mirror of
https://gitlab.nic.cz/labs/bird.git
synced 2025-01-07 01:21:54 +00:00
8f79e6b93e
Add BGP channel option 'next hop prefer global' that modifies BGP recursive next hop resolution to use global next hop IPv6 address instead of link-local next hop IPv6 address for immediate next hop of received routes.
3674 lines
86 KiB
C
3674 lines
86 KiB
C
/*
|
|
* BIRD -- Routing Tables
|
|
*
|
|
* (c) 1998--2000 Martin Mares <mj@ucw.cz>
|
|
*
|
|
* Can be freely distributed and used under the terms of the GNU GPL.
|
|
*/
|
|
|
|
/**
|
|
* DOC: Routing tables
|
|
*
|
|
* Routing tables are probably the most important structures BIRD uses. They
|
|
* hold all the information about known networks, the associated routes and
|
|
* their attributes.
|
|
*
|
|
* There are multiple routing tables (a primary one together with any
|
|
* number of secondary ones if requested by the configuration). Each table
|
|
* is basically a FIB containing entries describing the individual
|
|
* destination networks. For each network (represented by structure &net),
|
|
* there is a one-way linked list of route entries (&rte), the first entry
|
|
* on the list being the best one (i.e., the one we currently use
|
|
* for routing), the order of the other ones is undetermined.
|
|
*
|
|
* The &rte contains information specific to the route (preference, protocol
|
|
* metrics, time of last modification etc.) and a pointer to a &rta structure
|
|
* (see the route attribute module for a precise explanation) holding the
|
|
* remaining route attributes which are expected to be shared by multiple
|
|
* routes in order to conserve memory.
|
|
*
|
|
* There are several mechanisms that allow automatic update of routes in one
|
|
* routing table (dst) as a result of changes in another routing table (src).
|
|
* They handle issues of recursive next hop resolving, flowspec validation and
|
|
* RPKI validation.
|
|
*
|
|
* The first such mechanism is handling of recursive next hops. A route in the
|
|
* dst table has an indirect next hop address, which is resolved through a route
|
|
* in the src table (which may also be the same table) to get an immediate next
|
|
* hop. This is implemented using structure &hostcache attached to the src
|
|
* table, which contains &hostentry structures for each tracked next hop
|
|
* address. These structures are linked from recursive routes in dst tables,
|
|
* possibly multiple routes sharing one hostentry (as many routes may have the
|
|
* same indirect next hop). There is also a trie in the hostcache, which matches
|
|
* all prefixes that may influence resolving of tracked next hops.
|
|
*
|
|
* When a best route changes in the src table, the hostcache is notified using
|
|
* rt_notify_hostcache(), which immediately checks using the trie whether the
|
|
* change is relevant and if it is, then it schedules asynchronous hostcache
|
|
* recomputation. The recomputation is done by rt_update_hostcache() (called
|
|
* from rt_event() of src table), it walks through all hostentries and resolves
|
|
* them (by rt_update_hostentry()). It also updates the trie. If a change in
|
|
* hostentry resolution was found, then it schedules asynchronous nexthop
|
|
* recomputation of associated dst table. That is done by rt_next_hop_update()
|
|
* (called from rt_event() of dst table), it iterates over all routes in the dst
|
|
* table and re-examines their hostentries for changes. Note that in contrast to
|
|
* hostcache update, next hop update can be interrupted by main loop. These two
|
|
* full-table walks (over hostcache and dst table) are necessary due to absence
|
|
* of direct lookups (route -> affected nexthop, nexthop -> its route).
|
|
*
|
|
* The second mechanism is for flowspec validation, where validity of flowspec
|
|
* routes depends of resolving their network prefixes in IP routing tables. This
|
|
* is similar to the recursive next hop mechanism, but simpler as there are no
|
|
* intermediate hostcache and hostentries (because flows are less likely to
|
|
* share common net prefix than routes sharing a common next hop). In src table,
|
|
* there is a list of dst tables (list flowspec_links), this list is updated by
|
|
* flowpsec channels (by rt_flowspec_link() and rt_flowspec_unlink() during
|
|
* channel start/stop). Each dst table has its own trie of prefixes that may
|
|
* influence validation of flowspec routes in it (flowspec_trie).
