0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2025-01-18 15:01:53 +00:00
bird/lib/timer.c
Maria Matejka 94eb0858c2 Converting the former BFD loop to a universal IO loop and protocol loop.
There is a simple universal IO loop, taking care of events, timers and
sockets. Primarily, one instance of a protocol should use exactly one IO
loop to do all its work, as is now done in BFD.

Contrary to previous versions, the loop is now launched and cleaned by
the nest/proto.c code, allowing for a protocol to just request its own
loop by setting the loop's lock order in config higher than the_bird.

It is not supported nor checked if any protocol changed the requested
lock order in reconfigure. No protocol should do it at all.
2021-11-22 19:05:43 +01:00

331 lines
7.2 KiB
C

/*
* BIRD -- Timers
*
* (c) 2013--2017 Ondrej Zajicek <santiago@crfreenet.org>
* (c) 2013--2017 CZ.NIC z.s.p.o.
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
/**
* DOC: Timers
*
* Timers are resources which represent a wish of a module to call a function at
* the specified time. The timer code does not guarantee exact timing, only that
* a timer function will not be called before the requested time.
*
* In BIRD, time is represented by values of the &btime type which is signed
* 64-bit integer interpreted as a relative number of microseconds since some
* fixed time point in past. The current time can be obtained by current_time()
* function with reasonable accuracy and is monotonic. There is also a current
* 'wall-clock' real time obtainable by current_real_time() reported by OS.
*
* Each timer is described by a &timer structure containing a pointer to the
* handler function (@hook), data private to this function (@data), time the
* function should be called at (@expires, 0 for inactive timers), for the other
* fields see |timer.h|.
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "nest/bird.h"
#include "lib/coro.h"
#include "lib/heap.h"
#include "lib/resource.h"
#include "lib/timer.h"
#include <pthread.h>
_Atomic btime last_time;
_Atomic btime real_time;
void wakeup_kick_current(void);
#define TIMER_LESS(a,b) ((a)->expires < (b)->expires)
#define TIMER_SWAP(heap,a,b,t) (t = heap[a], heap[a] = heap[b], heap[b] = t, \
heap[a]->index = (a), heap[b]->index = (b))
static void
tm_free(resource *r)
{
timer *t = (void *) r;
tm_stop(t);
}
static void
tm_dump(resource *r)
{
timer *t = (void *) r;
debug("(code %p, data %p, ", t->hook, t->data);
if (t->randomize)
debug("rand %d, ", t->randomize);
if (t->recurrent)
debug("recur %d, ", t->recurrent);
if (t->expires)
debug("in loop %p expires in %d ms)\n", t->loop, (t->expires - current_time()) TO_MS);
else
debug("inactive)\n");
}
static struct resclass tm_class = {
"Timer",
sizeof(timer),
tm_free,
tm_dump,
NULL,
NULL
};
timer *
tm_new(pool *p)
{
timer *t = ralloc(p, &tm_class);
t->index = -1;
return t;
}
static void
tm_set_in_tl(timer *t, btime when, struct timeloop *local_timeloop)
{
uint tc = timers_count(local_timeloop);
if (!t->expires)
{
t->index = ++tc;
t->expires = when;
BUFFER_PUSH(local_timeloop->timers) = t;
HEAP_INSERT(local_timeloop->timers.data, tc, timer *, TIMER_LESS, TIMER_SWAP);
}
else if (t->expires < when)
{
t->expires = when;
HEAP_INCREASE(local_timeloop->timers.data, tc, timer *, TIMER_LESS, TIMER_SWAP, t->index);
}
else if (t->expires > when)
{
t->expires = when;
HEAP_DECREASE(local_timeloop->timers.data, tc, timer *, TIMER_LESS, TIMER_SWAP, t->index);
}
t->loop = local_timeloop;
if ((t->index == 1) && (local_timeloop->coro != this_coro))
birdloop_ping(local_timeloop->loop);
}
void
tm_set_in(timer *t, btime when, struct birdloop *loop)
{
ASSERT_DIE(birdloop_inside(loop));
tm_set_in_tl(t, when, birdloop_time_loop(loop));
}
void
