_src_rehash
|
|
#define RSH_PARAMS /2, *2, 1, 1, 8, 20
|
|
#define RSH_INIT_ORDER 2
|
|
static struct rte_src * _Atomic * _Atomic rte_src_global;
|
|
static _Atomic uint rte_src_global_max;
|
|
|
|
static void
|
|
rte_src_init(void)
|
|
{
|
|
rte_src_slab = sl_new(rta_pool, sizeof(struct rte_src));
|
|
|
|
uint gmax = SRC_ID_INIT_SIZE * 32;
|
|
struct rte_src * _Atomic *g = mb_alloc(rta_pool, sizeof(struct rte_src * _Atomic) * gmax);
|
|
for (uint i = 0; i < gmax; i++)
|
|
atomic_store_explicit(&g[i], NULL, memory_order_relaxed);
|
|
|
|
atomic_store_explicit(&rte_src_global, g, memory_order_release);
|
|
atomic_store_explicit(&rte_src_global_max, gmax, memory_order_release);
|
|
|
|
idm_init(&src_ids, rta_pool, SRC_ID_INIT_SIZE);
|
|
}
|
|
|
|
HASH_DEFINE_REHASH_FN(RSH, struct rte_src)
|
|
|
|
static struct rte_src *
|
|
rt_find_source(struct rte_owner *p, u32 id)
|
|
{
|
|
return HASH_FIND(p->hash, RSH, id);
|
|
}
|
|
|
|
struct rte_src *
|
|
rt_get_source_o(struct rte_owner *p, u32 id)
|
|
{
|
|
if (p->stop)
|
|
bug("Stopping route owner asked for another source.");
|
|
|
|
ASSERT_DIE(birdloop_inside(p->list->loop));
|
|
|
|
struct rte_src *src = rt_find_source(p, id);
|
|
|
|
if (src)
|
|
{
|
|
lfuc_lock_revive(&src->uc);
|
|
return src;
|
|
}
|
|
|
|
RTA_LOCK;
|
|
src = sl_allocz(rte_src_slab);
|
|
src->owner = p;
|
|
src->private_id = id;
|
|
src->global_id = idm_alloc(&src_ids);
|
|
|
|
lfuc_init(&src->uc);
|
|
p->uc++;
|
|
|
|
HASH_INSERT2(p->hash, RSH, rta_pool, src);
|
|
if (p->debug & D_ROUTES)
|
|
log(L_TRACE "%s: new rte_src ID %luL %uG, have %u sources now",
|
|
p->name, src->private_id, src->global_id, p->uc);
|
|
|
|
uint gm = atomic_load_explicit(&rte_src_global_max, memory_order_relaxed);
|
|
struct rte_src * _Atomic * g = atomic_load_explicit(&rte_src_global, memory_order_relaxed);
|
|
|
|
if (src->global_id >= gm)
|
|
{
|
|
/* Allocate new block */
|
|
size_t old_len = sizeof(struct rte_src * _Atomic) * gm;
|
|
struct rte_src * _Atomic * new_block = mb_alloc(rta_pool, old_len * 2);
|
|
memcpy(new_block, g, old_len);
|
|
|
|
for (uint i = 0; i < gm; i++)
|
|
atomic_store_explicit(&new_block[gm+i], NULL, memory_order_relaxed);
|
|
|
|
/* Update the pointer */
|
|
atomic_store_explicit(&rte_src_global, new_block, memory_order_release);
|
|
atomic_store_explicit(&rte_src_global_max, gm * 2, memory_order_release);
|
|
|
|
/* Wait for readers */
|
|
synchronize_rcu();
|
|
|
|
/* Free the old block */
|
|
mb_free(g);
|
|
g = new_block;
|
|
}
|
|
|
|
atomic_store_explicit(&g[src->global_id], src, memory_order_release);
|
|
RTA_UNLOCK;
|
|
|
|
return src;
|
|
}
|
|
|
|
/**
|
|
* Find a rte source by its global ID. Only available for existing and locked
|
|
* sources stored by their ID. Checking for non-existent or foreign source is unsafe.
|
|
*
|
|
* @id: requested global ID
|
|
*
|
|
* Returns the found source or dies. Result of this function is guaranteed to
|
|
* be a valid source as long as the caller owns it.
|
|
*/
|
|
struct rte_src *
|
|
rt_find_source_global(u32 id)
|
|
{
|
|
rcu_read_lock();
|
|
ASSERT_DIE(id < atomic_load_explicit(&rte_src_global_max, memory_order_acquire));
|
|
|
|
struct rte_src * _Atomic * g = atomic_load_explicit(&rte_src_global, memory_order_acquire);
|
|
struct rte_src *src = atomic_load_explicit(&g[id], memory_order_acquire);
|
|
ASSERT_DIE(src);
|
|
ASSERT_DIE(src->global_id == id);
|
|
|
|
rcu_read_unlock();
|
|
|
|
return src;
|
|
}
|
|
|
|
static inline void
|
|
rt_done_sources(struct rte_owner *o)
|
|
{
|
|
ev_send(o->list, o->stop);
|
|
}
|
|
|
|
void
|
|
rt_prune_sources(void *data)
|
|
{
|
|
struct rte_owner *o = data;
|
|
|
|
HASH_WALK_FILTER(o->hash, next, src, sp)
|
|
{
|
|
if (lfuc_finished(&src->uc))
|
|
{
|
|
o->uc--;
|
|
|
|
if (o->debug & D_ROUTES)
|
|
log(L_TRACE "%s: freed rte_src ID %luL %uG, have %u sources now",
|
|
o->name, src->private_id, src->global_id, o->uc);
|
|
|
|
HASH_DO_REMOVE(o->hash, RSH, sp);
|
|
|
|
RTA_LOCK;
|
|
struct rte_src * _Atomic * g = atomic_load_explicit(&rte_src_global, memory_order_acquire);
|
|
atomic_store_explicit(&g[src->global_id], NULL, memory_order_release);
|
|
idm_free(&src_ids, src->global_id);
|
|
sl_free(src);
|
|
RTA_UNLOCK;
|
|
}
|
|
}
|
|
HASH_WALK_FILTER_END;
|
|
|
|
RTA_LOCK;
|
|
HASH_MAY_RESIZE_DOWN(o->hash, RSH, rta_pool);
|
|
|
|
if (o->stop && !o->uc)
|
|
{
|
|
rfree(o->prune);
|
|
RTA_UNLOCK;
|
|
|
|
if (o->debug & D_EVENTS)
|
|
log(L_TRACE "%s: all rte_src's pruned, scheduling stop event", o->name);
|
|
|
|
rt_done_sources(o);
|
|
}
|
|
else
|
|
RTA_UNLOCK;
|
|
}
|
|
|
|
void
|
|
rt_dump_sources(struct rte_owner *o)
|
|
{
|
|
debug("\t%s: hord=%u, uc=%u, cnt=%u prune=%p, stop=%p\n",
|
|
o->name, o->hash.order, o->uc, o->hash.count, o->prune, o->stop);
|
|
debug("\tget_route_info=%p, better=%p, mergable=%p, igp_metric=%p, recalculate=%p",
|
|
o->class->get_route_info, o->class->rte_better, o->class->rte_mergable,
|
|
