0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2025-01-03 15:41:54 +00:00
bird/proto/snmp/snmp.c
Vojtech Vilimek f871700239 SNMP: Refactor -- order + cleanup
The C source files are read from bottom up.
2024-08-15 16:25:48 +02:00

683 lines
18 KiB
C

/*
* BIRD -- Simple Network Management Procotol (SNMP)
*
* (c) 2024 Vojtech Vilimek <vojtech.vilimek@nic.cz>
* (c) 2024 CZ.NIC z.s.p.o.
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
/**
* DOC: Simple Network Management Protocol
*
* The SNMP protocol is divided into several parts: |snmp.c| which implements
* the BIRD intergration, |subagent.c| contains functions for creating and
* parsing packets, |bgp4_mib.c| takes care of the bgp MIB subtree of standard
* BGP4-MIB and |snmp_utils.c| which is collections of helper functions for
* working with OIDs, VarBinds.
*
* Althrough called SNMP the BIRD does not implement SNMP directly but acts as
* an AgentX subagent. AgentX subagent connects to AgentX master agent that
* processes incomming SNMP requests and passes them down to the correct
* subagent. Therefore you need also a running master agent somewhere.
* Advantages of this design are that you are capable of doing aggregation of
* statuses of multiple BIRDs at the master agent level and much simpler
* implementation.
*
* Before any of the SNMP request could be processed, the SNMP need to
* established AgentX session with the master agent and need to register all
* subtrees to make them accessible from the master agent. The establishement of
* the of session is handled by snmp_start(), snmp_start_locked() and
* snmp_start_subagent(). Then we register all MIBs from configuration in
* snmp_register_mibs().
*
* The AgentX request are handled only during MIB subtree registrations and
* after then on established session (in states SNMP_REGISTER and SNMP_CONN, see
* below). It is also guaranteed that no request is received before MIB subtree
* registration because the specific subagent is not authoratitave and also the
* master agent has no info about MIB subtree supported by subagent. The AgentX
* requests are handled by function snmp_rx() in |subagent.c|.
*
*
*
* SNMP State Machine
*
* States with main transitions
*
*
* +-----------------+
* | SNMP_INIT | entry state after call snmp_start()
* +-----------------+
* |
* | acquiring object lock for tcp communication socket
* V
* +-----------------+
* | SNMP_LOCKED | object lock aquired
* +-----------------+
* |
* | opening communication socket
* V
* +-----------------+
* | SNMP_OPEN | socket created, starting subagent
* +-----------------+
* |
* | BIRD receive response for agentx-Open-PDU
* V
* +-----------------+
* | SNMP_REGISTER | session was established, subagent registers MIBs
* +-----------------+
* |
* | subagent received response for any registration requests
* V
* +-----------------+
* | SNMP_CONN | everything is set
* +-----------------+
* |
* | received malformed PDU, protocol disabled,
* | BIRD sends agentx-Close-PDU or agentx-Response-PDU with an error
* V
* +-----------------+
* | SNMP_STOP | waiting until the prepared PDUs are sent
* +-----------------+
* |
* | cleaning protocol state
* V
* +-----------------+
* | SNMP_DOWN | session is closed
* +-----------------+
*
*
*
* Erroneous transitions:
* SNMP is UP (PS_UP) in states SNMP_CONN and also in SNMP_REGISTER because
* the session is establised and the GetNext request should be responsed
* without regards to MIB registration.
*
* Reconfiguration is done in similar fashion to BGP, the reconfiguration
* request is declined, the protocols is stoped and started with new
* configuration.
