0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2024-12-27 20:21:53 +00:00
bird/sysdep/unix/krt.c
2024-03-25 09:39:58 +01:00

1214 lines
25 KiB
C

/*
* BIRD -- UNIX Kernel Synchronization
*
* (c) 1998--2000 Martin Mares <mj@ucw.cz>
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
/**
* DOC: Kernel synchronization
*
* This system dependent module implements the Kernel and Device protocol,
* that is synchronization of interface lists and routing tables with the
* OS kernel.
*
* The whole kernel synchronization is a bit messy and touches some internals
* of the routing table engine, because routing table maintenance is a typical
* example of the proverbial compatibility between different Unices and we want
* to keep the overhead of our KRT business as low as possible and avoid maintaining
* a local routing table copy.
*
* The kernel syncer can work in three different modes (according to system config header):
* Either with a single routing table and single KRT protocol [traditional UNIX]
* or with many routing tables and separate KRT protocols for all of them
* or with many routing tables, but every scan including all tables, so we start
* separate KRT protocols which cooperate with each other [Linux].
* In this case, we keep only a single scan timer.
*
* We use FIB node flags in the routing table to keep track of route
* synchronization status. We also attach temporary &rte's to the routing table,
* but it cannot do any harm to the rest of BIRD since table synchronization is
* an atomic process.
*
* When starting up, we cheat by looking if there is another
* KRT instance to be initialized later and performing table scan
* only once for all the instances.
*
* The code uses OS-dependent parts for kernel updates and scans. These parts are
* in more specific sysdep directories (e.g. sysdep/linux) in functions krt_sys_*
* and kif_sys_* (and some others like krt_replace_rte()) and krt-sys.h header file.
* This is also used for platform specific protocol options and route attributes.
*
* There was also an old code that used traditional UNIX ioctls for these tasks.
* It was unmaintained and later removed. For reference, see sysdep/krt-* files
* in commit 396dfa9042305f62da1f56589c4b98fac57fc2f6
*/
/*
* If you are brave enough, continue now. You cannot say you haven't been warned.
*/
#undef LOCAL_DEBUG
#include "nest/bird.h"
#include "nest/iface.h"
#include "nest/route.h"
#include "nest/protocol.h"
#include "filter/filter.h"
#include "conf/conf.h"
#include "lib/string.h"
#include "lib/timer.h"
#include "unix.h"
#include "krt.h"
/*
* Global resources
*/
pool *krt_pool;
static linpool *krt_filter_lp;
static list krt_proto_list;
void
krt_io_init(void)
{
krt_pool = rp_new(&root_pool, "Kernel Syncer");
krt_filter_lp = lp_new_default(krt_pool);
init_list(&krt_proto_list);
krt_sys_io_init();
}
/*
* Interfaces
*/
struct kif_proto *kif_proto;
static struct kif_config *kif_cf;
static timer *kif_scan_timer;
static btime kif_last_shot;
static struct kif_iface_config kif_default_iface = {};
struct kif_iface_config *
kif_get_iface_config(struct iface *iface)
{
struct kif_config *cf = (void *) (kif_proto->p.cf);
struct kif_iface_config *ic = (void *) iface_patt_find(&cf->iface_list, iface, NULL);
return ic ?: &kif_default_iface;
}
static void
kif_scan(timer *t)
{
struct kif_proto *p = t->data;
KRT_TRACE(p, D_EVENTS, "Scanning interfaces");
kif_last_shot = current_time();
kif_do_scan(p);
}
static void
kif_force_scan(void)
{
if (kif_proto && ((kif_last_shot + 2 S) < current_time()))
{
kif_scan(kif_scan_timer);
tm_start(kif_scan_timer, ((struct kif_config *) kif_proto->p.cf)->scan_time);
}
}
void
kif_request_scan(void)
{
if (kif_proto && (kif_scan_timer->expires > (current_time() + 1 S)))
tm_start(kif_scan_timer, 1 S);
}
static struct proto *
kif_init(struct proto_config *c)
{
struct kif_proto *p = proto_new(c);
kif_sys_init(p);
return &p->p;
}
static int
kif_start(struct proto *P)
{
struct kif_proto *p = (struct kif_proto *) P;
kif_proto = p;
kif_sys_start(p);
/* Start periodic interface scanning */
kif_scan_timer = tm_new_init(P->pool, kif_scan, p, KIF_CF->scan_time, 0);
kif_scan(kif_scan_timer);
tm_start(kif_scan_timer, KIF_CF->scan_time);
return PS_UP;
}
static int
kif_shutdown(struct proto *P)
{
struct kif_proto *p = (struct kif_proto *) P;
tm_stop(kif_scan_timer);
kif_sys_shutdown(p);
kif_proto = NULL;
return PS_DOWN;
}
static int
kif_reconfigure(struct proto *p, struct proto_config *new)
{
struct kif_config *o = (struct kif_config *) p->cf;
struct kif_config *n = (struct kif_config *) new;
if (!kif_sys_reconfigure((struct kif_proto *) p, n, o))
return 0;
if (o->scan_time != n->scan_time)
{
tm_stop(kif_scan_timer);
kif_scan_timer->recurrent = n->scan_time;
kif_scan(kif_scan_timer);
tm_start(kif_scan_timer, n->scan_time);
}
if (!EMPTY_LIST(o->iface_list) || !EMPTY_LIST(n->iface_list))
{
/* This is hack, we have to update a configuration
* to the new value just now, because it is used
* for recalculation of preferred addresses.