o->class->rte_igp_metric, o->rte_recalculate);
|
|
|
|
int splitting = 0;
|
|
HASH_WALK(o->hash, next, src)
|
|
{
|
|
debug("%c%c%uL %uG %luU",
|
|
(splitting % 8) ? ',' : '\n',
|
|
(splitting % 8) ? ' ' : '\t',
|
|
src->private_id, src->global_id,
|
|
atomic_load_explicit(&src->uc.uc, memory_order_relaxed));
|
|
|
|
splitting++;
|
|
}
|
|
HASH_WALK_END;
|
|
debug("\n");
|
|
}
|
|
|
|
void
|
|
rt_init_sources(struct rte_owner *o, const char *name, event_list *list)
|
|
{
|
|
RTA_LOCK;
|
|
HASH_INIT(o->hash, rta_pool, RSH_INIT_ORDER);
|
|
o->hash_key = random_u32();
|
|
o->uc = 0;
|
|
o->name = name;
|
|
o->prune = ev_new_init(rta_pool, rt_prune_sources, o);
|
|
o->stop = NULL;
|
|
o->list = list;
|
|
RTA_UNLOCK;
|
|
if (o->debug & D_EVENTS)
|
|
log(L_TRACE "%s: initialized rte_src owner", o->name);
|
|
}
|
|
|
|
void
|
|
rt_destroy_sources(struct rte_owner *o, event *done)
|
|
{
|
|
o->stop = done;
|
|
|
|
if (!o->uc)
|
|
{
|
|
if (o->debug & D_EVENTS)
|
|
log(L_TRACE "%s: rte_src owner destroy requested, already clean, scheduling stop event", o->name);
|
|
|
|
RTA_LOCK;
|
|
rfree(o->prune);
|
|
RTA_UNLOCK;
|
|
|
|
rt_done_sources(o);
|
|
}
|
|
else
|
|
if (o->debug & D_EVENTS)
|
|
log(L_TRACE "%s: rte_src owner destroy requested, remaining %u rte_src's to prune.", o->name, o->uc);
|
|
}
|
|
|
|
/*
|
|
* Multipath Next Hop
|
|
*/
|
|
|
|
static int
|
|
nexthop_compare_node(const struct nexthop *x, const struct nexthop *y)
|
|
{
|
|
int r;
|
|
/* Should we also compare flags ? */
|
|
|
|
r = ((int) y->weight) - ((int) x->weight);
|
|
if (r)
|
|
return r;
|
|
|
|
r = ipa_compare(x->gw, y->gw);
|
|
if (r)
|
|
return r;
|
|
|
|
r = ((int) y->labels) - ((int) x->labels);
|
|
if (r)
|
|
return r;
|
|
|
|
for (int i = 0; i < y->labels; i++)
|
|
{
|
|
r = ((int) y->label[i]) - ((int) x->label[i]);
|
|
if (r)
|
|
return r;
|
|
}
|
|
|
|
return ((int) x->iface->index) - ((int) y->iface->index);
|
|
}
|
|
|
|
static int
|
|
nexthop_compare_qsort(const void *x, const void *y)
|
|
{
|
|
return nexthop_compare_node( *(const struct nexthop **) x, *(const struct nexthop **) y );
|
|
}
|
|
|
|
/**
|
|
* nexthop_merge - merge nexthop lists
|
|
* @x: list 1
|
|
* @y: list 2
|
|
* @max: max number of nexthops
|
|
* @lp: linpool for allocating nexthops
|
|
*
|
|
* The nexthop_merge() function takes two nexthop lists @x and @y and merges them,
|
|
* eliminating possible duplicates. The input lists must be sorted and the
|
|
* result is sorted too. The number of nexthops in result is limited by @max.
|
|
* New nodes are allocated from linpool @lp.
|
|
*
|
|
* The arguments @rx and @ry specify whether corresponding input lists may be
|
|
* consumed by the function (i.e. their nodes reused in the resulting list), in
|
|
* that case the caller should not access these lists after that. To eliminate
|
|
* issues with deallocation of these lists, the caller should use some form of
|
|
* bulk deallocation (e.g. stack or linpool) to free these nodes when the
|
|
* resulting list is no longer needed. When reusability is not set, the
|
|
* corresponding lists are not modified nor linked from the resulting list.
|
|
*/
|
|
struct nexthop_adata *
|
|
nexthop_merge(struct nexthop_adata *xin, struct nexthop_adata *yin, int max, linpool *lp)
|
|
{
|
|
uint outlen = ADATA_SIZE(xin->ad.length) + ADATA_SIZE(yin->ad.length);
|
|
struct nexthop_adata *out = lp_alloc(lp, outlen);
|
|
out->ad.length = outlen - sizeof (struct adata);
|
|
|
|
struct nexthop *x = &xin->nh, *y = &yin->nh, *cur = &out->nh;
|
|
int xvalid, yvalid;
|
|
|
|
while (max--)
|
|
{
|
|
xvalid = NEXTHOP_VALID(x, xin);
|
|
yvalid = NEXTHOP_VALID(y, yin);
|
|
|
|
if (!xvalid && !yvalid)
|
|
break;
|
|
|
|
ASSUME(NEXTHOP_VALID(cur, out));
|
|
|
|
int cmp = !xvalid ? 1 : !yvalid ? -1 : nexthop_compare_node(x, y);
|
|
|
|
if (cmp < 0)
|
|
{
|
|
ASSUME(NEXTHOP_VALID(x, xin));
|
|
memcpy(cur, x, nexthop_size(x));
|
|
x = NEXTHOP_NEXT(x);
|
|
}
|
|
else if (cmp > 0)
|
|
{
|
|
ASSUME(NEXTHOP_VALID(y, yin));
|
|
memcpy(cur, y, nexthop_size(y));
|
|
y = NEXTHOP_NEXT(y);
|
|
}
|
|
else
|
|
{
|
|
ASSUME(NEXTHOP_VALID(x, xin));
|
|
memcpy(cur, x, nexthop_size(x));
|
|
x = NEXTHOP_NEXT(x);
|
|
|
|
ASSUME(NEXTHOP_VALID(y, yin));
|
|
y = NEXTHOP_NEXT(y);
|
|
}
|
|
cur = NEXTHOP_NEXT(cur);
|
|
}
|
|
|
|
out->ad.length = (void *) cur - (void *) out->ad.data;
|
|
|
|
return out;
|
|
}
|
|
|
|
struct nexthop_adata *
|
|
nexthop_sort(struct nexthop_adata *nhad, linpool *lp)
|
|
{
|
|
/* Count the nexthops */
|
|
uint cnt = 0;
|
|
NEXTHOP_WALK(nh, nhad)
|
|
cnt++;
|
|
|
|
if (cnt <= 1)
|
|
return nhad;
|
|
|
|
/* Get pointers to them */
|
|
struct nexthop **sptr = tmp_alloc(cnt * sizeof(struct nexthop *));
|
|
|
|
uint i = 0;
|
|
NEXTHOP_WALK(nh, nhad)
|
|
sptr[i++] = nh;
|
|
|
|
/* Sort the pointers */
|
|
qsort(sptr, cnt, sizeof(struct nexthop *), nexthop_compare_qsort);
|
|
|
|
/* Allocate the output */
|
|