|
|
*
|
|
* When a best route changes in the src table, rt_flowspec_notify() immediately
|
|
* checks all dst tables from the list using their tries to see whether the
|
|
* change is relevant for them. If it is, then an asynchronous re-validation of
|
|
* flowspec routes in the dst table is scheduled. That is also done by function
|
|
* rt_next_hop_update(), like nexthop recomputation above. It iterates over all
|
|
* flowspec routes and re-validates them. It also recalculates the trie.
|
|
*
|
|
* Note that in contrast to the hostcache update, here the trie is recalculated
|
|
* during the rt_next_hop_update(), which may be interleaved with IP route
|
|
* updates. The trie is flushed at the beginning of recalculation, which means
|
|
* that such updates may use partial trie to see if they are relevant. But it
|
|
* works anyway! Either affected flowspec was already re-validated and added to
|
|
* the trie, then IP route change would match the trie and trigger a next round
|
|
* of re-validation, or it was not yet re-validated and added to the trie, but
|
|
* will be re-validated later in this round anyway.
|
|
*
|
|
* The third mechanism is used for RPKI re-validation of IP routes and it is the
|
|
* simplest. It is just a list of subscribers in src table, who are notified
|
|
* when any change happened, but only after a settle time. Also, in RPKI case
|
|
* the dst is not a table, but a channel, who refeeds routes through a filter.
|
|
*/
|
|
|
|
#undef LOCAL_DEBUG
|
|
|
|
#include "nest/bird.h"
|
|
#include "nest/route.h"
|
|
#include "nest/protocol.h"
|
|
#include "nest/iface.h"
|
|
#include "lib/resource.h"
|
|
#include "lib/event.h"
|
|
#include "lib/timer.h"
|
|
#include "lib/string.h"
|
|
#include "conf/conf.h"
|
|
#include "filter/filter.h"
|
|
#include "filter/data.h"
|
|
#include "lib/hash.h"
|
|
#include "lib/string.h"
|
|
#include "lib/alloca.h"
|
|
#include "lib/flowspec.h"
|
|
|
|
#ifdef CONFIG_BGP
|
|
#include "proto/bgp/bgp.h"
|
|
#endif
|
|
|
|
pool *rt_table_pool;
|
|
|
|
static slab *rte_slab;
|
|
static linpool *rte_update_pool;
|
|
|
|
list routing_tables;
|
|
|
|
static void rt_free_hostcache(rtable *tab);
|
|
static void rt_notify_hostcache(rtable *tab, net *net);
|
|
static void rt_update_hostcache(rtable *tab);
|
|
static void rt_next_hop_update(rtable *tab);
|
|
static inline void rt_prune_table(rtable *tab);
|
|
static inline void rt_schedule_notify(rtable *tab);
|
|
static void rt_flowspec_notify(rtable *tab, net *net);
|
|
static void rt_kick_prune_timer(rtable *tab);
|
|
|
|
|
|
static void
|
|
net_init_with_trie(struct fib *f, void *N)
|
|
{
|
|
rtable *tab = SKIP_BACK(rtable, fib, f);
|
|
net *n = N;
|
|
|
|
if (tab->trie)
|
|
trie_add_prefix(tab->trie, n->n.addr, n->n.addr->pxlen, n->n.addr->pxlen);
