mirror of
https://gitlab.nic.cz/labs/bird.git
synced 2025-01-23 09:21:53 +00:00
07757b8a0c
Move 'flags' field back to ea_class, so filtering code can use it to initialize route attribute flags when set by filters.
1559 lines
44 KiB
C
1559 lines
44 KiB
C
/*
|
|
* Filters: Instructions themselves
|
|
*
|
|
* Copyright 1998 Pavel Machek <pavel@ucw.cz>
|
|
* Copyright 2018 Maria Matejka <mq@jmq.cz>
|
|
* Copyright 2018 CZ.NIC z.s.p.o.
|
|
*
|
|
* Can be freely distributed and used under the terms of the GNU GPL.
|
|
*
|
|
* The filter code goes through several phases:
|
|
*
|
|
* 1 Parsing
|
|
* Flex- and Bison-generated parser decodes the human-readable data into
|
|
* a struct f_inst tree. This is an infix tree that was interpreted by
|
|
* depth-first search execution in previous versions of the interpreter.
|
|
* All instructions have their constructor: f_new_inst(FI_EXAMPLE, ...)
|
|
* translates into f_new_inst_FI_EXAMPLE(...) and the types are checked in
|
|
* compile time. If the result of the instruction is always the same,
|
|
* it's reduced to FI_CONSTANT directly in constructor. This phase also
|
|
* counts how many instructions are underlying in means of f_line_item
|
|
* fields to know how much we have to allocate in the next phase.
|
|
*
|
|
* 2 Linearize before interpreting
|
|
* The infix tree is always interpreted in the same order. Therefore we
|
|
* sort the instructions one after another into struct f_line. Results
|
|
* and arguments of these instructions are implicitly put on a value
|
|
* stack; e.g. the + operation just takes two arguments from the value
|
|
* stack and puts the result on there.
|
|
*
|
|
* 3 Interpret
|
|
* The given line is put on a custom execution stack. If needed (FI_CALL,
|
|
* FI_SWITCH, FI_AND, FI_OR, FI_CONDITION, ...), another line is put on top
|
|
* of the stack; when that line finishes, the execution continues on the
|
|
* older lines on the stack where it stopped before.
|
|
*
|
|
* 4 Same
|
|
* On config reload, the filters have to be compared whether channel
|
|
* reload is needed or not. The comparison is done by comparing the
|
|
* struct f_line's recursively.
|
|
*
|
|
* The main purpose of this rework was to improve filter performance
|
|
* by making the interpreter non-recursive.
|
|
*
|
|
* The other outcome is concentration of instruction definitions to
|
|
* one place -- right here. You shall define your instruction only here
|
|
* and nowhere else.
|
|
*
|
|
* Beware. This file is interpreted by M4 macros. These macros
|
|
* may be more stupid than you could imagine. If something strange
|
|
* happens after changing this file, compare the results before and
|
|
* after your change (see the Makefile to find out where the results are)
|
|
* and see what really happened.
|
|
*
|
|
* This file is not directly a C source code -> it is a generator input
|
|
* for several C sources; every instruction block gets expanded into many
|
|
* different places.
|
|
*
|
|
* All the arguments are processed literally; if you need an argument including comma,
|
|
* you have to quote it by [[ ... ]]
|
|
*
|
|
* What is the syntax here?
|
|
* m4_dnl INST(FI_NOP, in, out) { enum value, input args, output args
|
|
* m4_dnl ARG(num, type); argument, its id (in data fields) and type accessible by v1, v2, v3
|
|
* m4_dnl ARG_ANY(num); argument with no type check accessible by v1, v2, v3
|
|
* m4_dnl ARG_TYPE(num, type); just declare the type of argument
|
|
* m4_dnl VARARG; variable-length argument list; accessible by vv(i) and whati->varcount
|
|
* m4_dnl LINE(num, out); this argument has to be converted to its own f_line
|
|
* m4_dnl SYMBOL; symbol handed from config
|
|
* m4_dnl STATIC_ATTR; static attribute definition
|
|
* m4_dnl DYNAMIC_ATTR; dynamic attribute definition
|
|
* m4_dnl RTC; route table config
|
|
* m4_dnl ACCESS_RTE; this instruction needs route
|
|
*
|
|
* m4_dnl METHOD_CONSTRUCTOR(name); this instruction is in fact a method of the first argument's type; register it with the given name for that type
|
|
*
|
|
* m4_dnl FID_MEMBER( custom instruction member
|
|
* m4_dnl C type, for storage in structs
|
|
* m4_dnl name, how the member is named
|
|
* m4_dnl comparator for same(), if different, this should be TRUE (CAVEAT)
|
|
* m4_dnl dump format string debug -> format string for bvsnprintf
|
|
* m4_dnl dump format args appropriate args
|
|
* m4_dnl )
|
|
*
|
|
* m4_dnl RESULT(type, union-field, value); putting this on value stack
|
|
* m4_dnl RESULT_(type, union-field, value); like RESULT(), but do not declare the type
|
|
* m4_dnl RESULT_VAL(value-struct); pass the struct f_val directly
|
|
* m4_dnl RESULT_TYPE(type); just declare the type of result value
|
|
* m4_dnl RESULT_VOID; return undef
|
|
* m4_dnl }
|
|
*
|
|
* Note that runtime arguments m4_dnl (ARG*, VARARG) must be defined before
|
|
* parse-time arguments m4_dnl (LINE, SYMBOL, ...). During linearization,
|
|
* first ones move position in f_line by linearizing arguments first, while
|
|
* second ones store data to the current position.
|
|
*
|
|
* Also note that the { ... } blocks are not respected by M4 at all.
|
|
* If you get weird unmatched-brace-pair errors, check what it generated and why.
|
|
* What is really considered as one instruction is not the { ... } block
|
|
* after m4_dnl INST() but all the code between them.
|
|
*
|
|
* Other code is just copied into the interpreter part.
|
|
*
|
|
* It's also possible to declare type methods in a short way:
|
|
*
|
|
* m4_dnl METHOD(type, method name, argument count, code)
|
|
* m4_dnl METHOD_R(type, method name, argument count, result type, union-field, value)
|
|
*
|
|
* The filter language uses a simple type system, where values have types
|
|
* (constants T_*) and also terms (instructions) are statically typed. Our
|
|
* static typing is partial (some terms do not declare types of arguments
|
|
* or results), therefore it can detect most but not all type errors and
|
|
* therefore we still have runtime type checks.
|
|
*
|
|
* m4_dnl Types of arguments are declared by macros ARG() and ARG_TYPE(),
|
|
* m4_dnl types of results are declared by RESULT() and RESULT_TYPE().
|
|
* m4_dnl Macros ARG_ANY(), RESULT_() and RESULT_VAL() do not declare types
|
|
* m4_dnl themselves, but can be combined with ARG_TYPE() / RESULT_TYPE().
|
|
*
|
|
* m4_dnl Note that types should be declared only once. If there are
|
|
* m4_dnl multiple RESULT() macros in an instruction definition, they must
|
|
* m4_dnl use the exact same expression for type, or they should be replaced
|
|
* m4_dnl by multiple RESULT_() macros and a common RESULT_TYPE() macro.
|
|
* m4_dnl See e.g. FI_EA_GET or FI_MIN instructions.
|
|
*
|
|
*
|
|
* If you are satisfied with this, you don't need to read the following
|
|
* detailed description of what is really done with the instruction definitions.
|
|
*
|
|
* m4_dnl Now let's look under the cover. The code between each INST()
|
|
* m4_dnl is copied to several places, namely these (numbered by the M4 diversions
|
|
* m4_dnl used in filter/decl.m4):
|
|
*
|
|
* m4_dnl (102) struct f_inst *f_new_inst(FI_EXAMPLE [[ put it here ]])
|
|
* m4_dnl {
|
|
* m4_dnl ... (common code)
|
|
* m4_dnl (103) [[ put it here ]]
|
|
* m4_dnl ...
|
|
* m4_dnl if (all arguments are constant)
|
|
* m4_dnl (108) [[ put it here ]]
|
|
* m4_dnl }
|
|
* m4_dnl For writing directly to constructor argument list, use FID_NEW_ARGS.
|
|
* m4_dnl For computing something in constructor (103), use FID_NEW_BODY.
|
|
* m4_dnl For constant pre-interpretation (108), see below at FID_INTERPRET_BODY.
|
|
*
|
|
* m4_dnl struct f_inst {
|
|
* m4_dnl ... (common fields)
|
|
* m4_dnl union {
|
|
* m4_dnl struct {
|
|
* m4_dnl (101) [[ put it here ]]
|
|
* m4_dnl } i_FI_EXAMPLE;
|
|
* m4_dnl ...
|
|
* m4_dnl };
|
|
* m4_dnl };
|
|
* m4_dnl This structure is returned from constructor.
|
|
* m4_dnl For writing directly to this structure, use FID_STRUCT_IN.
|
|
*
|
|
* m4_dnl linearize(struct f_line *dest, const struct f_inst *what, uint pos) {
|
|
* m4_dnl ...