*/
p->cf = new;
if_recalc_all_preferred_addresses();
}
return 1;
}
static void
kif_preconfig(struct protocol *P UNUSED, struct config *c)
{
kif_cf = NULL;
kif_sys_preconfig(c);
}
struct proto_config *
kif_init_config(int class)
{
if (kif_cf)
cf_error("Kernel device protocol already defined");
kif_cf = (struct kif_config *) proto_config_new(&proto_unix_iface, class);
kif_cf->scan_time = 60 S;
init_list(&kif_cf->iface_list);
kif_sys_init_config(kif_cf);
return (struct proto_config *) kif_cf;
}
static void
kif_copy_config(struct proto_config *dest, struct proto_config *src)
{
struct kif_config *d = (struct kif_config *) dest;
struct kif_config *s = (struct kif_config *) src;
/* Copy interface config list */
cfg_copy_list(&d->iface_list, &s->iface_list, sizeof(struct kif_iface_config));
/* Fix sysdep parts */
kif_sys_copy_config(d, s);
}
struct protocol proto_unix_iface = {
.name = "Device",
.template = "device%d",
.class = PROTOCOL_DEVICE,
.proto_size = sizeof(struct kif_proto),
.config_size = sizeof(struct kif_config),
.preconfig = kif_preconfig,
.init = kif_init,
.start = kif_start,
.shutdown = kif_shutdown,
.reconfigure = kif_reconfigure,
.copy_config = kif_copy_config
};
void
kif_build(void)
{
proto_build(&proto_unix_iface);
}
/*
* Tracing of routes
*/
static inline void
krt_trace_in(struct krt_proto *p, rte *e, char *msg)
{
if (p->p.debug & D_PACKETS)
log(L_TRACE "%s: %N: %s", p->p.name, e->net->n.addr, msg);
}
static inline void
krt_trace_in_rl(struct tbf *f, struct krt_proto *p, rte *e, char *msg)
{
if (p->p.debug & D_PACKETS)
log_rl(f, L_TRACE "%s: %N: %s", p->p.name, e->net->n.addr, msg);
}
/*
* Inherited Routes
*/
#ifdef KRT_ALLOW_LEARN
static struct tbf rl_alien = TBF_DEFAULT_LOG_LIMITS;
/*
* krt_same_key() specifies what (aside from the net) is the key in
* kernel routing tables. It should be OS-dependent, this is for
* Linux. It is important for asynchronous alien updates, because a
* positive update is implicitly a negative one for any old route with
* the same key.