struct nexthop_adata *out = (struct nexthop_adata *) lp_alloc_adata(lp, nhad->ad.length);
|
|
struct nexthop *dest = &out->nh;
|
|
|
|
/* Deduplicate nexthops while storing them */
|
|
for (uint i = 0; i < cnt; i++)
|
|
{
|
|
if (i && !nexthop_compare_node(sptr[i], sptr[i-1]))
|
|
continue;
|
|
|
|
memcpy(dest, sptr[i], NEXTHOP_SIZE(sptr[i]));
|
|
dest = NEXTHOP_NEXT(dest);
|
|
}
|
|
|
|
out->ad.length = (void *) dest - (void *) out->ad.data;
|
|
return out;
|
|
}
|
|
|
|
int
|
|
nexthop_is_sorted(struct nexthop_adata *nhad)
|
|
{
|
|
struct nexthop *prev = NULL;
|
|
NEXTHOP_WALK(nh, nhad)
|
|
{
|
|
if (prev && (nexthop_compare_node(prev, nh) >= 0))
|
|
return 0;
|
|
|
|
prev = nh;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Extended Attributes
|
|
*/
|
|
|
|
#define EA_CLASS_INITIAL_MAX 128
|
|
static struct ea_class **ea_class_global = NULL;
|
|
static uint ea_class_max;
|
|
static struct idm ea_class_idm;
|
|
|
|
/* Config parser lex register function */
|
|
void ea_lex_register(struct ea_class *def);
|
|
|
|
static void
|
|
ea_class_free(struct ea_class *cl)
|
|
{
|
|
RTA_LOCK;
|
|
|
|
/* No more ea class references. Unregister the attribute. */
|
|
idm_free(&ea_class_idm, cl->id);
|
|
ea_class_global[cl->id] = NULL;
|
|
|
|
/* When we start supporting full protocol removal, we may need to call
|
|
* ea_lex_unregister(cl), see where ea_lex_register() is called. */
|
|
|
|
RTA_UNLOCK;
|
|
}
|
|
|
|
static void
|
|
ea_class_ref_free(resource *r)
|
|
{
|
|
struct ea_class_ref *ref = SKIP_BACK(struct ea_class_ref, r, r);
|
|
if (!--ref->class->uc)
|
|
ea_class_free(ref->class);
|
|
}
|
|
|
|
static void
|
|
ea_class_ref_dump(resource *r, unsigned indent UNUSED)
|
|
{
|
|
struct ea_class_ref *ref = SKIP_BACK(struct ea_class_ref, r, r);
|
|
debug("name \"%s\", type=%d\n", ref->class->name, ref->class->type);
|
|
}
|
|
|
|
static struct resclass ea_class_ref_class = {
|
|
.name = "Attribute class reference",
|
|
.size = sizeof(struct ea_class_ref),
|
|
.free = ea_class_ref_free,
|
|
.dump = ea_class_ref_dump,
|
|
.lookup = NULL,
|
|
.memsize = NULL,
|
|
};
|
|
|
|
static void
|
|
ea_class_init(void)
|
|
{
|
|
ASSERT_DIE(ea_class_global == NULL);
|
|
|
|
idm_init(&ea_class_idm, rta_pool, EA_CLASS_INITIAL_MAX);
|
|
ea_class_global = mb_allocz(rta_pool,
|
|
sizeof(*ea_class_global) * (ea_class_max = EA_CLASS_INITIAL_MAX));
|
|
}
|
|
|
|
struct ea_class_ref *
|
|
ea_ref_class(pool *p, struct ea_class *def)
|
|
{
|
|
def->uc++;
|
|
struct ea_class_ref *ref = ralloc(p, &ea_class_ref_class);
|
|
ref->class = def;
|
|
return ref;
|
|
}
|
|
|
|
static struct ea_class_ref *
|
|
ea_register(pool *p, struct ea_class *def)
|
|
{
|
|
def->id = idm_alloc(&ea_class_idm);
|
|
|
|
ASSERT_DIE(ea_class_global);
|
|
while (def->id >= ea_class_max)
|
|
ea_class_global = mb_realloc(ea_class_global, sizeof(*ea_class_global) * (ea_class_max *= 2));
|
|
|
|
ASSERT_DIE(def->id < ea_class_max);
|
|
ea_class_global[def->id] = def;
|
|
|
|
return ea_ref_class(p, def);
|
|
}
|
|
|
|
struct ea_class_ref *
|
|
ea_register_alloc(pool *p, struct ea_class cl)
|
|
{
|
|
struct ea_class_ref *ref;
|
|
|
|
RTA_LOCK;
|
|
struct ea_class *clp = ea_class_find_by_name(cl.name);
|
|
if (clp && clp->type == cl.type)
|
|
{
|
|
ref = ea_ref_class(p, clp);
|
|
RTA_UNLOCK;
|
|
return ref;
|
|
}
|
|
|
|
uint namelen = strlen(cl.name) + 1;
|
|
|
|
struct {
|
|
struct ea_class cl;
|
|
char name[0];
|
|
} *cla = mb_alloc(rta_pool, sizeof(struct ea_class) + namelen);
|
|
cla->cl = cl;
|
|
memcpy(cla->name, cl.name, namelen);
|
|
cla->cl.name = cla->name;
|
|
|
|
ref = ea_register(p, &cla->cl);
|
|
RTA_UNLOCK;
|
|
return ref;
|
|
}
|
|
|
|
void
|
|
ea_register_init(struct ea_class *clp)
|
|
{
|
|
RTA_LOCK;
|
|
ASSERT_DIE(!ea_class_find_by_name(clp->name));
|
|
|
|
struct ea_class *def = ea_register(&root_pool, clp)->class;
|
|
|
|
if (!clp->hidden)
|
|
ea_lex_register(def);
|
|
|
|
RTA_UNLOCK;
|
|
}
|
|
|
|
struct ea_class *
|
|
ea_class_find_by_id(uint id)
|
|
{
|
|
ASSERT_DIE(id < ea_class_max);
|
|
ASSERT_DIE(ea_class_global[id]);
|
|
return ea_class_global[id];
|
|
}
|
|
|
|
static inline eattr *
|
|
ea__find(ea_list *e, unsigned id)
|
|
{
|
|
eattr *a;
|
|
int l, r, m;
|
|
|
|
while (e)
|
|
{
|
|
if (e->flags & EALF_BISECT)
|
|
{
|
|
l = 0;
|
|
r = e->count - 1;
|
|
while (l <= r)
|
|
{
|
|
m = (l+r) / 2;
|
|
a = &e->attrs[m];
|
|
if (a->id == id)
|
|
return a;
|
|
else if (a->id < id)
|
|
l = m+1;
|
|
else
|
|
r = m-1;
|
|
}
|
|
}
|
|
else
|
|
for(m=0; m<e->count; m++)
|
|
if (e->attrs[m].id == id)
|
|
return &e->attrs[m];
|
|
e = e->next;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ea_find - find an extended attribute
|
|
* @e: attribute list to search in
|
|
* @id: attribute ID to search for
|
|
*
|
|
* Given an extended attribute list, ea_find() searches for a first
|
|
* occurrence of an attribute with specified ID, returning either a pointer
|
|
* to its &eattr structure or %NULL if no such attribute exists.