*
*/
#include "nest/bird.h"
#include "nest/cli.h"
#include "nest/locks.h"
#include "lib/socket.h"
#include "lib/lists.h"
#include "snmp.h"
#include "subagent.h"
#include "snmp_utils.h"
#include "mib_tree.h"
#include "bgp4_mib.h"
const char agentx_master_addr[] = AGENTX_MASTER_ADDR;
static const char *snmp_state_str[] = {
[SNMP_INIT] = "acquiring address lock",
[SNMP_LOCKED] = "address lock acquired",
[SNMP_OPEN] = "starting AgentX subagent",
[SNMP_REGISTER] = "registering MIBs",
[SNMP_CONN] = "AgentX session established",
[SNMP_STOP] = "stopping AgentX subagent",
[SNMP_DOWN] = "protocol down",
};
/*
* Callbacks
*/
/*
* snmp_sock_err - handle errors on socket by reopenning the socket
* @sk: socket owned by SNMP protocol instance
* @err: socket error code
*/
static void
snmp_sock_err(sock *sk, int UNUSED err)
{
struct snmp_proto *p = sk->data;
if (err != 0)
TRACE(D_EVENTS, "SNMP socket error (%d)", err);
snmp_set_state(p, SNMP_DOWN);
}
/*
* snmp_ping_timeout - send a agentx-Ping-PDU
* @tm: the ping_timer holding the SNMP protocol instance.
*
* Send an agentx-Ping-PDU. This function is periodically called by ping
* timer.
*/
static void
snmp_ping_timeout(timer *tm)
{
struct snmp_proto *p = tm->data;
snmp_ping(p);
}
/*
* snmp_stop_timeout - a timeout for non-responding master agent
* @tm: the startup_timer holding the SNMP protocol instance.
*
* We are trying to empty the TX buffer of communication socket. But if it is
* not done in reasonable amount of time, the function is called by timeout
* timer. We down the whole SNMP protocol with cleanup of associated data
* structures.
*/
static void
snmp_stop_timeout(timer *tm)
{
struct snmp_proto *p = tm->data;
snmp_set_state(p, SNMP_DOWN);
}
/*
* snmp_connected - start AgentX session on created socket
* @sk: socket owned by SNMP protocol instance
*
* Starts the AgentX communication by sending an agentx-Open-PDU.
* This function is internal and shouldn't be used outside the SNMP module.
*/
void
snmp_connected(sock *sk)
{
struct snmp_proto *p = sk->data;
snmp_set_state(p, SNMP_OPEN);
}
/*
* snmp_start_locked - open the socket on locked address
* @lock: object lock guarding the communication mean (address, ...)
*
* This function is called when the object lock is acquired. Main goal is to set
* socket parameters and try to open configured socket. Function
* snmp_connected() handles next stage of SNMP protocol start. When the socket
* coundn't be opened, a new try is scheduled after a small delay.
*/
static void
snmp_start_locked(struct object_lock *lock)
{
struct snmp_proto *p = lock->data;
if (p->startup_delay)
{
ASSERT(p->startup_timer);
p->startup_timer->hook = snmp_startup_timeout;
tm_start(p->startup_timer, p->startup_delay);
}
else
snmp_set_state(p, SNMP_LOCKED);
}
/*
* snmp_startup_timeout - start the initiliazed SNMP protocol
* @tm: the startup_timer holding the SNMP protocol instance.
*
* When the timer rings, the function snmp_startup() is invoked.
* This function is internal and shouldn't be used outside the SNMP module.
* Used when we delaying the start procedure, or we want to retry opening
* the communication socket.
*/
void
snmp_startup_timeout(timer *tm)
{
struct snmp_proto *p = tm->data;
snmp_set_state(p, SNMP_LOCKED);
}
/*
* snmp_rx_skip - skip all received data
* @sk: communication socket
* @size: size of received PDUs
*
* Socket rx_hook used when we are reseting the connection due to malformed PDU.
*/
static int
snmp_rx_skip(sock UNUSED *sk, uint UNUSED size)
{
return 1;
}
/*
* snmp_tx_skip - handle empty TX buffer during session reset
* @sk: communication socket
*
* The socket tx_hook is called when the TX buffer is empty, i.e. all data was
* send. This function is used only when we found malformed PDU and we are
* resetting the established session. If called, we perform a SNMP protocol
* state change.
*/
static void
snmp_tx_skip(sock *sk)
{
struct snmp_proto *p = sk->data;
snmp_set_state(p, SNMP_STOP);
}
/*
* snmp_cleanup - free all resources allocated by SNMP protocol
* @p: SNMP protocol instance
*
* This function forcefully stops and cleans all resources and memory acqiured
* by given SNMP protocol instance, such as timers, lists, hash tables etc.