|
|
|
|
if (tab->trie_new)
|
|
trie_add_prefix(tab->trie_new, n->n.addr, n->n.addr->pxlen, n->n.addr->pxlen);
|
|
}
|
|
|
|
static inline net *
|
|
net_route_ip4_trie(rtable *t, const net_addr_ip4 *n0)
|
|
{
|
|
TRIE_WALK_TO_ROOT_IP4(t->trie, n0, n)
|
|
{
|
|
net *r;
|
|
if (r = net_find_valid(t, (net_addr *) &n))
|
|
return r;
|
|
}
|
|
TRIE_WALK_TO_ROOT_END;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline net *
|
|
net_route_vpn4_trie(rtable *t, const net_addr_vpn4 *n0)
|
|
{
|
|
TRIE_WALK_TO_ROOT_IP4(t->trie, (const net_addr_ip4 *) n0, px)
|
|
{
|
|
net_addr_vpn4 n = NET_ADDR_VPN4(px.prefix, px.pxlen, n0->rd);
|
|
|
|
net *r;
|
|
if (r = net_find_valid(t, (net_addr *) &n))
|
|
return r;
|
|
}
|
|
TRIE_WALK_TO_ROOT_END;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline net *
|
|
net_route_ip6_trie(rtable *t, const net_addr_ip6 *n0)
|
|
{
|
|
TRIE_WALK_TO_ROOT_IP6(t->trie, n0, n)
|
|
{
|
|
net *r;
|
|
if (r = net_find_valid(t, (net_addr *) &n))
|
|
return r;
|
|
}
|
|
TRIE_WALK_TO_ROOT_END;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline net *
|
|
net_route_vpn6_trie(rtable *t, const net_addr_vpn6 *n0)
|
|
{
|
|
TRIE_WALK_TO_ROOT_IP6(t->trie, (const net_addr_ip6 *) n0, px)
|
|
{
|
|
net_addr_vpn6 n = NET_ADDR_VPN6(px.prefix, px.pxlen, n0->rd);
|
|
|
|
net *r;
|
|
if (r = net_find_valid(t, (net_addr *) &n))
|
|
return r;
|
|
}
|
|
TRIE_WALK_TO_ROOT_END;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline void *
|
|
net_route_ip6_sadr_trie(rtable *t, const net_addr_ip6_sadr *n0)
|
|
{
|
|
TRIE_WALK_TO_ROOT_IP6(t->trie, (const net_addr_ip6 *) n0, px)
|
|
{
|
|
net_addr_ip6_sadr n = NET_ADDR_IP6_SADR(px.prefix, px.pxlen, n0->src_prefix, n0->src_pxlen);
|
|
net *best = NULL;
|
|
int best_pxlen = 0;
|
|
|
|
/* We need to do dst first matching. Since sadr addresses are hashed on dst
|
|
prefix only, find the hash table chain and go through it to find the
|
|
match with the longest matching src prefix. */
|
|
for (struct fib_node *fn = fib_get_chain(&t->fib, (net_addr *) &n); fn; fn = fn->next)
|
|
{
|
|
net_addr_ip6_sadr *a = (void *) fn->addr;
|
|
|
|
if (net_equal_dst_ip6_sadr(&n, a) &&
|
|
net_in_net_src_ip6_sadr(&n, a) &&
|
|
(a->src_pxlen >= best_pxlen))
|
|
{
|
|
best = fib_node_to_user(&t->fib, fn);
|
|
best_pxlen = a->src_pxlen;
|
|
}
|
|
}
|
|
|
|
if (best)
|
|
return best;
|
|
}
|
|
TRIE_WALK_TO_ROOT_END;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline net *
|
|
net_route_ip4_fib(rtable *t, const net_addr_ip4 *n0)
|
|
{
|
|
net_addr_ip4 n;
|
|
net_copy_ip4(&n, n0);
|
|
|
|
net *r;
|
|
while (r = net_find_valid(t, (net_addr *) &n), (!r) && (n.pxlen > 0))
|
|
{
|
|
n.pxlen--;
|
|
ip4_clrbit(&n.prefix, n.pxlen);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static inline net *