|
|
* m4_dnl switch (what->fi_code) {
|
|
* m4_dnl case FI_EXAMPLE:
|
|
* m4_dnl (105) [[ put it here ]]
|
|
* m4_dnl break;
|
|
* m4_dnl }
|
|
* m4_dnl }
|
|
* m4_dnl This is called when translating from struct f_inst to struct f_line_item.
|
|
* m4_dnl For accessing your custom instruction data, use following macros:
|
|
* m4_dnl whati -> for accessing (struct f_inst).i_FI_EXAMPLE
|
|
* m4_dnl item -> for accessing (struct f_line)[pos].i_FI_EXAMPLE
|
|
* m4_dnl For writing directly here, use FID_LINEARIZE_BODY.
|
|
*
|
|
* m4_dnl (107) struct f_line_item {
|
|
* m4_dnl ... (common fields)
|
|
* m4_dnl union {
|
|
* m4_dnl struct {
|
|
* m4_dnl (101) [[ put it here ]]
|
|
* m4_dnl } i_FI_EXAMPLE;
|
|
* m4_dnl ...
|
|
* m4_dnl };
|
|
* m4_dnl };
|
|
* m4_dnl The same as FID_STRUCT_IN (101) but for the other structure.
|
|
* m4_dnl This structure is returned from the linearizer (105).
|
|
* m4_dnl For writing directly to this structure, use FID_LINE_IN.
|
|
*
|
|
* m4_dnl f_dump_line_item_FI_EXAMPLE(const struct f_line_item *item, const int indent)
|
|
* m4_dnl {
|
|
* m4_dnl (104) [[ put it here ]]
|
|
* m4_dnl }
|
|
* m4_dnl This code dumps the instruction on debug. Note that the argument
|
|
* m4_dnl is the linearized instruction; if the instruction has arguments,
|
|
* m4_dnl their code has already been linearized and their value is taken
|
|
* m4_dnl from the value stack.
|
|
* m4_dnl For writing directly here, use FID_DUMP_BODY.
|
|
*
|
|
* m4_dnl f_same(...)
|
|
* m4_dnl {
|
|
* m4_dnl switch (f1_->fi_code) {
|
|
* m4_dnl case FI_EXAMPLE:
|
|
* m4_dnl (106) [[ put it here ]]
|
|
* m4_dnl break;
|
|
* m4_dnl }
|
|
* m4_dnl }
|
|
* m4_dnl This code compares the two given instrucions (f1_ and f2_)
|
|
* m4_dnl on reconfigure. For accessing your custom instruction data,
|
|
* m4_dnl use macros f1 and f2.
|
|
* m4_dnl For writing directly here, use FID_SAME_BODY.
|
|
*
|
|
* m4_dnl f_add_lines(...)
|
|
* m4_dnl {
|
|
* m4_dnl switch (what_->fi_code) {
|
|
* m4_dnl case FI_EXAMPLE:
|
|
* m4_dnl (109) [[ put it here ]]
|
|
* m4_dnl break;
|
|
* m4_dnl }
|
|
* m4_dnl }
|
|
* m4_dnl This code adds new filter lines reachable from the instruction
|
|
* m4_dnl to the filter iterator line buffer. This is for instructions
|
|
* m4_dnl that changes conrol flow, like FI_CONDITION or FI_CALL, most
|
|
* m4_dnl instructions do not need to update it. It is used in generic
|
|
* m4_dnl filter iteration code (FILTER_ITERATE*). For accessing your
|
|
* m4_dnl custom instruction data, use macros f1 and f2. For writing
|
|
* m4_dnl directly here, use FID_ITERATE_BODY.
|
|
*
|
|
* m4_dnl interpret(...)
|
|
* m4_dnl {
|
|
* m4_dnl switch (what->fi_code) {
|
|
* m4_dnl case FI_EXAMPLE:
|
|
* m4_dnl (108) [[ put it here ]]
|
|
* m4_dnl break;
|
|
* m4_dnl }
|
|
* m4_dnl }
|
|
* m4_dnl This code executes the instruction. Every pre-defined macro
|
|
* m4_dnl resets the output here. For setting it explicitly,
|
|
* m4_dnl use FID_INTERPRET_BODY.
|
|
* m4_dnl This code is put on two places; one is the interpreter, the other
|
|
* m4_dnl is instruction constructor. If you need to distinguish between
|
|
* m4_dnl these two, use FID_INTERPRET_EXEC or FID_INTERPRET_NEW respectively.
|
|
* m4_dnl To address the difference between interpreter and constructor
|
|
* m4_dnl environments, there are several convenience macros defined:
|
|
* m4_dnl runtime() -> for spitting out runtime error like division by zero
|
|
* m4_dnl RESULT(...) -> declare result; may overwrite arguments
|
|
* m4_dnl v1, v2, v3 -> positional arguments, may be overwritten by RESULT()
|
|
* m4_dnl falloc(size) -> allocate memory from the appropriate linpool
|
|
* m4_dnl fpool -> the current linpool
|
|
* m4_dnl NEVER_CONSTANT-> don't generate pre-interpretation code at all
|
|
* m4_dnl ACCESS_RTE -> check that route is available, also NEVER_CONSTANT
|
|
*
|
|
* m4_dnl If you are stymied, see FI_CALL or FI_CONSTANT or just search for
|
|
* m4_dnl the mentioned macros in this file to see what is happening there in wild.
|
|
*
|
|
*
|
|
* A note about soundness of the type system:
|
|
*
|
|
* A type system is sound when types of expressions are consistent with
|
|
* types of values resulting from evaluation of such expressions. Untyped
|
|
* expressions are ok, but badly typed expressions are not sound. So is
|
|
* the type system of BIRD filtering code sound? There are some points:
|
|
*
|
|
* All cases of (one) m4_dnl RESULT() macro are obviously ok, as the macro
|
|
* both declares a type and returns a value. One have to check instructions
|
|
* that use m4_dnl RESULT_TYPE() macro. There are two issues:
|
|
*
|
|
* FI_AND, FI_OR - second argument is statically checked to be T_BOOL and
|
|
* passed as result without dynamic typecheck, declared to be T_BOOL. If
|
|
* an untyped non-bool expression is used as a second argument, then
|
|
* the mismatched type is returned.
|
|
*
|
|
* FI_VAR_GET - soundness depends on consistency of declared symbol types
|
|
* and stored values. This is maintained when values are stored by
|
|
* FI_VAR_SET, but when they are stored by FI_CALL, only static checking is
|
|
* used, so when an untyped expression returning mismatched value is used
|
|
* as a function argument, then inconsistent value is stored and subsequent
|
|
* FI_VAR_GET would be unsound.
|
|
*
|
|
* Both of these issues are inconsequential, as mismatched values from
|
|
* unsound expressions will be caught by dynamic typechecks like mismatched
|
|
* values from untyped expressions.
|
|
*
|
|
* Also note that FI_CALL is the only expression without properly declared
|
|
* result type.