*/
static inline void
snmp_cleanup(struct snmp_proto *p)
{
/* Function tm_stop() is called inside rfree() */
rfree(p->startup_timer);
p->startup_timer = NULL;
rfree(p->ping_timer);
p->ping_timer = NULL;
rfree(p->sock);
p->sock = NULL;
rfree(p->lock);
p->lock = NULL;
struct snmp_registration *r, *r2;
WALK_LIST_DELSAFE(r, r2, p->registration_queue)
{
rem_node(&r->n);
mb_free(r);
r = NULL;
}
HASH_FREE(p->bgp_hash);
rfree(p->lp);
p->lp = NULL;
/* bgp_trie is allocated exclusively from linpool lp */
p->bgp_trie = NULL;
struct mib_walk_state *walk = tmp_alloc(sizeof(struct mib_walk_state));
mib_tree_walk_init(walk, p->mib_tree);
(void) mib_tree_delete(p->mib_tree, walk);
p->mib_tree = NULL;
p->state = SNMP_DOWN;
}
/*
* snmp_set_state - change state with associated actions
* @p: SNMP protocol instance
* @state: new SNMP protocol state
*
* This function does not notify the bird about protocol state. Return current
* protocol state (PS_UP, ...).
*/
int
snmp_set_state(struct snmp_proto *p, enum snmp_proto_state state)
{
enum snmp_proto_state last = p->state;
const struct snmp_config *cf = (struct snmp_config *) p->p.cf;
p->state = state;
switch (state)
{
case SNMP_INIT:
/* We intentionally do not log anything */
ASSERT(last == SNMP_DOWN);
proto_notify_state(&p->p, PS_START);
if (cf->trans_type == SNMP_TRANS_TCP)
{
/* We need to lock the IP address */
struct object_lock *lock;
lock = p->lock = olock_new(p->pool);
lock->addr = p->remote_ip;
lock->port = p->remote_port;
lock->type = OBJLOCK_TCP;
lock->hook = snmp_start_locked;
lock->data = p;
olock_acquire(lock);
return PS_START;
}
last = SNMP_INIT;
p->state = state = SNMP_LOCKED;
/* Fall thru */
case SNMP_LOCKED:
TRACE(D_EVENTS, "SNMP Address lock acquired");
ASSERT(last == SNMP_INIT);
sock *s = sk_new(p->pool);
if (cf->trans_type == SNMP_TRANS_TCP)
{
s->type = SK_TCP_ACTIVE;
s->daddr = p->remote_ip;
s->dport = p->remote_port;
s->rbsize = SNMP_RX_BUFFER_SIZE;
s->tbsize = SNMP_TX_BUFFER_SIZE;
}
else
{
s->type = SK_UNIX_ACTIVE;
s->host = cf->remote_path; /* daddr */
s->rbsize = SNMP_RX_BUFFER_SIZE;
s->tbsize = SNMP_TX_BUFFER_SIZE;
}
s->tx_hook = snmp_connected;
s->err_hook = snmp_sock_err;
p->sock = s;
s->data = p;
/* Try opening the socket, schedule a retry on fail */
if (sk_open(s) < 0)
{
TRACE(D_EVENTS, "SNMP Opening of communication socket failed");
rfree(s);
p->sock = NULL;
// TODO handle 0 timeout
tm_start(p->startup_timer, p->timeout);
}
return PS_START;
case SNMP_OPEN:
TRACE(D_EVENTS, "SNMP Communication socket opened, starting AgentX subagent");
ASSERT(last == SNMP_LOCKED);
p->sock->rx_hook = snmp_rx;
p->sock->tx_hook = NULL;
snmp_start_subagent(p);
p->startup_timer->hook = snmp_stop_timeout;
tm_start(p->startup_timer, 1 S);
return PS_START;
case SNMP_REGISTER:
TRACE(D_EVENTS, "SNMP Registering MIBs");
ASSERT(last == SNMP_OPEN);
tm_stop(p->startup_timer); /* stop timeout */
p->sock->rx_hook = snmp_rx;
p->sock->tx_hook = snmp_tx;
snmp_register_mibs(p);
// TODO timer for CONN
return PS_START;
case SNMP_CONN:
TRACE(D_EVENTS, "MIBs registered, AgentX session established");
ASSERT(last == SNMP_REGISTER);
proto_notify_state(&p->p, PS_UP);
return PS_UP;
case SNMP_STOP:
if (p->sock && p->state != SNMP_OPEN && !sk_tx_buffer_empty(p->sock))
{
TRACE(D_EVENTS, "SNMP Closing AgentX session");