*/
static inline u32
krt_metric(rte *a)
{
eattr *ea = ea_find(a->attrs->eattrs, EA_KRT_METRIC);
return ea ? ea->u.data : 0;
}
static inline int
krt_same_key(rte *a, rte *b)
{
return (krt_metric(a) == krt_metric(b));
}
static inline int
krt_uptodate(rte *a, rte *b)
{
return (a->attrs == b->attrs);
}
static void
krt_learn_announce_update(struct krt_proto *p, rte *e)
{
net *n = e->net;
rta *aa = rta_clone(e->attrs);
rte *ee = rte_get_temp(aa, p->p.main_source);
rte_update(&p->p, n->n.addr, ee);
}
static void
krt_learn_announce_delete(struct krt_proto *p, net *n)
{
rte_update(&p->p, n->n.addr, NULL);
}
static void
krt_learn_alien_attr(struct channel *c, rte *e)
{
ASSERT(!e->attrs->cached);
e->attrs->pref = c->preference;
e->attrs = rta_lookup(e->attrs);
}
/* Called when alien route is discovered during scan */
static void
krt_learn_scan(struct krt_proto *p, rte *e)
{
net *n0 = e->net;
net *n = net_get(p->krt_table, n0->n.addr);
rte *m, **mm;
krt_learn_alien_attr(p->p.main_channel, e);
for(mm=&n->routes; m = *mm; mm=&m->next)
if (krt_same_key(m, e))
break;
if (m)
{
if (krt_uptodate(m, e))
{
krt_trace_in_rl(&rl_alien, p, e, "[alien] seen");
rte_free(e);
m->pflags |= KRT_REF_SEEN;
}
else
{
krt_trace_in(p, e, "[alien] updated");
*mm = m->next;
rte_free(m);
m = NULL;
}
}
else
krt_trace_in(p, e, "[alien] created");
if (!m)
{
e->next = n->routes;
n->routes = e;
e->pflags |= KRT_REF_SEEN;
}
}
static void
krt_learn_prune(struct krt_proto *p)
{
struct fib *fib = &p->krt_table->fib;
struct fib_iterator fit;
KRT_TRACE(p, D_EVENTS, "Pruning inherited routes");
FIB_ITERATE_INIT(&fit, fib);
again:
FIB_ITERATE_START(fib, &fit, net, n)
{
rte *e, **ee, *best, **pbest, *old_best;
/*
* Note that old_best may be NULL even if there was an old best route in
* the previous step, because it might be replaced in krt_learn_scan().
* But in that case there is a new valid best route.
*/
old_best = NULL;
best = NULL;
pbest = NULL;
ee = &n->routes;
while (e = *ee)
{
if (e->pflags & KRT_REF_BEST)
old_best = e;
if (!(e->pflags & KRT_REF_SEEN))
{
*ee = e->next;
rte_free(e);
continue;
}
if (!best || krt_metric(best) > krt_metric(e))
{
best = e;
pbest = ee;
}
e->pflags &= ~(KRT_REF_SEEN | KRT_REF_BEST);
ee = &e->next;
}
if (!n->routes)
{
DBG("%I/%d: deleting\n", n->n.prefix, n->n.pxlen);
if (old_best)
krt_learn_announce_delete(p, n);
FIB_ITERATE_PUT(&fit);
fib_delete(fib, n);
goto again;
}
best->pflags |= KRT_REF_BEST;
*pbest = best->next;
best->next = n->routes;
n->routes = best;
if ((best != old_best) || p->reload)
{
DBG("%I/%d: announcing (metric=%d)\n", n->n.prefix, n->n.pxlen, krt_metric(best));
krt_learn_announce_update(p, best);
}
else
DBG("%I/%d: uptodate (metric=%d)\n", n->n.prefix, n->n.pxlen, krt_metric(best));
}
FIB_ITERATE_END;
p->reload = 0;
}
static void
krt_learn_async(struct krt_proto *p, rte *e, int new)
{
net *n0 = e->net;
net *n = net_get(p->krt_table, n0->n.addr);
rte *g, **gg, *best, **bestp, *old_best;
krt_learn_alien_attr(p->p.main_channel, e);