|
|
*/
|
|
|
|
/* Binary operators */
|
|
INST(FI_ADD, 2, 1) {
|
|
ARG(1,T_INT);
|
|
ARG(2,T_INT);
|
|
RESULT(T_INT, i, v1.val.i + v2.val.i);
|
|
}
|
|
INST(FI_SUBTRACT, 2, 1) {
|
|
ARG(1,T_INT);
|
|
ARG(2,T_INT);
|
|
RESULT(T_INT, i, v1.val.i - v2.val.i);
|
|
}
|
|
INST(FI_MULTIPLY, 2, 1) {
|
|
ARG(1,T_INT);
|
|
ARG(2,T_INT);
|
|
RESULT(T_INT, i, v1.val.i * v2.val.i);
|
|
}
|
|
INST(FI_DIVIDE, 2, 1) {
|
|
ARG(1,T_INT);
|
|
ARG(2,T_INT);
|
|
if (v2.val.i == 0) runtime( "Mother told me not to divide by 0" );
|
|
RESULT(T_INT, i, v1.val.i / v2.val.i);
|
|
}
|
|
INST(FI_BITOR, 2, 1) {
|
|
ARG(1,T_INT);
|
|
ARG(2,T_INT);
|
|
RESULT(T_INT, i, v1.val.i | v2.val.i);
|
|
}
|
|
INST(FI_BITAND, 2, 1) {
|
|
ARG(1,T_INT);
|
|
ARG(2,T_INT);
|
|
RESULT(T_INT, i, v1.val.i & v2.val.i);
|
|
}
|
|
INST(FI_AND, 1, 1) {
|
|
ARG(1,T_BOOL);
|
|
ARG_TYPE_STATIC(2,T_BOOL);
|
|
RESULT_TYPE(T_BOOL);
|
|
|
|
if (v1.val.i)
|
|
LINE(2,1);
|
|
else
|
|
RESULT_VAL(v1);
|
|
}
|
|
INST(FI_OR, 1, 1) {
|
|
ARG(1,T_BOOL);
|
|
ARG_TYPE_STATIC(2,T_BOOL);
|
|
RESULT_TYPE(T_BOOL);
|
|
|
|
if (!v1.val.i)
|
|
LINE(2,1);
|
|
else
|
|
RESULT_VAL(v1);
|
|
}
|
|
|
|
INST(FI_PAIR_CONSTRUCT, 2, 1) {
|
|
ARG(1,T_INT);
|
|
ARG(2,T_INT);
|
|
uint u1 = v1.val.i;
|
|
uint u2 = v2.val.i;
|
|
if ((u1 > 0xFFFF) || (u2 > 0xFFFF))
|
|
runtime( "Can't operate with value out of bounds in pair constructor" );
|
|
RESULT(T_PAIR, i, (u1 << 16) | u2);
|
|
}
|
|
|
|
INST(FI_EC_CONSTRUCT, 2, 1) {
|
|
ARG_ANY(1);
|
|
ARG(2, T_INT);
|
|
|
|
FID_MEMBER(enum ec_subtype, ecs, f1->ecs != f2->ecs, "ec subtype %s", ec_subtype_str(item->ecs));
|
|
|
|
int ipv4_used;
|
|
u32 key, val;
|
|
|
|
if (v1.type == T_INT) {
|
|
ipv4_used = 0; key = v1.val.i;
|
|
}
|
|
else if (v1.type == T_QUAD) {
|
|
ipv4_used = 1; key = v1.val.i;
|
|
}
|
|
/* IP->Quad implicit conversion */
|
|
else if (val_is_ip4(&v1)) {
|
|
ipv4_used = 1; key = ipa_to_u32(v1.val.ip);
|
|
}
|
|
else
|
|
runtime("Argument 1 of EC constructor must be integer or IPv4 address, got 0x%02x", v1.type);
|
|
|
|
val = v2.val.i;
|
|
|
|
if (ecs == EC_GENERIC)
|
|
RESULT(T_EC, ec, ec_generic(key, val));
|
|
else if (ipv4_used)
|
|
if (val <= 0xFFFF)
|
|
RESULT(T_EC, ec, ec_ip4(ecs, key, val));
|
|
else
|
|
runtime("4-byte value %u can't be used with IP-address key in extended community", val);
|
|
else if (key < 0x10000)
|
|
RESULT(T_EC, ec, ec_as2(ecs, key, val));
|
|
else
|
|
if (val <= 0xFFFF)
|
|
RESULT(T_EC, ec, ec_as4(ecs, key, val));
|
|
else
|
|
runtime("4-byte value %u can't be used with 4-byte ASN in extended community", val);
|
|
}
|
|
|
|
INST(FI_LC_CONSTRUCT, 3, 1) {
|
|
ARG(1, T_INT);
|
|
ARG(2, T_INT);
|
|
ARG(3, T_INT);
|
|
RESULT(T_LC, lc, [[(lcomm) { v1.val.i, v2.val.i, v3.val.i }]]);
|
|
}
|
|
|
|
INST(FI_PATHMASK_CONSTRUCT, 0, 1) {
|
|
VARARG;
|
|
|
|
struct f_path_mask *pm = falloc(sizeof(struct f_path_mask) + whati->varcount * sizeof(struct f_path_mask_item));
|
|
pm->len = whati->varcount;
|
|
|
|
for (uint i=0; i<whati->varcount; i++) {
|
|
switch (vv(i).type) {
|
|
case T_PATH_MASK_ITEM:
|
|
if (vv(i).val.pmi.kind == PM_LOOP)
|
|
{
|
|
if (i == 0)
|
|
runtime("Path mask iterator '+' cannot be first");
|
|
|
|
/* We want PM_LOOP as prefix operator */
|
|
pm->item[i] = pm->item[i - 1];
|
|
pm->item[i - 1] = vv(i).val.pmi;
|
|
break;
|
|
}
|
|
|
|
pm->item[i] = vv(i).val.pmi;
|
|
break;
|
|
|
|
case T_INT:
|
|
pm->item[i] = (struct f_path_mask_item) {
|
|
.asn = vv(i).val.i,
|
|
.kind = PM_ASN,
|
|
};
|
|
break;
|
|
|
|
case T_SET:
|
|
if (!path_set_type(vv(i).val.t))
|
|
runtime("Only integer sets allowed in path mask");
|
|
|
|
pm->item[i] = (struct f_path_mask_item) {
|
|
.set = vv(i).val.t,
|
|
.kind = PM_ASN_SET,
|
|
};
|
|
break;
|
|
|
|
default:
|
|
runtime( "Error resolving path mask template: value not an integer" );
|
|
}
|
|
}
|
|
|
|
RESULT(T_PATH_MASK, path_mask, pm);
|
|
}
|
|
|
|
/* Relational operators */
|
|
|
|
INST(FI_NEQ, 2, 1) {
|
|
ARG_ANY(1);
|
|
ARG_ANY(2);
|
|
ARG_PREFER_SAME_TYPE(1, 2);
|
|
RESULT(T_BOOL, i, !val_same(&v1, &v2));
|
|
}
|
|
|
|
INST(FI_EQ, 2, 1) {
|
|
ARG_ANY(1);
|
|
ARG_ANY(2);
|
|
ARG_PREFER_SAME_TYPE(1, 2);
|
|
RESULT(T_BOOL, i, val_same(&v1, &v2));
|
|
}
|
|
|
|
INST(FI_LT, 2, 1) {
|
|
ARG_ANY(1);
|
|
ARG_ANY(2);
|
|
ARG_SAME_TYPE(1, 2);
|
|
|
|
int i = val_compare(&v1, &v2);
|
|
if (i == F_CMP_ERROR)
|
|
runtime( "Can't compare values of incompatible types" );
|
|
RESULT(T_BOOL, i, (i == -1));
|
|
}
|
|
|
|
INST(FI_LTE, 2, 1) {
|
|
ARG_ANY(1);
|
|
ARG_ANY(2);
|
|
ARG_SAME_TYPE(1, 2);
|
|
|
|
int i = val_compare(&v1, &v2);
|
|
if (i == F_CMP_ERROR)
|
|
runtime( "Can't compare values of incompatible types" );
|
|
RESULT(T_BOOL, i, (i != 1));
|
|
}
|
|
|
|
INST(FI_NOT, 1, 1) {
|
|
ARG(1,T_BOOL);
|
|
RESULT(T_BOOL, i, !v1.val.i);
|
|
}
|
|
|
|
INST(FI_MATCH, 2, 1) {
|
|
ARG_ANY(1);
|
|
ARG_ANY(2);
|
|
int i = val_in_range(&v1, &v2);
|
|
if (i == F_CMP_ERROR)
|
|
runtime( "~ applied on unknown type pair" );
|
|
RESULT(T_BOOL, i, !!i);
|
|
}
|
|
|
|
INST(FI_NOT_MATCH, 2, 1) {
|
|
ARG_ANY(1);
|
|
ARG_ANY(2);
|
|
int i = val_in_range(&v1, &v2);
|
|
if (i == F_CMP_ERROR)
|
|
runtime( "!~ applied on unknown type pair" );
|
|
RESULT(T_BOOL, i, !i);
|
|
}
|
|
|
|
INST(FI_DEFINED, 1, 1) {
|
|
ARG_ANY(1);
|
|
RESULT(T_BOOL, i, (v1.type != T_VOID) && !val_is_undefined(v1));
|
|
}
|
|
|
|
METHOD_R(T_NET, type, T_ENUM_NETTYPE, i, v1.val.net->type);
|
|
METHOD_R(T_IP, is_v4, T_BOOL, i, ipa_is_ip4(v1.val.ip));
|
|
|
|
/* Add initialized variable */
|
|
INST(FI_VAR_INIT, 1, 0) {
|
|
NEVER_CONSTANT;
|
|
ARG_ANY(1);
|
|
SYMBOL;
|
|
ARG_TYPE(1, sym->class & 0xff);
|
|
|
|
/* New variable is always the last on stack */
|
|
uint pos = curline.vbase + sym->offset;
|
|
fstk->vstk[pos] = v1;
|
|
fstk->vcnt = pos + 1;
|
|
}
|
|
|
|
/* Add uninitialized variable */
|
|
INST(FI_VAR_INIT0, 0, 0) {
|
|
NEVER_CONSTANT;
|
|
SYMBOL;
|
|
|
|
/* New variable is always the last on stack */
|
|
uint pos = curline.vbase + sym->offset;
|
|
fstk->vstk[pos] = f_get_empty(sym->class & 0xff);
|