if (p->state == SNMP_OPEN || p->state == SNMP_REGISTER ||
p->state == SNMP_CONN)
snmp_stop_subagent(p);
p->sock->rx_hook = snmp_rx_skip;
p->sock->tx_hook = snmp_tx_skip;
p->startup_timer->hook = snmp_stop_timeout;
tm_start(p->startup_timer, 150 MS);
proto_notify_state(&p->p, PS_STOP);
return PS_STOP;
}
p->state = state = SNMP_DOWN;
/* Fall thru */
case SNMP_DOWN:
TRACE(D_EVENTS, "SNMP AgentX session closed");
snmp_cleanup(p);
proto_notify_state(&p->p, PS_DOWN);
return PS_DOWN;
default:
die("unknown SNMP state transition");
return PS_DOWN;
}
}
/*
* snmp_reset - reset AgentX session
* @p: SNMP protocol instance
*
* We wait until the last PDU written into the socket is send while ignoring all
* incomming PDUs. Then we hard reset the connection by socket closure. The
* protocol instance is automatically restarted by nest.
*
* Return protocol state (PS_STOP, ...).
*/
int
snmp_reset(struct snmp_proto *p)
{
return snmp_set_state(p, SNMP_STOP);
}
/*
* snmp_up - AgentX session has registered all MIBs, protocols is up
* @p: SNMP protocol instance
*/
void
snmp_up(struct snmp_proto *p)
{
if (p->state == SNMP_REGISTER)
snmp_set_state(p, SNMP_CONN);
}
/*
* snmp_shutdown - Forcefully stop the SNMP protocol instance
* @P: SNMP protocol generic handle
*
* Simple cast-like wrapper around snmp_reset(), see more info there.
*/
static int
snmp_shutdown(struct proto *P)
{
struct snmp_proto *p = SKIP_BACK(struct snmp_proto, p, P);
return snmp_reset(p);
}
/*
* snmp_show_proto_info - print basic information about SNMP protocol instance
* @P: SNMP protocol generic handle
*/
static void
snmp_show_proto_info(struct proto *P)
{
struct snmp_proto *p = (void *) P;
cli_msg(-1006, " SNMP state: %s", snmp_state_str[p->state]);
cli_msg(-1006, " MIBs");
snmp_bgp4_show_info(p);
}
/*
* snmp_reconfigure_logic - find changes in configuration
* @p: SNMP protocol instance
* @new: new SNMP protocol configuration
*
* Return 1 if only minor changes have occured, 0 if we need full down-up cycle.
*/
static inline int
snmp_reconfigure_logic(struct snmp_proto *p, const struct snmp_config *new)
{
const struct snmp_config *old = SKIP_BACK(struct snmp_config, cf, p->p.cf);
if ((old->trans_type != SNMP_TRANS_TCP) && (new->trans_type == SNMP_TRANS_TCP)
|| (old->trans_type == SNMP_TRANS_TCP) && (new->trans_type != SNMP_TRANS_TCP))
return 0;
if (old->trans_type == SNMP_TRANS_TCP &&
(ipa_compare(old->remote_ip, new->remote_ip)
|| old->remote_port != new->remote_port))
return 0;
if (old->trans_type != SNMP_TRANS_TCP &&
bstrcmp(old->remote_path, new->remote_path))
return 0;
return !(ip4_compare(old->bgp_local_id, new->bgp_local_id)
|| old->bgp_local_as != new->bgp_local_as
|| old->timeout != new->timeout // TODO distinguish message timemout
//(Open.timeout and timeout for timer)
|| old->priority != new->priority
|| strncmp(old->description, new->description, UINT16_MAX - 1));
}
/*
* snmp_reconfigure - Indicate instance reconfigurability
* @P - SNMP protocol generic handle, current state
* @CF - SNMP protocol configuration generic handle carring new values
*
* We accept the reconfiguration if the new configuration @CF is identical with
* the currently deployed configuration. Otherwise we deny reconfiguration because
* the implementation would be cumbersome.