|
|
*/
|
|
eattr *
|
|
ea_find_by_id(ea_list *e, unsigned id)
|
|
{
|
|
eattr *a = ea__find(e, id & EA_CODE_MASK);
|
|
|
|
if (a && a->undef && !(id & EA_ALLOW_UNDEF))
|
|
return NULL;
|
|
return a;
|
|
}
|
|
|
|
/**
|
|
* ea_walk - walk through extended attributes
|
|
* @s: walk state structure
|
|
* @id: start of attribute ID interval
|
|
* @max: length of attribute ID interval
|
|
*
|
|
* Given an extended attribute list, ea_walk() walks through the list looking
|
|
* for first occurrences of attributes with ID in specified interval from @id to
|
|
* (@id + @max - 1), returning pointers to found &eattr structures, storing its
|
|
* walk state in @s for subsequent calls.
|
|
*
|
|
* The function ea_walk() is supposed to be called in a loop, with initially
|
|
* zeroed walk state structure @s with filled the initial extended attribute
|
|
* list, returning one found attribute in each call or %NULL when no other
|
|
* attribute exists. The extended attribute list or the arguments should not be
|
|
* modified between calls. The maximum value of @max is 128.
|
|
*/
|
|
eattr *
|
|
ea_walk(struct ea_walk_state *s, uint id, uint max)
|
|
{
|
|
ea_list *e = s->eattrs;
|
|
eattr *a = s->ea;
|
|
eattr *a_max;
|
|
|
|
max = id + max;
|
|
|
|
if (a)
|
|
goto step;
|
|
|
|
for (; e; e = e->next)
|
|
{
|
|
if (e->flags & EALF_BISECT)
|
|
{
|
|
int l, r, m;
|
|
|
|
l = 0;
|
|
r = e->count - 1;
|
|
while (l < r)
|
|
{
|
|
m = (l+r) / 2;
|
|
if (e->attrs[m].id < id)
|
|
l = m + 1;
|
|
else
|
|
r = m;
|
|
}
|
|
a = e->attrs + l;
|
|
}
|
|
else
|
|
a = e->attrs;
|
|
|
|
step:
|
|
a_max = e->attrs + e->count;
|
|
for (; a < a_max; a++)
|
|
if ((a->id >= id) && (a->id < max))
|
|
{
|
|
int n = a->id - id;
|
|
|
|
if (BIT32_TEST(s->visited, n))
|
|
continue;
|
|
|
|
BIT32_SET(s->visited, n);
|
|
|
|
if (a->undef)
|
|
continue;
|
|
|
|
s->eattrs = e;
|
|
s->ea = a;
|
|
return a;
|
|
}
|
|
else if (e->flags & EALF_BISECT)
|
|
break;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline void
|
|
ea_do_sort(ea_list *e)
|
|
{
|
|
unsigned n = e->count;
|
|
eattr *a = e->attrs;
|
|
eattr *b = alloca(n * sizeof(eattr));
|
|
unsigned s, ss;
|
|
|
|
/* We need to use a stable sorting algorithm, hence mergesort */
|
|
do
|
|
{
|
|
s = ss = 0;
|
|
while (s < n)
|
|
{
|
|
eattr *p, *q, *lo, *hi;
|
|
p = b;
|
|
ss = s;
|
|
*p++ = a[s++];
|
|
while (s < n && p[-1].id <= a[s].id)
|
|
*p++ = a[s++];
|
|
if (s < n)
|
|
{
|
|
q = p;
|
|
*p++ = a[s++];
|
|
while (s < n && p[-1].id <= a[s].id)
|
|
*p++ = a[s++];
|
|
lo = b;
|
|
hi = q;
|
|
s = ss;
|
|
while (lo < q && hi < p)
|
|
if (lo->id <= hi->id)
|
|
a[s++] = *lo++;
|
|
else
|
|
a[s++] = *hi++;
|
|
while (lo < q)
|
|
a[s++] = *lo++;
|
|
while (hi < p)
|
|
a[s++] = *hi++;
|
|
}
|
|
}
|
|
}
|
|
while (ss);
|
|
}
|
|
|
|
/**
|
|
* In place discard duplicates and undefs in sorted ea_list. We use stable sort
|
|
* for this reason.
|
|
**/
|
|
static inline void
|
|
ea_do_prune(ea_list *e)
|
|
{
|
|
eattr *s, *d, *l, *s0;
|
|
int i = 0;
|
|
|
|
s = d = e->attrs; /* Beginning of the list. @s is source, @d is destination. */
|
|
l = e->attrs + e->count; /* End of the list */
|
|
|
|
/* Walk from begin to end. */
|
|
while (s < l)
|
|
{
|
|
s0 = s++;
|
|
/* Find a consecutive block of the same attribute */
|
|
while (s < l && s->id == s[-1].id)
|
|
s++;
|
|
|
|
/* Now s0 is the most recent version, s[-1] the oldest one */
|
|
/* Drop undefs unless this is a true overlay */
|
|
if (s0->undef && (s[-1].undef || !e->next))
|
|
continue;
|
|
|
|
/* Copy the newest version to destination */
|
|
*d = *s0;
|
|
|
|
/* Preserve info whether it originated locally */
|
|
d->originated = s[-1].originated;
|
|
|
|
/* Not fresh any more, we prefer surstroemming */
|
|
d->fresh = 0;
|
|
|
|
/* Next destination */
|
|
d++;
|
|
i++;
|
|
}
|
|
|
|
e->count = i;
|
|
}
|
|
|
|
/**
|
|
* ea_sort - sort an attribute list
|
|
* @e: list to be sorted
|
|
*
|
|
* This function takes a &ea_list chain and sorts the attributes
|
|
* within each of its entries.
|
|
*
|
|
* If an attribute occurs multiple times in a single &ea_list,
|
|
* ea_sort() leaves only the first (the only significant) occurrence.
|
|
*/
|
|
static void
|
|
ea_sort(ea_list *e)
|
|
{
|
|
if (!(e->flags & EALF_SORTED))
|
|
{
|
|
ea_do_sort(e);
|
|
ea_do_prune(e);
|
|
e->flags |= EALF_SORTED;
|
|
}
|
|
|
|
if (e->count > 5)
|
|
e->flags |= EALF_BISECT;
|
|
}
|
|
|
|
/**
|
|
* ea_scan - estimate attribute list size
|
|
* @e: attribute list
|
|
*
|
|
* This function calculates an upper bound of the size of
|
|
* a given &ea_list after merging with ea_merge().