|
fstk->vcnt = pos + 1;
|
|
}
|
|
|
|
/* Set to indirect value prepared in v1 */
|
|
INST(FI_VAR_SET, 1, 0) {
|
|
NEVER_CONSTANT;
|
|
ARG_ANY(1);
|
|
SYMBOL;
|
|
ARG_TYPE(1, sym->class & 0xff);
|
|
|
|
fstk->vstk[curline.vbase + sym->offset] = v1;
|
|
}
|
|
|
|
INST(FI_VAR_GET, 0, 1) {
|
|
SYMBOL;
|
|
NEVER_CONSTANT;
|
|
RESULT_TYPE(sym->class & 0xff);
|
|
RESULT_VAL(fstk->vstk[curline.vbase + sym->offset]);
|
|
}
|
|
|
|
INST(FI_CONSTANT, 0, 1) {
|
|
FID_MEMBER(
|
|
struct f_val,
|
|
val,
|
|
[[ !val_same(&(f1->val), &(f2->val)) ]],
|
|
"value %s",
|
|
val_dump(&(item->val))
|
|
);
|
|
|
|
RESULT_TYPE(val.type);
|
|
RESULT_VAL(val);
|
|
}
|
|
|
|
METHOD_R(T_PATH, empty, T_PATH, ad, &null_adata);
|
|
METHOD_R(T_CLIST, empty, T_CLIST, ad, &null_adata);
|
|
METHOD_R(T_ECLIST, empty, T_ECLIST, ad, &null_adata);
|
|
METHOD_R(T_LCLIST, empty, T_LCLIST, ad, &null_adata);
|
|
|
|
/* Common loop begin instruction, always created by f_for_cycle() */
|
|
INST(FI_FOR_LOOP_START, 0, 3) {
|
|
NEVER_CONSTANT;
|
|
SYMBOL;
|
|
|
|
/* Repeat the instruction which called us */
|
|
ASSERT_DIE(fstk->ecnt > 1);
|
|
prevline.pos--;
|
|
|
|
/* There should be exactly three items on the value stack to be taken care of */
|
|
fstk->vcnt += 3;
|
|
|
|
/* And these should also stay there after we finish for the caller instruction */
|
|
curline.ventry += 3;
|
|
|
|
/* Assert the iterator variable positioning */
|
|
ASSERT_DIE(curline.vbase + sym->offset == fstk->vcnt - 1);
|
|
|
|
/* The result type declaration makes no sense here but is needed */
|
|
RESULT_TYPE(T_VOID);
|
|
}
|
|
|
|
/* Type-specific for_next iterators */
|
|
INST(FI_PATH_FOR_NEXT, 3, 0) {
|
|
NEVER_CONSTANT;
|
|
ARG(1, T_PATH);
|
|
if (as_path_walk(v1.val.ad, &v2.val.i, &v3.val.i))
|
|
LINE(2,0);
|
|
|
|
METHOD_CONSTRUCTOR("!for_next");
|
|
}
|
|
|
|
INST(FI_CLIST_FOR_NEXT, 3, 0) {
|
|
NEVER_CONSTANT;
|
|
ARG(1, T_CLIST);
|
|
if (int_set_walk(v1.val.ad, &v2.val.i, &v3.val.i))
|
|
LINE(2,0);
|
|
|
|
METHOD_CONSTRUCTOR("!for_next");
|
|
}
|
|
|
|
INST(FI_ECLIST_FOR_NEXT, 3, 0) {
|
|
NEVER_CONSTANT;
|
|
ARG(1, T_ECLIST);
|
|
if (ec_set_walk(v1.val.ad, &v2.val.i, &v3.val.ec))
|
|
LINE(2,0);
|
|
|
|
METHOD_CONSTRUCTOR("!for_next");
|
|
}
|
|
|
|
INST(FI_LCLIST_FOR_NEXT, 3, 0) {
|
|
NEVER_CONSTANT;
|
|
ARG(1, T_LCLIST);
|
|
if (lc_set_walk(v1.val.ad, &v2.val.i, &v3.val.lc))
|
|
LINE(2,0);
|
|
|
|
METHOD_CONSTRUCTOR("!for_next");
|
|
}
|
|
|
|
INST(FI_ROUTES_BLOCK_FOR_NEXT, 3, 0) {
|
|
NEVER_CONSTANT;
|
|
ARG(1, T_ROUTES_BLOCK);
|
|
|
|
if (v2.val.i < v1.val.rte_block.len)
|
|
{
|
|
v3.val.rte = v1.val.rte_block.rte[v2.val.i++];
|
|
LINE(2,0);
|
|
}
|
|
|
|
METHOD_CONSTRUCTOR("!for_next");
|
|
}
|
|
|
|
INST(FI_CONDITION, 1, 0) {
|
|
ARG(1, T_BOOL);
|
|
if (v1.val.i)
|
|
LINE(2,0);
|
|
else
|
|
LINE(3,0);
|
|
}
|
|
|
|
INST(FI_PRINT, 1, 0) {
|
|
NEVER_CONSTANT;
|
|
ARG_ANY(1);
|
|
|
|
if (!(fs->flags & FF_SILENT))
|
|
{
|
|
if (!fs->buf.class)
|
|
log_prepare(&fs->buf, *L_INFO);
|
|
|
|
val_format(&v1, &fs->buf.buf);
|
|
}
|
|
}
|
|
|
|
INST(FI_FLUSH, 0, 0) {
|
|
NEVER_CONSTANT;
|
|
if (!(fs->flags & FF_SILENT))
|
|
/* After log_commit, the buffer is reset */
|
|
log_commit(&fs->buf);
|
|
}
|
|
|
|
INST(FI_DIE, 0, 0) {
|
|
NEVER_CONSTANT;
|
|
FID_MEMBER(enum filter_return, fret, f1->fret != f2->fret, "%s", filter_return_str(item->fret));
|
|
|
|
switch (whati->fret) {
|
|
case F_ACCEPT: /* Should take care about turning ACCEPT into MODIFY */
|
|
case F_ERROR:
|
|
case F_REJECT: /* Maybe print complete route along with reason to reject route? */
|
|
return fret; /* We have to return now, no more processing. */
|
|
default:
|
|
bug( "unknown return type: Can't happen");
|
|
}
|
|
}
|
|
|
|
INST(FI_CURRENT_ROUTE, 0, 1) {
|
|
NEVER_CONSTANT;
|
|
ACCESS_RTE;
|
|
RESULT_TYPE(T_ROUTE);
|
|
RESULT_VAL([[(struct f_val) { .type = T_ROUTE, .val.rte = fs->rte, }]]);
|
|
}
|
|
|
|
INST(FI_RTA_GET, 1, 1) {
|
|
{
|
|
ARG(1, T_ROUTE);
|
|
STATIC_ATTR;
|
|
|
|
struct rte *rte = v1.val.rte;
|
|
|
|
switch (sa.sa_code)
|
|
{
|
|
case SA_NET: RESULT(sa.type, net, rte->net); break;
|
|
case SA_PROTO: RESULT(sa.type, s, rte->src->owner->name); break;
|
|
default:
|
|
{
|
|
struct eattr *nhea = ea_find(rte->attrs, &ea_gen_nexthop);
|
|
struct nexthop_adata *nhad = nhea ? (struct nexthop_adata *) nhea->u.ptr : NULL;
|
|
struct nexthop *nh = nhad ? &nhad->nh : NULL;
|
|
|
|
switch (sa.sa_code)
|
|
{
|
|
case SA_DEST:
|
|
RESULT(sa.type, i, nhad ?
|
|
(NEXTHOP_IS_REACHABLE(nhad) ? RTD_UNICAST : nhad->dest)
|
|
: RTD_NONE);
|
|
break;
|
|
case SA_GW:
|
|
RESULT(sa.type, ip, nh ? nh->gw : IPA_NONE);
|
|
break;
|
|
case SA_IFNAME:
|
|
RESULT(sa.type, s, (nh && nh->iface) ? nh->iface->name : "");
|
|
break;
|
|
case SA_IFINDEX:
|
|
RESULT(sa.type, i, (nh && nh->iface) ? nh->iface->index : 0);
|
|
break;
|
|
case SA_WEIGHT:
|
|
RESULT(sa.type, i, (nh ? nh->weight : 0) + 1);
|
|
break;
|
|
case SA_GW_MPLS:
|
|
RESULT(sa.type, i, (nh && nh->labels) ? nh->label[0] : MPLS_NULL);
|
|
break;
|
|
default:
|
|
bug("Invalid static attribute access (%u/%u)", sa.type, sa.sa_code);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
INST(FI_RTA_SET, 1, 0) {
|
|
ACCESS_RTE;
|
|
ARG_ANY(1);
|
|
STATIC_ATTR;
|
|
ARG_TYPE(1, sa.type);
|
|
{
|
|
union {
|
|
struct nexthop_adata nha;
|
|
struct {
|
|
struct adata ad;
|
|
struct nexthop nh;
|
|
u32 label;
|
|
};
|
|
} nha;
|
|
|
|
nha.ad = (struct adata) {
|
|
.length = sizeof (struct nexthop_adata) - sizeof (struct adata),
|
|
};
|
|
|
|
eattr *a = NULL;
|
|
|
|
switch (sa.sa_code)
|
|
{
|
|
case SA_DEST:
|
|
{
|
|
int i = v1.val.i;
|
|
if ((i != RTD_BLACKHOLE) && (i != RTD_UNREACHABLE) && (i != RTD_PROHIBIT))
|
|
runtime( "Destination can be changed only to blackhole, unreachable or prohibit" );
|
|
|
|
nha.nha.dest = i;
|
|
nha.ad.length = NEXTHOP_DEST_SIZE;
|
|
break;
|
|
}
|
|
case SA_GW:
|
|
{
|
|
struct eattr *nh_ea = ea_find(fs->rte->attrs, &ea_gen_nexthop);
|
|
|
|
ip_addr ip = v1.val.ip;
|
|
struct iface *ifa = (ipa_is_link_local(ip) && nh_ea) ?