|
|
net_route_vpn4_fib(rtable *t, const net_addr_vpn4 *n0)
|
|
{
|
|
net_addr_vpn4 n;
|
|
net_copy_vpn4(&n, n0);
|
|
|
|
net *r;
|
|
while (r = net_find_valid(t, (net_addr *) &n), (!r) && (n.pxlen > 0))
|
|
{
|
|
n.pxlen--;
|
|
ip4_clrbit(&n.prefix, n.pxlen);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static inline net *
|
|
net_route_ip6_fib(rtable *t, const net_addr_ip6 *n0)
|
|
{
|
|
net_addr_ip6 n;
|
|
net_copy_ip6(&n, n0);
|
|
|
|
net *r;
|
|
while (r = net_find_valid(t, (net_addr *) &n), (!r) && (n.pxlen > 0))
|
|
{
|
|
n.pxlen--;
|
|
ip6_clrbit(&n.prefix, n.pxlen);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static inline net *
|
|
net_route_vpn6_fib(rtable *t, const net_addr_vpn6 *n0)
|
|
{
|
|
net_addr_vpn6 n;
|
|
net_copy_vpn6(&n, n0);
|
|
|
|
net *r;
|
|
while (r = net_find_valid(t, (net_addr *) &n), (!r) && (n.pxlen > 0))
|
|
{
|
|
n.pxlen--;
|
|
ip6_clrbit(&n.prefix, n.pxlen);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static inline void *
|
|
net_route_ip6_sadr_fib(rtable *t, const net_addr_ip6_sadr *n0)
|
|
{
|
|
net_addr_ip6_sadr n;
|
|
net_copy_ip6_sadr(&n, n0);
|
|
|
|
while (1)
|
|
{
|
|
net *best = NULL;
|
|
int best_pxlen = 0;
|
|
|
|
/* We need to do dst first matching. Since sadr addresses are hashed on dst
|
|
prefix only, find the hash table chain and go through it to find the
|
|
match with the longest matching src prefix. */
|
|
for (struct fib_node *fn = fib_get_chain(&t->fib, (net_addr *) &n); fn; fn = fn->next)
|
|
{
|
|
net_addr_ip6_sadr *a = (void *) fn->addr;
|
|
|
|
if (net_equal_dst_ip6_sadr(&n, a) &&
|
|
net_in_net_src_ip6_sadr(&n, a) &&
|
|
(a->src_pxlen >= best_pxlen))
|
|
{
|
|
best = fib_node_to_user(&t->fib, fn);
|
|
best_pxlen = a->src_pxlen;
|
|
}
|
|
}
|
|
|
|
if (best)
|
|
return best;
|
|
|
|
if (!n.dst_pxlen)
|
|
break;
|
|
|
|
n.dst_pxlen--;
|
|
ip6_clrbit(&n.dst_prefix, n.dst_pxlen);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
net *
|
|
net_route(rtable *tab, const net_addr *n)
|
|
{
|
|
ASSERT(tab->addr_type == n->type);
|
|
|
|
switch (n->type)
|
|
{
|
|
case NET_IP4:
|
|
if (tab->trie)
|
|
return net_route_ip4_trie(tab, (net_addr_ip4 *) n);
|
|
else
|
|
return net_route_ip4_fib (tab, (net_addr_ip4 *) n);
|
|
|
|
case NET_VPN4:
|
|
if (tab->trie)
|
|
return net_route_vpn4_trie(tab, (net_addr_vpn4 *) n);
|
|
else
|
|
return net_route_vpn4_fib (tab, (net_addr_vpn4 *) n);
|
|
|
|
case NET_IP6:
|
|
if (tab->trie)
|
|
return net_route_ip6_trie(tab, (net_addr_ip6 *) n);
|
|
else
|
|
return net_route_ip6_fib (tab, (net_addr_ip6 *) n);
|
|
|
|
case NET_VPN6:
|
|
if (tab->trie)
|
|
return net_route_vpn6_trie(tab, (net_addr_vpn6 *) n);
|
|
else
|
|
return net_route_vpn6_fib (tab, (net_addr_vpn6 *) n);
|
|
|
|
case NET_IP6_SADR:
|
|
if (tab->trie)
|
|