|
|
*/
|
|
static unsigned
|
|
ea_scan(const ea_list *e, int overlay)
|
|
{
|
|
unsigned cnt = 0;
|
|
|
|
while (e)
|
|
{
|
|
cnt += e->count;
|
|
e = e->next;
|
|
if (e && overlay && ea_is_cached(e))
|
|
break;
|
|
}
|
|
return sizeof(ea_list) + sizeof(eattr)*cnt;
|
|
}
|
|
|
|
/**
|
|
* ea_merge - merge segments of an attribute list
|
|
* @e: attribute list
|
|
* @t: buffer to store the result to
|
|
*
|
|
* This function takes a possibly multi-segment attribute list
|
|
* and merges all of its segments to one.
|
|
*
|
|
* The primary use of this function is for &ea_list normalization:
|
|
* first call ea_scan() to determine how much memory will the result
|
|
* take, then allocate a buffer (usually using alloca()), merge the
|
|
* segments with ea_merge() and finally sort and prune the result
|
|
* by calling ea_sort().
|
|
*/
|
|
static void
|
|
ea_merge(ea_list *e, ea_list *t, int overlay)
|
|
{
|
|
eattr *d = t->attrs;
|
|
|
|
t->flags = 0;
|
|
t->count = 0;
|
|
|
|
while (e)
|
|
{
|
|
memcpy(d, e->attrs, sizeof(eattr)*e->count);
|
|
t->count += e->count;
|
|
d += e->count;
|
|
e = e->next;
|
|
|
|
if (e && overlay && ea_is_cached(e))
|
|
break;
|
|
}
|
|
|
|
t->next = e;
|
|
}
|
|
|
|
ea_list *
|
|
ea_normalize(ea_list *e, int overlay)
|
|
{
|
|
ea_list *t = tmp_alloc(ea_scan(e, overlay));
|
|
ea_merge(e, t, overlay);
|
|
ea_sort(t);
|
|
|
|
return t->count ? t : t->next;
|
|
}
|
|
|
|
/**
|
|
* ea_same - compare two &ea_list's
|
|
* @x: attribute list
|
|
* @y: attribute list
|
|
*
|
|
* ea_same() compares two normalized attribute lists @x and @y and returns
|
|
* 1 if they contain the same attributes, 0 otherwise.
|
|
*/
|
|
int
|
|
ea_same(ea_list *x, ea_list *y)
|
|
{
|
|
int c;
|
|
|
|
if (!x || !y)
|
|
return x == y;
|
|
if (x->next != y->next)
|
|
return 0;
|
|
if (x->count != y->count)
|
|
return 0;
|
|
for(c=0; c<x->count; c++)
|
|
{
|
|
eattr *a = &x->attrs[c];
|
|
eattr *b = &y->attrs[c];
|
|
|
|
if (a->id != b->id ||
|
|
a->flags != b->flags ||
|
|
a->type != b->type ||
|
|
a->originated != b->originated ||
|
|
a->fresh != b->fresh ||
|
|
a->undef != b->undef ||
|
|
((a->type & EAF_EMBEDDED) ? a->u.data != b->u.data : !adata_same(a->u.ptr, b->u.ptr)))
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
uint
|
|
ea_list_size(ea_list *o)
|
|
{
|
|
unsigned i, elen;
|
|
|
|
ASSERT_DIE(o);
|
|
elen = BIRD_CPU_ALIGN(sizeof(ea_list) + sizeof(eattr) * o->count);
|
|
|
|
for(i=0; i<o->count; i++)
|
|
{
|
|
eattr *a = &o->attrs[i];
|
|
if (!a->undef && !(a->type & EAF_EMBEDDED))
|
|
elen += ADATA_SIZE(a->u.ptr->length);
|
|
}
|
|
|
|
return elen;
|
|
}
|
|
|
|
void
|
|
ea_list_copy(ea_list *n, ea_list *o, uint elen)
|
|
{
|
|
uint adpos = sizeof(ea_list) + sizeof(eattr) * o->count;
|
|
memcpy(n, o, adpos);
|
|
adpos = BIRD_CPU_ALIGN(adpos);
|
|
|
|
for(uint i=0; i<o->count; i++)
|
|
{
|
|
eattr *a = &n->attrs[i];
|
|
if (!a->undef && !(a->type & EAF_EMBEDDED))
|
|
{
|
|
unsigned size = ADATA_SIZE(a->u.ptr->length);
|
|
ASSERT_DIE(adpos + size <= elen);
|
|
|
|
struct adata *d = ((void *) n) + adpos;
|
|
memcpy(d, a->u.ptr, size);
|
|
a->u.ptr = d;
|
|
|
|
adpos += size;
|
|
}
|
|
}
|
|
|
|
ASSERT_DIE(adpos == elen);
|
|
}
|
|
|
|
static void
|
|
ea_list_ref(ea_list *l)
|
|
{
|
|
for(uint i=0; i<l->count; i++)
|
|
{
|
|
eattr *a = &l->attrs[i];
|
|
ASSERT_DIE(a->id < ea_class_max);
|
|
|
|
if (a->undef)
|
|
continue;
|
|
|
|
struct ea_class *cl = ea_class_global[a->id];
|
|
ASSERT_DIE(cl && cl->uc);
|
|
|
|
CALL(cl->stored, a);
|
|
cl->uc++;
|
|
}
|
|
|
|
if (l->next)
|
|
{
|
|
ASSERT_DIE(ea_is_cached(l->next));
|
|
ea_clone(l->next);
|
|
}
|
|
}
|
|
|
|
static void ea_free_nested(ea_list *l);
|
|
|
|
static void
|
|
ea_list_unref(ea_list *l)
|
|
{
|
|
for(uint i=0; i<l->count; i++)
|
|
{
|
|
eattr *a = &l->attrs[i];
|
|
ASSERT_DIE(a->id < ea_class_max);
|
|
|
|
if (a->undef)
|
|
continue;
|
|
|
|
struct ea_class *cl = ea_class_global[a->id];
|
|
ASSERT_DIE(cl && cl->uc);
|
|
|
|
CALL(cl->freed, a);
|
|
if (!--cl->uc)
|
|
ea_class_free(cl);
|
|
}
|
|
|
|
if (l->next)
|
|
ea_free_nested(l->next);
|
|
}
|
|
|
|
void
|
|
ea_format_bitfield(const struct eattr *a, byte *buf, int bufsize, const char **names, int min, int max)
|
|
{
|
|
byte *bound = buf + bufsize - 32;
|
|
u32 data = a->u.data;
|
|
int i;
|
|
|
|
for (i = min; i < max; i++)
|
|
if ((data & (1u << i)) && names[i])
|
|
{
|
|
if (buf > bound)
|
|
{
|
|
strcpy(buf, " ...");
|
|
return;
|
|
}
|
|
|
|
buf += bsprintf(buf, " %s", names[i]);
|
|
data &= ~(1u << i);
|
|
}
|
|
|
|
if (data)
|
|
bsprintf(buf, " %08x", data);
|
|
|
|
return;
|
|
}
|
|
|
|
static inline void
|
|
opaque_format(const struct adata *ad, byte *buf, uint size)
|
|
{
|
|
byte *bound = buf + size - 10;
|
|
uint i;
|
|
|
|
for(i = 0; i < ad->length; i++)
|
|
{
|
|
if (buf > bound)
|
|
{
|
|
strcpy(buf, " ...");
|
|
return;
|
|
}
|
|
if (i)
|
|
*buf++ = ' ';
|
|
|
|
buf += bsprintf(buf, "%02x", ad->data[i]);
|
|
}
|
|
|
|
*buf = 0;
|
|
return;
|
|
}
|
|
|
|
static inline void
|
|
ea_show_int_set(struct cli *c, const char *name, const struct adata *ad, int way, byte *buf)