|
|
((struct nexthop_adata *) nh_ea->u.ptr)->nh.iface : NULL;
|
|
|
|
/* XXX this code supposes that every owner is a protocol XXX */
|
|
neighbor *n = neigh_find(SKIP_BACK(struct proto, sources, fs->rte->src->owner), ip, ifa, 0);
|
|
if (!n || (n->scope == SCOPE_HOST))
|
|
runtime( "Invalid gw address" );
|
|
|
|
nha.nh = (struct nexthop) {
|
|
.gw = ip,
|
|
.iface = n->iface,
|
|
};
|
|
}
|
|
break;
|
|
|
|
case SA_IFNAME:
|
|
{
|
|
struct iface *ifa = if_find_by_name(v1.val.s);
|
|
if (!ifa)
|
|
runtime( "Invalid iface name" );
|
|
|
|
nha.nh = (struct nexthop) {
|
|
.iface = ifa,
|
|
};
|
|
}
|
|
break;
|
|
|
|
case SA_GW_MPLS:
|
|
{
|
|
if (v1.val.i >= 0x100000)
|
|
runtime( "Invalid MPLS label" );
|
|
|
|
struct eattr *nh_ea = ea_find(fs->rte->attrs, &ea_gen_nexthop);
|
|
if (!nh_ea)
|
|
runtime( "No nexthop to add a MPLS label to" );
|
|
|
|
nha.nh = ((struct nexthop_adata *) nh_ea->u.ptr)->nh;
|
|
|
|
if (v1.val.i != MPLS_NULL)
|
|
{
|
|
nha.nh.label[0] = v1.val.i;
|
|
nha.nh.labels = 1;
|
|
nha.ad.length = sizeof nha - sizeof (struct adata);
|
|
}
|
|
else
|
|
nha.nh.labels = 0;
|
|
}
|
|
break;
|
|
|
|
case SA_WEIGHT:
|
|
{
|
|
int i = v1.val.i;
|
|
if (i < 1 || i > 256)
|
|
runtime( "Setting weight value out of bounds" );
|
|
|
|
struct eattr *nh_ea = ea_find(fs->rte->attrs, &ea_gen_nexthop);
|
|
if (!nh_ea)
|
|
runtime( "No nexthop to set weight on" );
|
|
|
|
struct nexthop_adata *nhad = (struct nexthop_adata *) nh_ea->u.ptr;
|
|
if (!NEXTHOP_IS_REACHABLE(nhad))
|
|
runtime( "Setting weight needs regular nexthop " );
|
|
|
|
struct nexthop_adata *nhax = (struct nexthop_adata *) tmp_copy_adata(&nhad->ad);
|
|
|
|
/* Set weight on all next hops */
|
|
NEXTHOP_WALK(nh, nhax)
|
|
nh->weight = i - 1;
|
|
|
|
a = ea_set_attr(&fs->rte->attrs,
|
|
EA_LITERAL_DIRECT_ADATA(&ea_gen_nexthop, 0, &nhax->ad));
|
|
}
|
|
break;
|
|
|
|
default:
|
|
bug("Invalid static attribute access (%u/%u)", sa.type, sa.sa_code);
|
|
}
|
|
|
|
if (!a)
|
|
a = ea_set_attr(&fs->rte->attrs,
|
|
EA_LITERAL_DIRECT_ADATA(&ea_gen_nexthop, 0, tmp_copy_adata(&nha.ad)));
|
|
|
|
a->originated = 1;
|
|
a->fresh = 1;
|
|
}
|
|
}
|
|
|
|
INST(FI_EA_GET, 1, 1) { /* Access to extended attributes */
|
|
ARG(1, T_ROUTE);
|
|
DYNAMIC_ATTR;
|
|
RESULT_TYPE(da->type);
|
|
{
|
|
struct f_val empty;
|
|
const eattr *e = ea_find(v1.val.rte->attrs, da->id);
|
|
|
|
if (e)
|
|
{
|
|
ASSERT_DIE(e->type == da->type);
|
|
|
|
switch (e->type) {
|
|
case T_IP:
|
|
RESULT_(T_IP, ip, *((const ip_addr *) e->u.ptr->data));
|
|
break;
|
|
|
|
case T_STRING:
|
|
RESULT_(T_STRING, s, (const char *) e->u.ptr->data);
|
|
break;
|
|
|
|
default:
|
|
RESULT_VAL([[(struct f_val) {
|
|
.type = e->type,
|
|
.val.bval = e->u,
|
|
}]]);
|
|
}
|
|
}
|
|
else if ((empty = f_get_empty(da->type)).type != T_VOID)
|
|
RESULT_VAL(empty);
|
|
else
|
|
RESULT_VOID;
|
|
}
|
|
}
|
|
|
|
INST(FI_EA_SET, 1, 0) {
|
|
ACCESS_RTE;
|
|
ARG_ANY(1);
|
|
DYNAMIC_ATTR;
|
|
ARG_TYPE(1, da->type);
|
|
|
|
FID_NEW_BODY;
|
|
if (da->type == T_OPAQUE)
|
|
cf_error("Setting opaque attribute is not allowed");
|
|
|
|
FID_INTERPRET_BODY;
|
|
{
|
|
struct eattr *a;
|
|
|
|
if (da->type >= EAF_TYPE__MAX)
|
|
bug("Unsupported attribute type");
|
|
|
|
switch (da->type) {
|
|
case T_IFACE:
|
|
case T_OPAQUE:
|
|
runtime( "Setting opaque attribute is not allowed" );
|
|
break;
|
|
|
|
case T_IP:
|
|
a = ea_set_attr(&fs->rte->attrs,
|
|
EA_LITERAL_STORE_ADATA(da, da->flags, &v1.val.ip, sizeof(ip_addr)));
|
|
break;
|
|
|
|
case T_STRING:
|
|
a = ea_set_attr(&fs->rte->attrs,
|
|
EA_LITERAL_STORE_ADATA(da, da->flags, v1.val.s, strlen(v1.val.s) + 1));
|
|
break;
|
|
|
|
default:
|
|
a = ea_set_attr(&fs->rte->attrs,
|
|
EA_LITERAL_GENERIC(da->id, da->type, da->flags, .u = v1.val.bval));
|
|
break;
|
|
}
|
|
|
|
a->originated = 1;
|
|
a->fresh = 1;
|
|
}
|
|
}
|
|
|
|
INST(FI_EA_UNSET, 0, 0) {
|
|
DYNAMIC_ATTR;
|
|
ACCESS_RTE;
|
|
|
|
ea_unset_attr(&fs->rte->attrs, 1, da);
|
|
}
|
|
|
|
INST(FI_DEFAULT, 2, 1) {
|
|
ARG_ANY(1);
|
|
ARG_ANY(2);
|
|
RESULT_TYPE(f_type_element_type(v2.type));
|
|
|
|
log(L_INFO "Type of arg 1 is: %d", v1.type);
|
|
|
|
if (v1.type == T_VOID)
|
|
RESULT_VAL(v2);
|
|
else
|
|
RESULT_VAL(v1);
|
|
}
|
|
|
|
/* Get length of */
|
|
METHOD_R(T_NET, len, T_INT, i, net_pxlen(v1.val.net));
|
|
METHOD_R(T_PATH, len, T_INT, i, as_path_getlen(v1.val.ad));
|
|
METHOD_R(T_CLIST, len, T_INT, i, int_set_get_size(v1.val.ad));
|
|
METHOD_R(T_ECLIST, len, T_INT, i, ec_set_get_size(v1.val.ad));
|
|
METHOD_R(T_LCLIST, len, T_INT, i, lc_set_get_size(v1.val.ad));
|
|
|
|
INST(FI_NET_SRC, 1, 1) { /* Get src prefix */
|
|
ARG(1, T_NET);
|
|
METHOD_CONSTRUCTOR("src");
|
|
|
|
net_addr_union *net = (void *) v1.val.net;
|
|
net_addr *src = falloc(sizeof(net_addr_ip6));
|
|
const byte *part;
|
|
|
|
switch(v1.val.net->type) {
|
|
case NET_FLOW4:
|
|
part = flow4_get_part(&net->flow4, FLOW_TYPE_SRC_PREFIX);
|
|
if (part)
|
|
net_fill_ip4(src, flow_read_ip4_part(part), flow_read_pxlen(part));
|
|
else
|
|
net_fill_ip4(src, IP4_NONE, 0);
|
|
break;
|
|
|
|
case NET_FLOW6:
|
|
part = flow6_get_part(&net->flow6, FLOW_TYPE_SRC_PREFIX);
|
|
if (part)
|
|
net_fill_ip6(src, flow_read_ip6_part(part), flow_read_pxlen(part));
|
|
else
|
|
net_fill_ip6(src, IP6_NONE, 0);
|
|
break;
|
|
|
|
case NET_IP6_SADR:
|
|
net_fill_ip6(src, net->ip6_sadr.src_prefix, net->ip6_sadr.src_pxlen);
|
|
break;
|
|
|
|
default:
|
|
runtime( "Flow or SADR expected" );
|
|
}
|
|
|
|
RESULT(T_NET, net, src);
|
|
}
|
|
|
|
INST(FI_NET_DST, 1, 1) { /* Get dst prefix */
|
|
ARG(1, T_NET);
|
|
METHOD_CONSTRUCTOR("dst");
|
|
|
|
net_addr_union *net = (void *) v1.val.net;
|
|
net_addr *dst = falloc(sizeof(net_addr_ip6));
|
|
const byte *part;
|
|
|
|
switch(v1.val.net->type) {
|
|
case NET_FLOW4:
|
|
part = flow4_get_part(&net->flow4, FLOW_TYPE_DST_PREFIX);
|
|
if (part)
|
|
net_fill_ip4(dst, flow_read_ip4_part(part), flow_read_pxlen(part));
|
|
else
|
|
net_fill_ip4(dst, IP4_NONE, 0);
|
|
break;
|
|
|
|
case NET_FLOW6:
|
|
part = flow6_get_part(&net->flow6, FLOW_TYPE_DST_PREFIX);
|
|
if (part)
|
|
net_fill_ip6(dst, flow_read_ip6_part(part), flow_read_pxlen(part));
|
|
else
|
|
net_fill_ip6(dst, IP6_NONE, 0);
|
|
break;
|
|
|
|
case NET_IP6_SADR:
|
|
net_fill_ip6(dst, net->ip6_sadr.dst_prefix, net->ip6_sadr.dst_pxlen);
|
|
break;
|
|
|
|
default:
|
|
runtime( "Flow or SADR expected" );
|
|
}
|
|
|
|
RESULT(T_NET, net, dst);
|
|
}
|
|
|
|
/* Get ROA max prefix length */
|
|
METHOD(T_NET, maxlen, 0, [[
|
|
if (!net_is_roa(v1.val.net))
|
|
runtime( "ROA expected" );
|
|
|
|
RESULT(T_INT, i, (v1.val.net->type == NET_ROA4) ?