return net_route_ip6_sadr_trie(tab, (net_addr_ip6_sadr *) n);
|
|
else
|
|
return net_route_ip6_sadr_fib (tab, (net_addr_ip6_sadr *) n);
|
|
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
net_roa_check_ip4_trie(rtable *tab, const net_addr_ip4 *px, u32 asn)
|
|
{
|
|
int anything = 0;
|
|
|
|
TRIE_WALK_TO_ROOT_IP4(tab->trie, px, px0)
|
|
{
|
|
net_addr_roa4 roa0 = NET_ADDR_ROA4(px0.prefix, px0.pxlen, 0, 0);
|
|
|
|
struct fib_node *fn;
|
|
for (fn = fib_get_chain(&tab->fib, (net_addr *) &roa0); fn; fn = fn->next)
|
|
{
|
|
net_addr_roa4 *roa = (void *) fn->addr;
|
|
net *r = fib_node_to_user(&tab->fib, fn);
|
|
|
|
if (net_equal_prefix_roa4(roa, &roa0) && rte_is_valid(r->routes))
|
|
{
|
|
anything = 1;
|
|
if (asn && (roa->asn == asn) && (roa->max_pxlen >= px->pxlen))
|
|
return ROA_VALID;
|
|
}
|
|
}
|
|
}
|
|
TRIE_WALK_TO_ROOT_END;
|
|
|
|
return anything ? ROA_INVALID : ROA_UNKNOWN;
|
|
}
|
|
|
|
static int
|
|
net_roa_check_ip4_fib(rtable *tab, const net_addr_ip4 *px, u32 asn)
|
|
{
|
|
struct net_addr_roa4 n = NET_ADDR_ROA4(px->prefix, px->pxlen, 0, 0);
|
|
struct fib_node *fn;
|
|
int anything = 0;
|
|
|
|
while (1)
|
|
{
|
|
for (fn = fib_get_chain(&tab->fib, (net_addr *) &n); fn; fn = fn->next)
|
|
{
|
|
net_addr_roa4 *roa = (void *) fn->addr;
|
|
net *r = fib_node_to_user(&tab->fib, fn);
|
|
|
|
if (net_equal_prefix_roa4(roa, &n) && rte_is_valid(r->routes))
|
|
{
|
|
anything = 1;
|
|
if (asn && (roa->asn == asn) && (roa->max_pxlen >= px->pxlen))
|
|
return ROA_VALID;
|
|
}
|
|
}
|
|
|
|
if (n.pxlen == 0)
|
|
break;
|
|
|
|
n.pxlen--;
|
|
ip4_clrbit(&n.prefix, n.pxlen);
|
|
}
|
|
|
|
return anything ? ROA_INVALID : ROA_UNKNOWN;
|
|
}
|
|
|
|
static int
|
|
net_roa_check_ip6_trie(rtable *tab, const net_addr_ip6 *px, u32 asn)
|
|
{
|
|
int anything = 0;
|
|
|
|
TRIE_WALK_TO_ROOT_IP6(tab->trie, px, px0)
|
|
{
|
|
net_addr_roa6 roa0 = NET_ADDR_ROA6(px0.prefix, px0.pxlen, 0, 0);
|
|
|
|
struct fib_node *fn;
|
|
for (fn = fib_get_chain(&tab->fib, (net_addr *) &roa0); fn; fn = fn->next)
|
|
{
|
|
net_addr_roa6 *roa = (void *) fn->addr;
|
|
net *r = fib_node_to_user(&tab->fib, fn);
|
|
|
|
if (net_equal_prefix_roa6(roa, &roa0) && rte_is_valid(r->routes))
|
|
{
|
|
anything = 1;
|
|
if (asn && (roa->asn == asn) && (roa->max_pxlen >= px->pxlen))
|
|
return ROA_VALID;
|
|
}
|
|
}
|
|
}
|
|
TRIE_WALK_TO_ROOT_END;
|
|
|
|
return anything ? ROA_INVALID : ROA_UNKNOWN;
|
|
}
|
|
|
|
static int
|
|
net_roa_check_ip6_fib(rtable *tab, const net_addr_ip6 *px, u32 asn)
|
|
{
|
|
struct net_addr_roa6 n = NET_ADDR_ROA6(px->prefix, px->pxlen, 0, 0);
|
|
struct fib_node *fn;
|
|
int anything = 0;
|
|
|
|
while (1)
|
|
{
|
|
for (fn = fib_get_chain(&tab->fib, (net_addr *) &n); fn; fn = fn->next)
|
|
{
|
|
net_addr_roa6 *roa = (void *) fn->addr;