old_best = n->routes;
for(gg=&n->routes; g = *gg; gg = &g->next)
if (krt_same_key(g, e))
break;
if (new)
{
if (g)
{
if (krt_uptodate(g, e))
{
krt_trace_in(p, e, "[alien async] same");
rte_free(e);
return;
}
krt_trace_in(p, e, "[alien async] updated");
*gg = g->next;
rte_free(g);
}
else
krt_trace_in(p, e, "[alien async] created");
e->next = n->routes;
n->routes = e;
}
else if (!g)
{
krt_trace_in(p, e, "[alien async] delete failed");
rte_free(e);
return;
}
else
{
krt_trace_in(p, e, "[alien async] removed");
*gg = g->next;
rte_free(e);
rte_free(g);
}
best = n->routes;
bestp = &n->routes;
for(gg=&n->routes; g=*gg; gg=&g->next)
{
if (krt_metric(best) > krt_metric(g))
{
best = g;
bestp = gg;
}
g->pflags &= ~KRT_REF_BEST;
}
if (best)
{
best->pflags |= KRT_REF_BEST;
*bestp = best->next;
best->next = n->routes;
n->routes = best;
}
if (best != old_best)
{
DBG("krt_learn_async: distributing change\n");
if (best)
krt_learn_announce_update(p, best);
else
krt_learn_announce_delete(p, n);
}
}
static void
krt_learn_init(struct krt_proto *p)
{
if (KRT_CF->learn)
{
struct rtable_config *cf = mb_allocz(p->p.pool, sizeof(struct rtable_config));
cf->name = "Inherited";
cf->addr_type = p->p.net_type;
cf->internal = 1;
p->krt_table = rt_setup(p->p.pool, cf);
}
}
static void
krt_dump(struct proto *P)
{
struct krt_proto *p = (struct krt_proto *) P;
if (!KRT_CF->learn)
return;
debug("KRT: Table of inheritable routes\n");
rt_dump(p->krt_table);
}
#endif
/*
* Routes
*/
static inline int
krt_is_installed(struct krt_proto *p, net *n)
{
return n->routes && bmap_test(&p->p.main_channel->export_map, n->routes->id);
}
static void
krt_flush_routes(struct krt_proto *p)
{
struct rtable *t = p->p.main_channel->table;
KRT_TRACE(p, D_EVENTS, "Flushing kernel routes");
FIB_WALK(&t->fib, net, n)
{
if (krt_is_installed(p, n))
{
/* FIXME: this does not work if gw is changed in export filter */
krt_replace_rte(p, n, NULL, n->routes);
}
}
FIB_WALK_END;
}
static struct rte *
krt_export_net(struct krt_proto *p, net *net, rte **rt_free)
{
struct channel *c = p->p.main_channel;
const struct filter *filter = c->out_filter;
rte *rt;
if (c->ra_mode == RA_MERGED)
return rt_export_merged(c, net, rt_free, krt_filter_lp, 1);
rt = net->routes;
*rt_free = NULL;
if (!rte_is_valid(rt))
return NULL;
if (filter == FILTER_REJECT)
return NULL;
/* We could run krt_preexport() here, but it is already handled by krt_is_installed() */
if (filter == FILTER_ACCEPT)
goto accept;
if (f_run(filter, &rt, krt_filter_lp, FF_SILENT) > F_ACCEPT)
goto reject;
accept:
if (rt != net->routes)
*rt_free = rt;
return rt;
reject:
if (rt != net->routes)
rte_free(rt);
return NULL;
}
static int
krt_same_dest(rte *k, rte *e)
{
rta *ka = k->attrs, *ea = e->attrs;
if (ka->dest != ea->dest)
return 0;
if (ka->dest == RTD_UNICAST)
return nexthop_equal(&(ka->nh), &(ea->nh));
return 1;
}
/*
* This gets called back when the low-level scanning code discovers a route.
* We expect that the route is a temporary rte and its attributes are uncached.