|
|
((net_addr_roa4 *) v1.val.net)->max_pxlen :
|
|
((net_addr_roa6 *) v1.val.net)->max_pxlen);
|
|
]]);
|
|
|
|
/* Get ROA ASN */
|
|
METHOD(T_NET, asn, 0, [[
|
|
if (!net_is_roa(v1.val.net))
|
|
runtime( "ROA expected" );
|
|
|
|
RESULT(T_INT, i, (v1.val.net->type == NET_ROA4) ?
|
|
((net_addr_roa4 *) v1.val.net)->asn :
|
|
((net_addr_roa6 *) v1.val.net)->asn);
|
|
]]);
|
|
|
|
/* Convert prefix to IP */
|
|
METHOD_R(T_NET, ip, T_IP, ip, net_prefix(v1.val.net));
|
|
|
|
INST(FI_ROUTE_DISTINGUISHER, 1, 1) {
|
|
ARG(1, T_NET);
|
|
METHOD_CONSTRUCTOR("rd");
|
|
if (!net_is_vpn(v1.val.net))
|
|
runtime( "VPN address expected" );
|
|
RESULT(T_RD, ec, net_rd(v1.val.net));
|
|
}
|
|
|
|
/* Get first ASN from AS PATH */
|
|
METHOD_R(T_PATH, first, T_INT, i, ({ u32 as = 0; as_path_get_first(v1.val.ad, &as); as; }));
|
|
|
|
/* Get last ASN from AS PATH */
|
|
METHOD_R(T_PATH, last, T_INT, i, ({ u32 as = 0; as_path_get_last(v1.val.ad, &as); as; }));
|
|
|
|
/* Get last ASN from non-aggregated part of AS PATH */
|
|
METHOD_R(T_PATH, last_nonaggregated, T_INT, i, as_path_get_last_nonaggregated(v1.val.ad));
|
|
|
|
/* Get ASN part from the standard community ASN */
|
|
METHOD_R(T_PAIR, asn, T_INT, i, v1.val.i >> 16);
|
|
|
|
/* Get data part from the standard community */
|
|
METHOD_R(T_PAIR, data, T_INT, i, v1.val.i & 0xFFFF);
|
|
|
|
/* Get ASN part from the large community */
|
|
METHOD_R(T_LC, asn, T_INT, i, v1.val.lc.asn);
|
|
|
|
/* Get data1 part from the large community */
|
|
METHOD_R(T_LC, data1, T_INT, i, v1.val.lc.ldp1);
|
|
|
|
/* Get data2 part from the large community */
|
|
METHOD_R(T_LC, data2, T_INT, i, v1.val.lc.ldp2);
|
|
|
|
/* Get minimum element from clist */
|
|
METHOD_R(T_CLIST, min, T_PAIR, i, ({ u32 val = 0; int_set_min(v1.val.ad, &val); val; }));
|
|
|
|
/* Get maximum element from clist */
|
|
METHOD_R(T_CLIST, max, T_PAIR, i, ({ u32 val = 0; int_set_max(v1.val.ad, &val); val; }));
|
|
|
|
/* Get minimum element from eclist */
|
|
METHOD_R(T_ECLIST, min, T_EC, ec, ({ u64 val = 0; ec_set_min(v1.val.ad, &val); val; }));
|
|
|
|
/* Get maximum element from eclist */
|
|
METHOD_R(T_ECLIST, max, T_EC, ec, ({ u64 val = 0; ec_set_max(v1.val.ad, &val); val; }));
|
|
|
|
/* Get minimum element from lclist */
|
|
METHOD_R(T_LCLIST, min, T_LC, lc, ({ lcomm val = {}; lc_set_min(v1.val.ad, &val); val; }));
|
|
|
|
/* Get maximum element from lclist */
|
|
METHOD_R(T_LCLIST, max, T_LC, lc, ({ lcomm val = {}; lc_set_max(v1.val.ad, &val); val; }));
|
|
|
|
INST(FI_RETURN, 1, 0) {
|
|
NEVER_CONSTANT;
|
|
/* Acquire the return value */
|
|
ARG_ANY(1);
|
|
uint retpos = fstk->vcnt;
|
|
|
|
/* Drop every sub-block including ourselves */
|
|
do fstk->ecnt--;
|
|
while ((fstk->ecnt > 0) && !(fstk->estk[fstk->ecnt].emask & FE_RETURN));
|
|
|
|
/* Now we are at the caller frame; if no such, try to convert to accept/reject. */
|
|
if (!fstk->ecnt)
|
|
{
|
|
if (fstk->vstk[retpos].type == T_BOOL)
|
|
return (fstk->vstk[retpos].val.i) ? F_ACCEPT : F_REJECT;
|
|
else
|
|
runtime("Can't return non-bool from non-function");
|
|
}
|
|
|
|
/* Set the value stack position, overwriting the former implicit void */
|
|
fstk->vcnt = fstk->estk[fstk->ecnt].ventry - 1;
|
|
|
|
/* Copy the return value */
|
|
RESULT_VAL(fstk->vstk[retpos]);
|
|
}
|
|
|
|
INST(FI_CALL, 0, 1) {
|
|
NEVER_CONSTANT;
|
|
VARARG;
|
|
SYMBOL;
|
|
RESULT_TYPE(sym->function->return_type);
|
|
|
|
FID_NEW_BODY()
|
|
ASSERT(sym->class == SYM_FUNCTION);
|
|
|
|
if (whati->varcount != sym->function->args)
|
|
cf_error("Function '%s' expects %u arguments, got %u arguments",
|
|
sym->name, sym->function->args, whati->varcount);
|
|
|
|
/* Typecheck individual arguments */
|
|
struct f_inst *a = fvar;
|
|
struct f_arg *b = sym->function->arg_list;
|
|
for (uint i = 1; a && b; a = a->next, b = b->next, i++)
|
|
{
|
|
enum btype b_type = b->arg->class & 0xff;
|
|
|
|
if (a->type && (a->type != b_type) && !f_const_promotion(a, b_type))
|
|
cf_error("Argument %u of '%s' must be %s, got %s",
|
|
i, sym->name, f_type_name(b_type), f_type_name(a->type));
|
|
}
|
|
ASSERT(!a && !b);
|
|
|
|
/* Add implicit void slot for the return value */
|
|
struct f_inst *tmp = f_new_inst(FI_CONSTANT, (struct f_val) { .type = T_VOID });
|
|
tmp->next = whati->fvar;
|
|
whati->fvar = tmp;
|
|
what->size += tmp->size;
|
|
|
|
/* Mark recursive calls, they have dummy f_line */
|
|
if (!sym->function->len)
|
|
what->flags |= FIF_RECURSIVE;
|
|
|
|
FID_SAME_BODY()
|
|
if (!(f1->sym->flags & SYM_FLAG_SAME) && !(f1_->flags & FIF_RECURSIVE))
|
|
return 0;
|
|
|
|
FID_ITERATE_BODY()
|
|
if (!(what->flags & FIF_RECURSIVE))
|
|
BUFFER_PUSH(fit->lines) = whati->sym->function;
|
|
|
|
FID_INTERPRET_BODY()
|
|
|
|
/* Push the body on stack */
|
|
LINEX(sym->function);
|
|
curline.vbase = curline.ventry;
|
|
curline.emask |= FE_RETURN;
|
|
|
|
/* Arguments on stack */
|
|
fstk->vcnt += sym->function->args;
|
|
|
|
/* Storage for local variables */
|
|
f_vcnt_check_overflow(sym->function->vars);
|
|
memset(&(fstk->vstk[fstk->vcnt]), 0, sizeof(struct f_val) * sym->function->vars);
|
|
fstk->vcnt += sym->function->vars;
|
|
}
|
|
|
|
INST(FI_DROP_RESULT, 1, 0) {
|
|
NEVER_CONSTANT;
|
|
ARG_ANY(1);
|
|
}
|
|
|
|
INST(FI_SWITCH, 1, 0) {
|
|
ARG_ANY(1);
|
|
|
|
FID_MEMBER(struct f_tree *, tree, [[!same_tree(f1->tree, f2->tree)]], "tree %p", item->tree);
|
|
|
|
FID_LINEARIZE_BODY()
|
|
/* Linearize all branches in switch */
|
|
struct f_inst *last_inst = NULL;
|
|
struct f_line *last_line = NULL;
|
|
for (struct f_tree *t = whati->tree; t; t = t->left)
|
|
{
|
|
if (t->data != last_inst)
|
|
{
|
|
last_inst = t->data;
|
|
last_line = f_linearize(t->data, 0);
|
|
}
|
|
|
|
t->data = last_line;
|
|
}
|
|
|
|
/* Balance the tree */
|
|
item->tree = build_tree(whati->tree);
|
|
|
|
FID_ITERATE_BODY()
|
|
tree_walk(whati->tree, f_add_tree_lines, fit);
|
|
|
|
FID_INTERPRET_BODY()
|
|
/* In parse-time use find_tree_linear(), in runtime use find_tree() */
|
|
const struct f_tree *t = FID_HIC(,find_tree,find_tree_linear)(tree, &v1);
|
|
if (!t) {
|
|
v1.type = T_VOID;
|
|
t = FID_HIC(,find_tree,find_tree_linear)(tree, &v1);
|
|
if (!t) {
|
|
debug( "No else statement?\n");
|
|
FID_HIC(,break,return NULL);
|
|
}
|
|
}
|
|
|
|
LINEX(t->data);
|
|
}
|
|
|
|
INST(FI_IP_MASK, 2, 1) { /* IP.MASK(val) */
|
|
ARG(1, T_IP);
|
|
ARG(2, T_INT);
|
|
METHOD_CONSTRUCTOR("mask");
|
|
RESULT(T_IP, ip, [[ ipa_is_ip4(v1.val.ip) ?