|
|
{
|
|
int nlen = strlen(name);
|
|
int i = int_set_format(ad, way, 0, buf, CLI_MSG_SIZE - nlen - 3);
|
|
cli_printf(c, -1012, "\t%s: %s", name, buf);
|
|
while (i)
|
|
{
|
|
i = int_set_format(ad, way, i, buf, CLI_MSG_SIZE - 1);
|
|
cli_printf(c, -1012, "\t\t%s", buf);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
ea_show_ec_set(struct cli *c, const char *name, const struct adata *ad, byte *buf)
|
|
{
|
|
int nlen = strlen(name);
|
|
int i = ec_set_format(ad, 0, buf, CLI_MSG_SIZE - nlen - 3);
|
|
cli_printf(c, -1012, "\t%s: %s", name, buf);
|
|
while (i)
|
|
{
|
|
i = ec_set_format(ad, i, buf, CLI_MSG_SIZE - 1);
|
|
cli_printf(c, -1012, "\t\t%s", buf);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
ea_show_lc_set(struct cli *c, const char *name, const struct adata *ad, byte *buf)
|
|
{
|
|
int nlen = strlen(name);
|
|
int i = lc_set_format(ad, 0, buf, CLI_MSG_SIZE - nlen - 3);
|
|
cli_printf(c, -1012, "\t%s: %s", name, buf);
|
|
while (i)
|
|
{
|
|
i = lc_set_format(ad, i, buf, CLI_MSG_SIZE - 1);
|
|
cli_printf(c, -1012, "\t\t%s", buf);
|
|
}
|
|
}
|
|
|
|
void
|
|
ea_show_nexthop_list(struct cli *c, struct nexthop_adata *nhad)
|
|
{
|
|
if (!NEXTHOP_IS_REACHABLE(nhad))
|
|
return;
|
|
|
|
NEXTHOP_WALK(nh, nhad)
|
|
{
|
|
char mpls[MPLS_MAX_LABEL_STACK*12 + 5], *lsp = mpls;
|
|
char *onlink = (nh->flags & RNF_ONLINK) ? " onlink" : "";
|
|
char weight[16] = "";
|
|
|
|
if (nh->labels)
|
|
{
|
|
lsp += bsprintf(lsp, " mpls %d", nh->label[0]);
|
|
for (int i=1;i<nh->labels; i++)
|
|
lsp += bsprintf(lsp, "/%d", nh->label[i]);
|
|
}
|
|
*lsp = '\0';
|
|
|
|
if (!NEXTHOP_ONE(nhad))
|
|
bsprintf(weight, " weight %d", nh->weight + 1);
|
|
|
|
if (ipa_nonzero(nh->gw))
|
|
if (nh->iface)
|
|
cli_printf(c, -1007, "\tvia %I on %s%s%s%s",
|
|
nh->gw, nh->iface->name, mpls, onlink, weight);
|
|
else
|
|
cli_printf(c, -1007, "\tvia %I", nh->gw);
|
|
else
|
|
cli_printf(c, -1007, "\tdev %s%s%s",
|
|
nh->iface->name, mpls, onlink, weight);
|
|
}
|
|
}
|
|
|
|
void
|
|
ea_show_hostentry(const struct adata *ad, byte *buf, uint size)
|
|
{
|
|
const struct hostentry_adata *had = (const struct hostentry_adata *) ad;
|
|
|
|
if (ipa_nonzero(had->he->link) && !ipa_equal(had->he->link, had->he->addr))
|
|
bsnprintf(buf, size, "via %I %I table %s", had->he->addr, had->he->link, had->he->tab->name);
|
|
else
|
|
bsnprintf(buf, size, "via %I table %s", had->he->addr, had->he->tab->name);
|
|
}
|
|
|
|
/**
|
|
* ea_show - print an &eattr to CLI
|
|
* @c: destination CLI
|
|
* @e: attribute to be printed
|
|
*
|
|
* This function takes an extended attribute represented by its &eattr
|
|
* structure and prints it to the CLI according to the type information.
|
|
*
|
|
* If the protocol defining the attribute provides its own
|
|
* get_attr() hook, it's consulted first.
|
|
*/
|
|
static void
|
|
ea_show(struct cli *c, const eattr *e)
|
|
{
|
|
const struct adata *ad = (e->type & EAF_EMBEDDED) ? NULL : e->u.ptr;
|
|
byte buf[CLI_MSG_SIZE];
|
|
byte *pos = buf, *end = buf + sizeof(buf);
|
|
|
|
ASSERT_DIE(e->id < ea_class_max);
|
|
|
|
struct ea_class *cls = ea_class_global[e->id];
|
|
ASSERT_DIE(cls);
|
|
|
|
if (e->undef || cls->hidden)
|
|
return;
|
|
else if (cls->format)
|
|
cls->format(e, buf, end - buf);
|
|
else
|
|
switch (e->type)
|
|
{
|
|
case T_INT:
|
|
if ((cls == &ea_gen_igp_metric) && e->u.data >= IGP_METRIC_UNKNOWN)
|
|
return;
|
|
|
|
bsprintf(pos, "%u", e->u.data);
|
|
break;
|
|
case T_OPAQUE:
|
|
opaque_format(ad, pos, end - pos);
|
|
break;
|
|
case T_IP:
|
|
bsprintf(pos, "%I", *(ip_addr *) ad->data);
|
|
break;
|
|
case T_QUAD:
|
|
bsprintf(pos, "%R", e->u.data);
|
|
break;
|
|
case T_PATH:
|
|
as_path_format(ad, pos, end - pos);
|
|
break;
|
|
case T_CLIST:
|
|
ea_show_int_set(c, cls->name, ad, 1, buf);
|
|
return;
|
|
case T_ECLIST:
|
|
ea_show_ec_set(c, cls->name, ad, buf);
|
|
return;
|
|
case T_LCLIST:
|
|
ea_show_lc_set(c, cls->name, ad, buf);
|
|
return;
|
|
case T_NEXTHOP_LIST:
|
|
ea_show_nexthop_list(c, (struct nexthop_adata *) e->u.ptr);
|
|
return;
|
|
case T_HOSTENTRY:
|
|
ea_show_hostentry(ad, pos, end - pos);
|
|
break;
|
|
default:
|
|
bsprintf(pos, "<type %02x>", e->type);
|
|
}
|
|
|
|
cli_printf(c, -1012, "\t%s: %s", cls->name, buf);
|
|
}
|
|
|
|
static void
|
|
nexthop_dump(const struct adata *ad)
|
|
{
|
|
struct nexthop_adata *nhad = (struct nexthop_adata *) ad;
|
|
|
|
debug(":");
|
|
|
|
if (!NEXTHOP_IS_REACHABLE(nhad))
|
|
{
|
|
const char *name = rta_dest_name(nhad->dest);
|
|
if (name)
|
|
debug(" %s", name);
|
|
else
|
|
debug(" D%d", nhad->dest);
|
|
}
|
|
else NEXTHOP_WALK(nh, nhad)
|
|
{
|
|
if (ipa_nonzero(nh->gw)) debug(" ->%I", nh->gw);
|
|
if (nh->labels) debug(" L %d", nh->label[0]);
|
|
for (int i=1; i<nh->labels; i++)
|
|
debug("/%d", nh->label[i]);
|
|
debug(" [%s]", nh->iface ? nh->iface->name : "???");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ea_dump - dump an extended attribute
|
|
* @e: attribute to be dumped
|
|
*
|
|
* ea_dump() dumps contents of the extended attribute given to
|
|
* the debug output.