*/
void
krt_got_route(struct krt_proto *p, rte *e, s8 src)
{
rte *new = NULL, *rt_free = NULL;
net *n = e->net;
e->pflags = 0;
#ifdef KRT_ALLOW_LEARN
switch (src)
{
case KRT_SRC_REDIRECT:
goto delete;
case KRT_SRC_KERNEL:
if (KRT_CF->learn != KRT_LEARN_ALL)
goto ignore;
/* fallthrough */
case KRT_SRC_ALIEN:
if (KRT_CF->learn)
krt_learn_scan(p, e);
else
{
krt_trace_in_rl(&rl_alien, p, e, "[alien] ignored");
rte_free(e);
}
return;
}
#endif
/* The rest is for KRT_SRC_BIRD (or KRT_SRC_UNKNOWN) */
/* We wait for the initial feed to have correct installed state */
if (!p->ready)
goto ignore;
if (!krt_is_installed(p, n))
goto delete;
new = krt_export_net(p, n, &rt_free);
/* Rejected by filters */
if (!new)
goto delete;
/* Route to this destination was already seen. Strange, but it happens... */
if (bmap_test(&p->seen_map, new->id))
goto aseen;
/* Mark route as seen */
bmap_set(&p->seen_map, new->id);
/* TODO: There also may be changes in route eattrs, we ignore that for now. */
if (!bmap_test(&p->sync_map, new->id) || !krt_same_dest(e, new))
goto update;
goto seen;
seen:
krt_trace_in(p, e, "seen");
goto done;
aseen:
krt_trace_in(p, e, "already seen");
goto done;
ignore:
krt_trace_in(p, e, "ignored");
goto done;
update:
krt_trace_in(p, new, "updating");
krt_replace_rte(p, n, new, e);
goto done;
delete:
krt_trace_in(p, e, "deleting");
krt_replace_rte(p, n, NULL, e);
goto done;
done:
rte_free(e);
if (rt_free)
rte_free(rt_free);
lp_flush(krt_filter_lp);
}
static void
krt_init_scan(struct krt_proto *p)
{
bmap_reset(&p->seen_map, 1024);
}
static void
krt_prune(struct krt_proto *p)
{
struct rtable *t = p->p.main_channel->table;
KRT_TRACE(p, D_EVENTS, "Pruning table %s", t->name);
FIB_WALK(&t->fib, net, n)
{
if (p->ready && krt_is_installed(p, n) && !bmap_test(&p->seen_map, n->routes->id))
{
rte *rt_free = NULL;
rte *new = krt_export_net(p, n, &rt_free);
if (new)
{
krt_trace_in(p, new, "installing");
krt_replace_rte(p, n, new, NULL);
}
if (rt_free)
rte_free(rt_free);
lp_flush(krt_filter_lp);
}
}
FIB_WALK_END;
#ifdef KRT_ALLOW_LEARN
if (KRT_CF->learn)
krt_learn_prune(p);
#endif
if (p->ready)
p->initialized = 1;
}
void
krt_got_route_async(struct krt_proto *p, rte *e, int new, s8 src)
{
net *net = e->net;
e->pflags = 0;
switch (src)
{
case KRT_SRC_BIRD:
/* Should be filtered by the back end */
bug("BIRD originated routes should not get here.");
case KRT_SRC_REDIRECT:
if (new)
{
krt_trace_in(p, e, "[redirect] deleting");
krt_replace_rte(p, net, NULL, e);
}
/* If !new, it is probably echo of our deletion */
break;
#ifdef KRT_ALLOW_LEARN
case KRT_SRC_KERNEL:
if (KRT_CF->learn != KRT_LEARN_ALL)
break;
/* fallthrough */
case KRT_SRC_ALIEN:
if (KRT_CF->learn)
{
krt_learn_async(p, e, new);
return;
}
#endif
}
rte_free(e);
}
/*
* Periodic scanning
*/
static timer *krt_scan_all_timer;
static int krt_scan_all_count;
static bool krt_scan_all_tables;
static void
krt_scan_all(timer *t UNUSED)
{
struct krt_proto *p;
node *n;
kif_force_scan();
/* We need some node to decide whether to print the debug messages or not */
p = SKIP_BACK(struct krt_proto, krt_node, HEAD(krt_proto_list));
KRT_TRACE(p, D_EVENTS, "Scanning routing table");
WALK_LIST2(p, n, krt_proto_list, krt_node)
krt_init_scan(p);
krt_do_scan(NULL);
WALK_LIST2(p, n, krt_proto_list, krt_node)
krt_prune(p);
}
static void
krt_scan_all_timer_start(struct krt_proto *p)
{
if (!krt_scan_all_count)
krt_scan_all_timer = tm_new_init(krt_pool, krt_scan_all, NULL, KRT_CF->scan_time, 0);
krt_scan_all_count++;
tm_start(krt_scan_all_timer, 1 S);
}
static void
krt_scan_all_timer_stop(void)
{
ASSERT(krt_scan_all_count > 0);