|
|
ipa_from_ip4(ip4_and(ipa_to_ip4(v1.val.ip), ip4_mkmask(v2.val.i))) :
|
|
ipa_from_ip6(ip6_and(ipa_to_ip6(v1.val.ip), ip6_mkmask(v2.val.i))) ]]);
|
|
}
|
|
|
|
INST(FI_PATH_PREPEND, 2, 1) { /* Path prepend */
|
|
ARG(1, T_PATH);
|
|
ARG(2, T_INT);
|
|
METHOD_CONSTRUCTOR("prepend");
|
|
RESULT(T_PATH, ad, [[ as_path_prepend(fpool, v1.val.ad, v2.val.i) ]]);
|
|
}
|
|
|
|
/* Community list add */
|
|
INST(FI_CLIST_ADD_PAIR, 2, 1) {
|
|
ARG(1, T_CLIST);
|
|
ARG(2, T_PAIR);
|
|
METHOD_CONSTRUCTOR("add");
|
|
RESULT(T_CLIST, ad, [[ int_set_add(fpool, v1.val.ad, v2.val.i) ]]);
|
|
}
|
|
|
|
INST(FI_CLIST_ADD_IP, 2, 1) {
|
|
ARG(1, T_CLIST);
|
|
ARG(2, T_IP);
|
|
METHOD_CONSTRUCTOR("add");
|
|
|
|
FID_NEW_BODY();
|
|
/* IP->Quad implicit conversion, must be before FI_CLIST_ADD_QUAD */
|
|
cf_warn("Method add(clist, ip) is deprecated, please use add(clist, quad)");
|
|
|
|
FID_INTERPRET_BODY();
|
|
if (!val_is_ip4(&v2)) runtime("Mismatched IP type");
|
|
RESULT(T_CLIST, ad, [[ int_set_add(fpool, v1.val.ad, ipa_to_u32(v2.val.ip)) ]]);
|
|
}
|
|
|
|
INST(FI_CLIST_ADD_QUAD, 2, 1) {
|
|
ARG(1, T_CLIST);
|
|
ARG(2, T_QUAD);
|
|
METHOD_CONSTRUCTOR("add");
|
|
RESULT(T_CLIST, ad, [[ int_set_add(fpool, v1.val.ad, v2.val.i) ]]);
|
|
}
|
|
|
|
INST(FI_CLIST_ADD_CLIST, 2, 1) {
|
|
ARG(1, T_CLIST);
|
|
ARG(2, T_CLIST);
|
|
METHOD_CONSTRUCTOR("add");
|
|
RESULT(T_CLIST, ad, [[ int_set_union(fpool, v1.val.ad, v2.val.ad) ]]);
|
|
}
|
|
|
|
INST(FI_ECLIST_ADD_EC, 2, 1) {
|
|
ARG(1, T_ECLIST);
|
|
ARG(2, T_EC);
|
|
METHOD_CONSTRUCTOR("add");
|
|
RESULT(T_ECLIST, ad, [[ ec_set_add(fpool, v1.val.ad, v2.val.ec) ]]);
|
|
}
|
|
|
|
INST(FI_ECLIST_ADD_ECLIST, 2, 1) {
|
|
ARG(1, T_ECLIST);
|
|
ARG(2, T_ECLIST);
|
|
METHOD_CONSTRUCTOR("add");
|
|
RESULT(T_ECLIST, ad, [[ ec_set_union(fpool, v1.val.ad, v2.val.ad) ]]);
|
|
}
|
|
|
|
INST(FI_LCLIST_ADD_LC, 2, 1) {
|
|
ARG(1, T_LCLIST);
|
|
ARG(2, T_LC);
|
|
METHOD_CONSTRUCTOR("add");
|
|
RESULT(T_LCLIST, ad, [[ lc_set_add(fpool, v1.val.ad, v2.val.lc) ]]);
|
|
}
|
|
|
|
INST(FI_LCLIST_ADD_LCLIST, 2, 1) {
|
|
ARG(1, T_LCLIST);
|
|
ARG(2, T_LCLIST);
|
|
METHOD_CONSTRUCTOR("add");
|
|
RESULT(T_LCLIST, ad, [[ lc_set_union(fpool, v1.val.ad, v2.val.ad) ]]);
|
|
}
|
|
|
|
INST(FI_PATH_DELETE_INT, 2, 1) {
|
|
ARG(1, T_PATH);
|
|
ARG(2, T_INT);
|
|
METHOD_CONSTRUCTOR("delete");
|
|
RESULT(T_PATH, ad, [[ as_path_filter(fpool, v1.val.ad, &v2, 0) ]]);
|
|
}
|
|
|
|
INST(FI_PATH_DELETE_SET, 2, 1) {
|
|
ARG(1, T_PATH);
|
|
ARG(2, T_SET);
|
|
METHOD_CONSTRUCTOR("delete");
|
|
|
|
if (!path_set_type(v2.val.t))
|
|
runtime("Mismatched set type");
|
|
|
|
RESULT(T_PATH, ad, [[ as_path_filter(fpool, v1.val.ad, &v2, 0) ]]);
|
|
}
|
|
|
|
/* Community list delete */
|
|
INST(FI_CLIST_DELETE_PAIR, 2, 1) {
|
|
ARG(1, T_CLIST);
|
|
ARG(2, T_PAIR);
|
|
METHOD_CONSTRUCTOR("delete");
|
|
RESULT(T_CLIST, ad, [[ int_set_del(fpool, v1.val.ad, v2.val.i) ]]);
|
|
}
|
|
|
|
INST(FI_CLIST_DELETE_IP, 2, 1) {
|
|
ARG(1, T_CLIST);
|
|
ARG(2, T_IP);
|
|
METHOD_CONSTRUCTOR("delete");
|
|
|
|
FID_NEW_BODY();
|
|
/* IP->Quad implicit conversion, must be before FI_CLIST_DELETE_QUAD */
|
|
cf_warn("Method delete(clist, ip) is deprecated, please use delete(clist, quad)");
|
|
|
|
FID_INTERPRET_BODY();
|
|
if (!val_is_ip4(&v2)) runtime("Mismatched IP type");
|
|
RESULT(T_CLIST, ad, [[ int_set_del(fpool, v1.val.ad, ipa_to_u32(v2.val.ip)) ]]);
|
|
}
|
|
|
|
INST(FI_CLIST_DELETE_QUAD, 2, 1) {
|
|
ARG(1, T_CLIST);
|
|
ARG(2, T_QUAD);
|
|
METHOD_CONSTRUCTOR("delete");
|
|
RESULT(T_CLIST, ad, [[ int_set_del(fpool, v1.val.ad, v2.val.i) ]]);
|
|
}
|
|
|
|
INST(FI_CLIST_DELETE_CLIST, 2, 1) {
|
|
ARG(1, T_CLIST);
|
|
ARG(2, T_CLIST);
|
|
METHOD_CONSTRUCTOR("delete");
|
|
RESULT(T_CLIST, ad, [[ clist_filter(fpool, v1.val.ad, &v2, 0) ]]);
|
|
}
|
|
|
|
INST(FI_CLIST_DELETE_SET, 2, 1) {
|
|
ARG(1, T_CLIST);
|
|
ARG(2, T_SET);
|
|
METHOD_CONSTRUCTOR("delete");
|
|
|
|
if (!clist_set_type(v2.val.t, &(struct f_val){}))
|
|
runtime("Mismatched set type");
|
|
|
|
RESULT(T_CLIST, ad, [[ clist_filter(fpool, v1.val.ad, &v2, 0) ]]);
|
|
}
|
|
|
|
INST(FI_ECLIST_DELETE_EC, 2, 1) {
|
|
ARG(1, T_ECLIST);
|
|
ARG(2, T_EC);
|
|
METHOD_CONSTRUCTOR("delete");
|
|
RESULT(T_ECLIST, ad, [[ ec_set_del(fpool, v1.val.ad, v2.val.ec) ]]);
|
|
}
|
|
|
|
INST(FI_ECLIST_DELETE_ECLIST, 2, 1) {