|
|
*/
|
|
void
|
|
ea_dump(ea_list *e)
|
|
{
|
|
int i;
|
|
|
|
if (!e)
|
|
{
|
|
debug("NONE");
|
|
return;
|
|
}
|
|
while (e)
|
|
{
|
|
struct ea_storage *s = ea_is_cached(e) ? ea_get_storage(e) : NULL;
|
|
debug("[%c%c%c] uc=%d h=%08x",
|
|
(e->flags & EALF_SORTED) ? 'S' : 's',
|
|
(e->flags & EALF_BISECT) ? 'B' : 'b',
|
|
(e->flags & EALF_CACHED) ? 'C' : 'c',
|
|
s ? s->uc : 0, s ? s->hash_key : 0);
|
|
for(i=0; i<e->count; i++)
|
|
{
|
|
eattr *a = &e->attrs[i];
|
|
debug(" %04x.%02x", a->id, a->flags);
|
|
debug("=%c",
|
|
"?iO?IRP???S??pE?"
|
|
"??L???N?????????"
|
|
"?o???r??????????" [a->type]);
|
|
if (a->originated)
|
|
debug("o");
|
|
if (a->type & EAF_EMBEDDED)
|
|
debug(":%08x", a->u.data);
|
|
else if (a->id == ea_gen_nexthop.id)
|
|
nexthop_dump(a->u.ptr);
|
|
else
|
|
{
|
|
int j, len = a->u.ptr->length;
|
|
debug("[%d]:", len);
|
|
for(j=0; j<len; j++)
|
|
debug("%02x", a->u.ptr->data[j]);
|
|
}
|
|
}
|
|
if (e = e->next)
|
|
debug(" | ");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ea_hash - calculate an &ea_list hash key
|
|
* @e: attribute list
|
|
*
|
|
* ea_hash() takes an extended attribute list and calculated a hopefully
|
|
* uniformly distributed hash value from its contents.
|
|
*/
|
|
inline uint
|
|
ea_hash(ea_list *e)
|
|
{
|
|
const u64 mul = 0x68576150f3d6847;
|
|
u64 h = 0xafcef24eda8b29;
|
|
int i;
|
|
|
|
if (e) /* Assuming chain of length 1 */
|
|
{
|
|
h ^= mem_hash(&e->next, sizeof(e->next));
|
|
for(i=0; i<e->count; i++)
|
|
{
|
|
struct eattr *a = &e->attrs[i];
|
|
h ^= a->id; h *= mul;
|
|
if (a->undef)
|
|
continue;
|
|
if (a->type & EAF_EMBEDDED)
|
|
h ^= a->u.data;
|
|
else
|
|
{
|
|
const struct adata *d = a->u.ptr;
|
|
h ^= mem_hash(d->data, d->length);
|
|
}
|
|
h *= mul;
|
|
}
|
|
}
|
|
return (h >> 32) ^ (h & 0xffffffff);
|
|
}
|
|
|
|
/**
|
|
* ea_append - concatenate &ea_list's
|
|
* @to: destination list (can be %NULL)
|
|
* @what: list to be appended (can be %NULL)
|
|
*
|
|
* This function appends the &ea_list @what at the end of
|
|
* &ea_list @to and returns a pointer to the resulting list.
|
|
*/
|
|
ea_list *
|
|
ea_append(ea_list *to, ea_list *what)
|
|
{
|
|
ea_list *res;
|
|
|
|
if (!to)
|
|
return what;
|
|
res = to;
|
|
while (to->next)
|
|
to = to->next;
|
|
to->next = what;
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* rta's
|
|
*/
|
|
|
|
static uint rta_cache_count;
|
|
static uint rta_cache_size = 32;
|
|
static uint rta_cache_limit;
|
|
static uint rta_cache_mask;
|
|
static struct ea_storage **rta_hash_table;
|
|
|
|
static void
|
|
rta_alloc_hash(void)
|
|
{
|
|
rta_hash_table = mb_allocz(rta_pool, sizeof(struct ea_storage *) * rta_cache_size);
|
|
if (rta_cache_size < 32768)
|
|
rta_cache_limit = rta_cache_size * 2;
|
|
else
|
|
rta_cache_limit = ~0;
|
|
rta_cache_mask = rta_cache_size - 1;
|
|
}
|
|
|
|
static inline void
|
|
rta_insert(struct ea_storage *r)
|
|
{
|
|
uint h = r->hash_key & rta_cache_mask;
|
|
r->next_hash = rta_hash_table[h];
|
|
if (r->next_hash)
|
|
r->next_hash->pprev_hash = &r->next_hash;
|
|
r->pprev_hash = &rta_hash_table[h];
|
|
rta_hash_table[h] = r;
|
|
}
|
|
|
|
static void
|
|
rta_rehash(void)
|
|
{
|
|
uint ohs = rta_cache_size;
|
|
uint h;
|
|
struct ea_storage *r, *n;
|
|
struct ea_storage **oht = rta_hash_table;
|
|
|
|
rta_cache_size = 2*rta_cache_size;
|
|
DBG("Rehashing rta cache from %d to %d entries.\n", ohs, rta_cache_size);
|
|
rta_alloc_hash();
|
|
for(h=0; h<ohs; h++)
|
|
for(r=oht[h]; r; r=n)
|
|
{
|
|
n = r->next_hash;
|
|
rta_insert(r);
|
|
}
|
|
mb_free(oht);
|
|
}
|
|
|
|
/**
|
|
* rta_lookup - look up a &rta in attribute cache
|
|
* @o: a un-cached &rta
|
|
*
|
|
* rta_lookup() gets an un-cached &rta structure and returns its cached
|
|
* counterpart. It starts with examining the attribute cache to see whether
|
|
* there exists a matching entry. If such an entry exists, it's returned and
|
|
* its use count is incremented, else a new entry is created with use count
|
|
* set to 1.