krt_scan_all_count--;
if (!krt_scan_all_count)
{
rfree(krt_scan_all_timer);
krt_scan_all_timer = NULL;
}
}
static void
krt_scan_all_timer_kick(void)
{
tm_start(krt_scan_all_timer, 0);
}
void
krt_use_shared_scan(void)
{
krt_scan_all_tables = 1;
}
static void
krt_scan(timer *t)
{
struct krt_proto *p = t->data;
kif_force_scan();
KRT_TRACE(p, D_EVENTS, "Scanning routing table");
krt_init_scan(p);
krt_do_scan(p);
krt_prune(p);
}
static void
krt_scan_timer_start(struct krt_proto *p)
{
if (krt_scan_all_tables)
krt_scan_all_timer_start(p);
else
{
p->scan_timer = tm_new_init(p->p.pool, krt_scan, p, KRT_CF->scan_time, 0);
tm_start(p->scan_timer, 1 S);
}
}
static void
krt_scan_timer_stop(struct krt_proto *p)
{
if (krt_scan_all_tables)
krt_scan_all_timer_stop();
else
tm_stop(p->scan_timer);
}
static void
krt_scan_timer_kick(struct krt_proto *p)
{
if (krt_scan_all_tables)
krt_scan_all_timer_kick();
else
tm_start(p->scan_timer, 0);
}
/*
* Updates
*/
static int
krt_preexport(struct channel *C, rte *e)
{
// struct krt_proto *p = (struct krt_proto *) P;
if (e->src->proto == C->proto)
return -1;
if (!krt_capable(e))
return -1;
return 0;
}
static void
krt_rt_notify(struct proto *P, struct channel *ch UNUSED, net *net,
rte *new, rte *old)
{
struct krt_proto *p = (struct krt_proto *) P;
if (config->shutdown)
return;
#ifdef CONFIG_SINGLE_ROUTE
/*
* Implicit withdraw - when the imported kernel route becomes the best one,
* we know that the previous one exported to the kernel was already removed,
* but if we processed the update as usual, we would send withdraw to the
* kernel, which would remove the new imported route instead.
*/
rte *best = net->routes;
if (!new && best && (best->src->proto == P))
return;
#endif
if (p->initialized) /* Before first scan we don't touch the routes */
krt_replace_rte(p, net, new, old);
}
static void
krt_if_notify(struct proto *P, uint flags, struct iface *iface UNUSED)
{
struct krt_proto *p = (struct krt_proto *) P;
/*
* When interface went down, we should remove routes to it. In the ideal world,
* OS kernel would send us route removal notifications in such cases, but we
* cannot rely on it as it is often not true. E.g. Linux kernel removes related
* routes when an interface went down, but it does not notify userspace about
* that. To be sure, we just schedule a scan to ensure synchronization.
*/
if ((flags & IF_CHANGE_DOWN) && KRT_CF->learn)
krt_scan_timer_kick(p);
}
static void
krt_reload_routes(struct channel *C)
{
struct krt_proto *p = (void *) C->proto;
/* Although we keep learned routes in krt_table, we rather schedule a scan */
if (KRT_CF->learn)
{
p->reload = 1;
krt_scan_timer_kick(p);
}
}
static void
krt_feed_end(struct channel *C)
{
struct krt_proto *p = (void *) C->proto;
p->ready = 1;
krt_scan_timer_kick(p);
}
/*
* Protocol glue
*/
struct krt_config *krt_cf;
static void
krt_preconfig(struct protocol *P UNUSED, struct config *c)
{
krt_cf = NULL;
krt_sys_preconfig(c);
}
static void
krt_postconfig(struct proto_config *CF)
{
struct krt_config *cf = (void *) CF;
/* Do not check templates at all */
if (cf->c.class == SYM_TEMPLATE)
return;
if (! proto_cf_main_channel(CF))
cf_error("Channel not specified");
struct channel_config *cc = proto_cf_main_channel(CF);
struct rtable_config *tab = cc->table;
if (tab->krt_attached)
cf_error("Kernel syncer (%s) already attached to table %s", tab->krt_attached->name, tab->name);
tab->krt_attached = CF;
if (cf->merge_paths)
{
cc->ra_mode = RA_MERGED;
cc->merge_limit = cf->merge_paths;
}
krt_sys_postconfig(cf);
}
static struct proto *
krt_init(struct proto_config *CF)