tm_stop(timer *t)
{
if (!t->expires)
return;
TLOCK_TIMER_ASSERT(t->loop);
uint tc = timers_count(t->loop);
HEAP_DELETE(t->loop->timers.data, tc, timer *, TIMER_LESS, TIMER_SWAP, t->index);
BUFFER_POP(t->loop->timers);
t->index = -1;
t->expires = 0;
t->loop = NULL;
}
void
timers_init(struct timeloop *loop, pool *p)
{
TLOCK_TIMER_ASSERT(loop);
BUFFER_INIT(loop->timers, p, 4);
BUFFER_PUSH(loop->timers) = NULL;
}
void io_log_event(void *hook, void *data);
void
timers_fire(struct timeloop *loop, int io_log)
{
TLOCK_TIMER_ASSERT(loop);
btime base_time;
timer *t;
times_update();
base_time = current_time();
while (t = timers_first(loop))
{
if (t->expires > base_time)
return;
if (t->recurrent)
{
btime when = t->expires + t->recurrent;
if (when <= base_time)
when = base_time + t->recurrent;
if (t->randomize)
when += random() % (t->randomize + 1);
tm_set_in_tl(t, when, loop);
}
else
tm_stop(t);
/* This is ugly hack, we want to log just timers executed from the main I/O loop */
if (io_log)
io_log_event(t->hook, t->data);
t->hook(t);
}
}
/**
* tm_parse_time - parse a date and time
* @x: time string
*
* tm_parse_time() takes a textual representation of a date and time
* (yyyy-mm-dd[ hh:mm:ss[.sss]]) and converts it to the corresponding value of
* type &btime.
*/
btime
tm_parse_time(const char *x)
{
struct tm tm = {};
int usec, n1, n2, n3, r;
r = sscanf(x, "%d-%d-%d%n %d:%d:%d%n.%d%n",
&tm.tm_year, &tm.tm_mon, &tm.tm_mday, &n1,
&tm.tm_hour, &tm.tm_min, &tm.tm_sec, &n2,
&usec, &n3);
if ((r == 3) && !x[n1])
tm.tm_hour = tm.tm_min = tm.tm_sec = usec = 0;
else if ((r == 6) && !x[n2])
usec = 0;
else if ((r == 7) && !x[n3])
{
/* Convert subsecond digits to proper precision */
int digits = n3 - n2 - 1;
if ((usec < 0) || (usec > 999999) || (digits < 1) || (digits > 6))
return 0;
while (digits++ < 6)
usec *= 10;
}
else
return 0;
tm.tm_mon--;
tm.tm_year -= 1900;
s64 ts = mktime(&tm);
if ((ts == (s64) (time_t) -1) || (ts < 0) || (ts > ((s64) 1 << 40)))
return 0;
return ts S + usec;
}
/**
* tm_format_time - convert date and time to textual representation
* @x: destination buffer of size %TM_DATETIME_BUFFER_SIZE
* @fmt: specification of resulting textual representation of the time
* @t: time
*
* This function formats the given relative time value @t to a textual
* date/time representation (dd-mm-yyyy hh:mm:ss) in real time.
*/
void
tm_format_time(char *x, struct timeformat *fmt, btime t)
{
btime dt = current_time() - t;
btime rt = current_real_time() - dt;
int v1 = !fmt->limit || (dt < fmt->limit);
if (!tm_format_real_time(x, TM_DATETIME_BUFFER_SIZE, v1 ? fmt->fmt1 : fmt->fmt2, rt))
strcpy(x, "<error>");
}
/* Replace %f in format string with usec scaled to requested precision */
static int
strfusec(char *buf, int size, const char *fmt, uint usec)
{
char *str = buf;
int parity = 0;
while (*fmt)
{
if (!size)
return 0;
if ((fmt[0] == '%') && (!parity) &&
((fmt[1] == 'f') || (fmt[1] >= '1') && (fmt[1] <= '6') && (fmt[2] == 'f')))
{
int digits = (fmt[1] == 'f') ? 6 : (fmt[1] - '0');
uint d = digits, u = usec;
/* Convert microseconds to requested precision */
while (d++ < 6)
u /= 10;
int num = bsnprintf(str, size, "%0*u", digits, u);
if (num < 0)
return 0;
fmt += (fmt[1] == 'f') ? 2 : 3;
ADVANCE(str, size, num);
}
else
{
/* Handle '%%' expression */
parity = (*fmt == '%') ? !parity : 0;
*str++ = *fmt++;
size--;
}
}
if (!size)
return 0;
*str = 0;
return str - buf;
}
int
tm_format_real_time(char *x, size_t max, const char *fmt, btime t)
{
s64 t1 = t TO_S;
s64 t2 = t - t1 S;
time_t ts = t1;
struct tm tm;
if (!localtime_r(&ts, &tm))
return 0;
size_t tbuf_size = MIN(max, 4096);
byte *tbuf = alloca(tbuf_size);
if (!strfusec(tbuf, tbuf_size, fmt, t2))
return 0;
if (!strftime(x, max, tbuf, &tm))
return 0;
return 1;
}