|
|
*
|
|
* The extended attribute lists attached to the &rta are automatically
|
|
* converted to the normalized form.
|
|
*/
|
|
ea_list *
|
|
ea_lookup(ea_list *o, int overlay)
|
|
{
|
|
struct ea_storage *r;
|
|
uint h;
|
|
|
|
ASSERT(!ea_is_cached(o));
|
|
o = ea_normalize(o, overlay);
|
|
h = ea_hash(o);
|
|
|
|
RTA_LOCK;
|
|
|
|
for(r=rta_hash_table[h & rta_cache_mask]; r; r=r->next_hash)
|
|
if (r->hash_key == h && ea_same(r->l, o))
|
|
{
|
|
atomic_fetch_add_explicit(&r->uc, 1, memory_order_acq_rel);
|
|
RTA_UNLOCK;
|
|
return r->l;
|
|
}
|
|
|
|
uint elen = ea_list_size(o);
|
|
uint sz = elen + sizeof(struct ea_storage);
|
|
for (uint i=0; i<ARRAY_SIZE(ea_slab_sizes); i++)
|
|
if (sz <= ea_slab_sizes[i])
|
|
{
|
|
r = sl_alloc(ea_slab[i]);
|
|
break;
|
|
}
|
|
|
|
int huge = r ? 0 : EALF_HUGE;;
|
|
if (huge)
|
|
r = mb_alloc(rta_pool, sz);
|
|
|
|
ea_list_copy(r->l, o, elen);
|
|
ea_list_ref(r->l);
|
|
|
|
r->l->flags |= EALF_CACHED | huge;
|
|
r->hash_key = h;
|
|
r->uc = 1;
|
|
|
|
rta_insert(r);
|
|
|
|
if (++rta_cache_count > rta_cache_limit)
|
|
rta_rehash();
|
|
|
|
RTA_UNLOCK;
|
|
return r->l;
|
|
}
|
|
|
|
static void
|
|
ea_free_locked(struct ea_storage *a)
|
|
{
|
|
/* Somebody has cloned this rta inbetween. This sometimes happens. */
|
|
if (atomic_load_explicit(&a->uc, memory_order_acquire))
|
|
return;
|
|
|
|
ASSERT(rta_cache_count);
|
|
rta_cache_count--;
|
|
*a->pprev_hash = a->next_hash;
|
|
if (a->next_hash)
|
|
a->next_hash->pprev_hash = a->pprev_hash;
|
|
|
|
ea_list_unref(a->l);
|
|
if (a->l->flags & EALF_HUGE)
|
|
mb_free(a);
|
|
else
|
|
sl_free(a);
|
|
}
|
|
|
|
static void
|
|
ea_free_nested(struct ea_list *l)
|
|
{
|
|
struct ea_storage *r = ea_get_storage(l);
|
|
if (1 == atomic_fetch_sub_explicit(&r->uc, 1, memory_order_acq_rel))
|
|
ea_free_locked(r);
|
|
}
|
|
|
|
void
|
|
ea__free(struct ea_storage *a)
|
|
{
|
|
RTA_LOCK;
|
|
ea_free_locked(a);
|
|
RTA_UNLOCK;
|
|
}
|
|
|
|
/**
|
|
* rta_dump_all - dump attribute cache
|
|
*
|
|
* This function dumps the whole contents of route attribute cache
|
|
* to the debug output.
|
|
*/
|
|
void
|
|
ea_dump_all(void)
|
|
{
|
|
RTA_LOCK;
|
|
|
|
debug("Route attribute cache (%d entries, rehash at %d):\n", rta_cache_count, rta_cache_limit);
|
|
for (uint h=0; h < rta_cache_size; h++)
|
|
for (struct ea_storage *a = rta_hash_table[h]; a; a = a->next_hash)
|
|
{
|
|
debug("%p ", a);
|
|
ea_dump(a->l);
|
|
debug("\n");
|
|
}
|
|
debug("\n");
|
|
|
|
RTA_UNLOCK;
|
|
}
|
|
|
|
void
|
|
ea_show_list(struct cli *c, ea_list *eal)
|
|
{
|
|
ea_list *n = ea_normalize(eal, 0);
|
|
for (int i =0; i < n->count; i++)
|
|
ea_show(c, &n->attrs[i]);
|
|
}
|
|
|
|
/**
|
|
* rta_init - initialize route attribute cache
|
|
*
|
|
* This function is called during initialization of the routing
|
|
* table module to set up the internals of the attribute cache.
|
|
*/
|
|
void
|
|
rta_init(void)
|
|
{
|
|
attrs_domain = DOMAIN_NEW(attrs);
|
|
|
|
RTA_LOCK;
|
|
rta_pool = rp_new(&root_pool, attrs_domain.attrs, "Attributes");
|
|
|
|
for (uint i=0; i<ARRAY_SIZE(ea_slab_sizes); i++)
|
|
ea_slab[i] = sl_new(rta_pool, ea_slab_sizes[i]);
|
|
|
|
rta_alloc_hash();
|
|
rte_src_init();
|
|
ea_class_init();
|
|
|
|
RTA_UNLOCK;
|
|
|
|
/* These attributes are required to be first for nice "show route" output */
|
|
ea_register_init(&ea_gen_nexthop);
|
|
ea_register_init(&ea_gen_hostentry);
|
|
|
|
/* Other generic route attributes */
|
|
ea_register_init(&ea_gen_preference);
|
|
ea_register_init(&ea_gen_igp_metric);
|
|
ea_register_init(&ea_gen_from);
|
|
ea_register_init(&ea_gen_source);
|
|
ea_register_init(&ea_gen_flowspec_valid);
|
|
|
|
/* MPLS route attributes */
|
|
ea_register_init(&ea_gen_mpls_policy);
|
|
ea_register_init(&ea_gen_mpls_class);
|
|
ea_register_init(&ea_gen_mpls_label);
|
|
}
|
|
|
|
/*
|
|
* Documentation for functions declared inline in route.h
|
|
*/
|
|
#if 0
|
|
|
|
/**
|
|
* rta_clone - clone route attributes
|
|
* @r: a &rta to be cloned
|
|
*
|
|
* rta_clone() takes a cached &rta and returns its identical cached
|
|
* copy. Currently it works by just returning the original &rta with
|
|
* its use count incremented.
|
|
*/
|
|
static inline rta *rta_clone(rta *r)
|
|
{ DUMMY; }
|
|
|
|
/**
|
|
* rta_free - free route attributes
|
|
* @r: a &rta to be freed
|
|
*
|
|
* If you stop using a &rta (for example when deleting a route which uses
|
|
* it), you need to call rta_free() to notify the attribute cache the
|
|
* attribute is no longer in use and can be freed if you were the last
|
|
* user (which rta_free() tests by inspecting the use count).
|
|
*/
|
|
static inline void rta_free(rta *r)
|
|
{ DUMMY; }
|
|
|
|
#endif
|