|
|
ARG(1, T_ECLIST);
|
|
ARG(2, T_ECLIST);
|
|
METHOD_CONSTRUCTOR("delete");
|
|
RESULT(T_ECLIST, ad, [[ eclist_filter(fpool, v1.val.ad, &v2, 0) ]]);
|
|
}
|
|
|
|
INST(FI_ECLIST_DELETE_SET, 2, 1) {
|
|
ARG(1, T_ECLIST);
|
|
ARG(2, T_SET);
|
|
METHOD_CONSTRUCTOR("delete");
|
|
|
|
if (!eclist_set_type(v2.val.t))
|
|
runtime("Mismatched set type");
|
|
|
|
RESULT(T_ECLIST, ad, [[ eclist_filter(fpool, v1.val.ad, &v2, 0) ]]);
|
|
}
|
|
|
|
INST(FI_LCLIST_DELETE_LC, 2, 1) {
|
|
ARG(1, T_LCLIST);
|
|
ARG(2, T_LC);
|
|
METHOD_CONSTRUCTOR("delete");
|
|
RESULT(T_LCLIST, ad, [[ lc_set_del(fpool, v1.val.ad, v2.val.lc) ]]);
|
|
}
|
|
|
|
INST(FI_LCLIST_DELETE_LCLIST, 2, 1) {
|
|
ARG(1, T_LCLIST);
|
|
ARG(2, T_LCLIST);
|
|
METHOD_CONSTRUCTOR("delete");
|
|
RESULT(T_LCLIST, ad, [[ lclist_filter(fpool, v1.val.ad, &v2, 0) ]]);
|
|
}
|
|
|
|
INST(FI_LCLIST_DELETE_SET, 2, 1) {
|
|
ARG(1, T_LCLIST);
|
|
ARG(2, T_SET);
|
|
METHOD_CONSTRUCTOR("delete");
|
|
|
|
if (!lclist_set_type(v2.val.t))
|
|
runtime("Mismatched set type");
|
|
|
|
RESULT(T_LCLIST, ad, [[ lclist_filter(fpool, v1.val.ad, &v2, 0) ]]);
|
|
}
|
|
|
|
INST(FI_PATH_FILTER_SET, 2, 1) {
|
|
ARG(1, T_PATH);
|
|
ARG(2, T_SET);
|
|
METHOD_CONSTRUCTOR("filter");
|
|
|
|
if (!path_set_type(v2.val.t))
|
|
runtime("Mismatched set type");
|
|
|
|
RESULT(T_PATH, ad, [[ as_path_filter(fpool, v1.val.ad, &v2, 1) ]]);
|
|
}
|
|
|
|
INST(FI_CLIST_FILTER_CLIST, 2, 1) {
|
|
ARG(1, T_CLIST);
|
|
ARG(2, T_CLIST);
|
|
METHOD_CONSTRUCTOR("filter");
|
|
RESULT(T_CLIST, ad, [[ clist_filter(fpool, v1.val.ad, &v2, 1) ]]);
|
|
}
|
|
|
|
INST(FI_CLIST_FILTER_SET, 2, 1) {
|
|
ARG(1, T_CLIST);
|
|
ARG(2, T_SET);
|
|
METHOD_CONSTRUCTOR("filter");
|
|
|
|
if (!clist_set_type(v2.val.t, &(struct f_val){}))
|
|
runtime("Mismatched set type");
|
|
|
|
RESULT(T_CLIST, ad, [[ clist_filter(fpool, v1.val.ad, &v2, 1) ]]);
|
|
}
|
|
|
|
INST(FI_ECLIST_FILTER_ECLIST, 2, 1) {
|
|
ARG(1, T_ECLIST);
|
|
ARG(2, T_ECLIST);
|
|
METHOD_CONSTRUCTOR("filter");
|
|
RESULT(T_ECLIST, ad, [[ eclist_filter(fpool, v1.val.ad, &v2, 1) ]]);
|
|
}
|
|
|
|
INST(FI_ECLIST_FILTER_SET, 2, 1) {
|
|
ARG(1, T_ECLIST);
|
|
ARG(2, T_SET);
|
|
METHOD_CONSTRUCTOR("filter");
|
|
|
|
if (!eclist_set_type(v2.val.t))
|
|
runtime("Mismatched set type");
|
|
|
|
RESULT(T_ECLIST, ad, [[ eclist_filter(fpool, v1.val.ad, &v2, 1) ]]);
|
|
}
|
|
|
|
INST(FI_LCLIST_FILTER_LCLIST, 2, 1) {
|
|
ARG(1, T_LCLIST);
|
|
ARG(2, T_LCLIST);
|
|
METHOD_CONSTRUCTOR("filter");
|
|
RESULT(T_LCLIST, ad, [[ lclist_filter(fpool, v1.val.ad, &v2, 1) ]]);
|
|
}
|
|
|
|
INST(FI_LCLIST_FILTER_SET, 2, 1) {
|
|
ARG(1, T_LCLIST);
|
|
ARG(2, T_SET);
|
|
METHOD_CONSTRUCTOR("filter");
|
|
|
|
if (!lclist_set_type(v2.val.t))
|
|
runtime("Mismatched set type");
|
|
|
|
RESULT(T_LCLIST, ad, [[ lclist_filter(fpool, v1.val.ad, &v2, 1) ]]);
|
|
}
|
|
|
|
INST(FI_ROA_CHECK, 2, 1) { /* ROA Check */
|
|
NEVER_CONSTANT;
|
|
ARG(1, T_NET);
|
|
ARG(2, T_INT);
|
|
RTC(3);
|
|
rtable *table = rtc->table;
|
|
|
|
u32 as = v2.val.i;
|
|
|
|
if (!table)
|
|
runtime("Missing ROA table");
|
|
|
|
if (table->addr_type != NET_ROA4 && table->addr_type != NET_ROA6)
|
|
runtime("Table type must be either ROA4 or ROA6");
|
|
|
|
if (table->addr_type != (v1.val.net->type == NET_IP4 ? NET_ROA4 : NET_ROA6))
|
|
RESULT(T_ENUM_ROA, i, ROA_UNKNOWN); /* Prefix and table type mismatch */
|
|
else
|
|
RESULT(T_ENUM_ROA, i, [[ net_roa_check(table, v1.val.net, as) ]]);
|
|
|
|
}
|
|
|
|
INST(FI_FROM_HEX, 1, 1) { /* Convert hex text to bytestring */
|
|
ARG(1, T_STRING);
|
|
|
|
int len = bstrhextobin(v1.val.s, NULL);
|
|
if (len < 0)
|
|
runtime("Invalid hex string");
|
|
|
|
struct adata *bs;
|
|
bs = falloc(sizeof(struct adata) + len);
|
|
bs->length = bstrhextobin(v1.val.s, bs->data);
|
|
ASSERT(bs->length == (size_t) len);
|
|
|
|
RESULT(T_BYTESTRING, bs, bs);
|
|
}
|
|
|
|
INST(FI_FORMAT, 1, 1) { /* Format */
|
|
ARG_ANY(1);
|
|
RESULT(T_STRING, s, val_format_str(fpool, &v1));
|
|
}
|
|
|
|
INST(FI_ASSERT, 1, 0) { /* Birdtest Assert */
|
|
NEVER_CONSTANT;
|
|
ARG(1, T_BOOL);
|
|
|
|
FID_MEMBER(char *, s, [[strcmp(f1->s, f2->s)]], "string %s", item->s);
|
|
|
|
ASSERT(s);
|
|
|
|
if (!bt_assert_hook)
|
|
runtime("No bt_assert hook registered, can't assert");
|
|
|
|
bt_assert_hook(v1.val.i, what);
|
|
}
|