*/
static int
snmp_reconfigure(struct proto *P, struct proto_config *CF)
{
struct snmp_proto *p = SKIP_BACK(struct snmp_proto, p, P);
const struct snmp_config *new = SKIP_BACK(struct snmp_config, cf, CF);
/* We are searching for configuration changes */
int reconfigurable = snmp_reconfigure_logic(p, new);
if (reconfigurable)
{
/* copy possibly changed values */
p->startup_delay = new->startup_delay;
p->verbose = new->verbose;
ASSERT(p->ping_timer);
int active = tm_active(p->ping_timer);
rfree(p->ping_timer);
p->ping_timer = tm_new_init(p->pool, snmp_ping_timeout, p, p->timeout, 0);
if (active)
tm_start(p->ping_timer, p->timeout);
HASH_FREE(p->bgp_hash);
HASH_INIT(p->bgp_hash, p->pool, 10);
rfree(p->lp);
p->lp = lp_new(p->pool);
p->bgp_trie = f_new_trie(p->lp, 0);
/* We repopulate BGP related data structures (bgp_hash, bgp_trie). */
snmp_bgp4_start(p, 0);
}
return reconfigurable;
}
/*
* snmp_start - Initialize the SNMP protocol instance
* @P: SNMP protocol generic handle
*
* The first step in AgentX subagent startup is protocol initialition.
* We must prepare lists, find BGP peers and finally asynchronously start
* a AgentX subagent session.
*/
static int
snmp_start(struct proto *P)
{
struct snmp_proto *p = (void *) P;
struct snmp_config *cf = (struct snmp_config *) P->cf;
p->local_ip = cf->local_ip;
p->remote_ip = cf->remote_ip;
p->local_port = cf->local_port;
p->remote_port = cf->remote_port;
p->bgp_local_as = cf->bgp_local_as;
p->bgp_local_id = cf->bgp_local_id;
p->timeout = cf->timeout;
p->startup_delay = cf->startup_delay;
p->verbose = cf->verbose;
p->pool = p->p.pool;
p->lp = lp_new(p->pool);
p->bgp_trie = f_new_trie(p->lp, 0);
p->mib_tree = mb_alloc(p->pool, sizeof(struct mib_tree));
p->startup_timer = tm_new_init(p->pool, snmp_startup_timeout, p, 0, 0);
p->ping_timer = tm_new_init(p->pool, snmp_ping_timeout, p, p->timeout, 0);
init_list(&p->registration_queue);
/* We create copy of bonds to BGP protocols. */
HASH_INIT(p->bgp_hash, p->pool, 10);
mib_tree_init(p->pool, p->mib_tree);
snmp_bgp4_start(p, 1);
return snmp_set_state(p, SNMP_INIT);
}
/*
* snmp_init - preinitialize SNMP instance
* @CF: SNMP configuration generic handle
*
* Returns a generic handle pointing to preinitialized SNMP procotol
* instance.
*/
static struct proto *
snmp_init(struct proto_config *CF)
{
struct proto *P = proto_new(CF);
struct snmp_proto *p = SKIP_BACK(struct snmp_proto, p, P);
p->rl_gen = (struct tbf) TBF_DEFAULT_LOG_LIMITS;
p->state = SNMP_DOWN;
return P;
}
/*
* snmp_postconfig - Check configuration correctness
* @CF: SNMP procotol configuration generic handle
*/
static void
snmp_postconfig(struct proto_config *CF)
{
const struct snmp_config *cf = (struct snmp_config *) CF;
/* Walk the BGP protocols and cache their references. */
if (cf->bgp_local_as == 0)
cf_error("local as not specified");
}
/*
* Protocol infrastructure
*/
struct protocol proto_snmp = {
.name = "SNMP",
.template = "snmp%d",
.channel_mask = 0,
.proto_size = sizeof(struct snmp_proto),
.config_size = sizeof(struct snmp_config),
.postconfig = snmp_postconfig,
.init = snmp_init,
.start = snmp_start,
.reconfigure = snmp_reconfigure,
.show_proto_info = snmp_show_proto_info,
.shutdown = snmp_shutdown,
};
void
snmp_build(void)
{
proto_build(&proto_snmp);
}