{
struct krt_proto *p = proto_new(CF);
// struct krt_config *cf = (void *) CF;
p->p.main_channel = proto_add_channel(&p->p, proto_cf_main_channel(CF));
p->p.preexport = krt_preexport;
p->p.rt_notify = krt_rt_notify;
p->p.if_notify = krt_if_notify;
p->p.reload_routes = krt_reload_routes;
p->p.feed_end = krt_feed_end;
krt_sys_init(p);
return &p->p;
}
static int
krt_start(struct proto *P)
{
struct krt_proto *p = (struct krt_proto *) P;
switch (p->p.net_type)
{
case NET_IP4: p->af = AF_INET; break;
case NET_IP6: p->af = AF_INET6; break;
case NET_IP6_SADR: p->af = AF_INET6; break;
#ifdef AF_MPLS
case NET_MPLS: p->af = AF_MPLS; break;
#endif
default: log(L_ERR "KRT: Tried to start with strange net type: %d", p->p.net_type); return PS_START; break;
}
bmap_init(&p->sync_map, p->p.pool, 1024);
bmap_init(&p->seen_map, p->p.pool, 1024);
add_tail(&krt_proto_list, &p->krt_node);
#ifdef KRT_ALLOW_LEARN
krt_learn_init(p);
#endif
if (!krt_sys_start(p))
{
rem_node(&p->krt_node);
return PS_START;
}
krt_scan_timer_start(p);
if (p->p.gr_recovery && KRT_CF->graceful_restart)
p->p.main_channel->gr_wait = 1;
return PS_UP;
}
static int
krt_shutdown(struct proto *P)
{
struct krt_proto *p = (struct krt_proto *) P;
krt_scan_timer_stop(p);
/* FIXME we should flush routes even when persist during reconfiguration */
if (p->initialized && !KRT_CF->persist && (P->down_code != PDC_CMD_GR_DOWN))
krt_flush_routes(p);
p->ready = 0;
p->initialized = 0;
if (p->p.proto_state == PS_START)
return PS_DOWN;
krt_sys_shutdown(p);
rem_node(&p->krt_node);
bmap_free(&p->sync_map);
return PS_DOWN;
}
static int
krt_reconfigure(struct proto *p, struct proto_config *CF)
{
struct krt_config *o = (void *) p->cf;
struct krt_config *n = (void *) CF;
if (!proto_configure_channel(p, &p->main_channel, proto_cf_main_channel(CF)))
return 0;
if (!krt_sys_reconfigure((struct krt_proto *) p, n, o))
return 0;
/* persist, graceful restart need not be the same */
return o->scan_time == n->scan_time && o->learn == n->learn;
}
struct proto_config *
krt_init_config(int class)
{
#ifndef CONFIG_MULTIPLE_TABLES
if (krt_cf)
cf_error("Kernel protocol already defined");
#endif
krt_cf = (struct krt_config *) proto_config_new(&proto_unix_kernel, class);
krt_cf->scan_time = 60 S;
krt_sys_init_config(krt_cf);
return (struct proto_config *) krt_cf;
}
static void
krt_copy_config(struct proto_config *dest, struct proto_config *src)
{
struct krt_config *d = (struct krt_config *) dest;
struct krt_config *s = (struct krt_config *) src;
/* Fix sysdep parts */
krt_sys_copy_config(d, s);
}
static int
krt_get_attr(const eattr *a, byte *buf, int buflen)
{
switch (a->id)
{
case EA_KRT_SOURCE:
bsprintf(buf, "source");
return GA_NAME;
case EA_KRT_METRIC:
bsprintf(buf, "metric");
return GA_NAME;
default:
return krt_sys_get_attr(a, buf, buflen);
}
}
#ifdef CONFIG_IP6_SADR_KERNEL
#define MAYBE_IP6_SADR NB_IP6_SADR
#else
#define MAYBE_IP6_SADR 0
#endif
#ifdef HAVE_MPLS_KERNEL
#define MAYBE_MPLS NB_MPLS
#else
#define MAYBE_MPLS 0
#endif
struct protocol proto_unix_kernel = {
.name = "Kernel",
.template = "kernel%d",
.class = PROTOCOL_KERNEL,
.preference = DEF_PREF_INHERITED,
.channel_mask = NB_IP | MAYBE_IP6_SADR | MAYBE_MPLS,
.proto_size = sizeof(struct krt_proto),
.config_size = sizeof(struct krt_config),
.preconfig = krt_preconfig,
.postconfig = krt_postconfig,
.init = krt_init,
.start = krt_start,
.shutdown = krt_shutdown,
.reconfigure = krt_reconfigure,
.copy_config = krt_copy_config,
.get_attr = krt_get_attr,
#ifdef KRT_ALLOW_LEARN
.dump = krt_dump,
#endif
};
void
krt_build(void)
{
proto_build(&proto_unix_kernel);
}