|
|
net *r = fib_node_to_user(&tab->fib, fn);
|
|
|
|
if (net_equal_prefix_roa6(roa, &n) && rte_is_valid(r->routes))
|
|
{
|
|
anything = 1;
|
|
if (asn && (roa->asn == asn) && (roa->max_pxlen >= px->pxlen))
|
|
return ROA_VALID;
|
|
}
|
|
}
|
|
|
|
if (n.pxlen == 0)
|
|
break;
|
|
|
|
n.pxlen--;
|
|
ip6_clrbit(&n.prefix, n.pxlen);
|
|
}
|
|
|
|
return anything ? ROA_INVALID : ROA_UNKNOWN;
|
|
}
|
|
|
|
/**
|
|
* roa_check - check validity of route origination in a ROA table
|
|
* @tab: ROA table
|
|
* @n: network prefix to check
|
|
* @asn: AS number of network prefix
|
|
*
|
|
* Implements RFC 6483 route validation for the given network prefix. The
|
|
* procedure is to find all candidate ROAs - ROAs whose prefixes cover the given
|
|
* network prefix. If there is no candidate ROA, return ROA_UNKNOWN. If there is
|
|
* a candidate ROA with matching ASN and maxlen field greater than or equal to
|
|
* the given prefix length, return ROA_VALID. Otherwise, return ROA_INVALID. If
|
|
* caller cannot determine origin AS, 0 could be used (in that case ROA_VALID
|
|
* cannot happen). Table @tab must have type NET_ROA4 or NET_ROA6, network @n
|
|
* must have type NET_IP4 or NET_IP6, respectively.
|
|
*/
|
|
int
|
|
net_roa_check(rtable *tab, const net_addr *n, u32 asn)
|
|
{
|
|
if ((tab->addr_type == NET_ROA4) && (n->type == NET_IP4))
|
|
{
|
|
if (tab->trie)
|
|
return net_roa_check_ip4_trie(tab, (const net_addr_ip4 *) n, asn);
|
|
else
|
|
return net_roa_check_ip4_fib (tab, (const net_addr_ip4 *) n, asn);
|
|
}
|
|
else if ((tab->addr_type == NET_ROA6) && (n->type == NET_IP6))
|
|
{
|
|
if (tab->trie)
|
|
return net_roa_check_ip6_trie(tab, (const net_addr_ip6 *) n, asn);
|
|
else
|
|
return net_roa_check_ip6_fib (tab, (const net_addr_ip6 *) n, asn);
|
|
}
|
|
else
|
|
return ROA_UNKNOWN; /* Should not happen */
|
|
}
|
|
|
|
/**
|
|
* rte_find - find a route
|
|
* @net: network node
|
|
* @src: route source
|
|
*
|
|
* The rte_find() function returns a route for destination @net
|
|
* which is from route source @src.
|
|
*/
|
|
rte *
|
|
rte_find(net *net, struct rte_src *src)
|
|
{
|
|
rte *e = net->routes;
|
|
|
|
while (e && e->src != src)
|
|
e = e->next;
|
|
return e;
|
|
}
|
|
|
|
/**
|
|
* rte_get_temp - get a temporary &rte
|
|
* @a: attributes to assign to the new route (a &rta; in case it's
|
|
* un-cached, rte_update() will create a cached copy automatically)
|
|
*
|
|
* Create a temporary &rte and bind it with the attributes @a.
|
|
* Also set route preference to the default preference set for
|
|
* the protocol.
|
|
*/
|
|
rte *
|
|
rte_get_temp(rta *a, struct rte_src *src)
|
|
{
|
|
rte *e = sl_alloc(rte_slab);
|
|
|
|
e->attrs = a;
|
|
e->id = 0;
|
|
e->flags = 0;
|
|
rt_lock_source(e->src = src);
|
|
return e;
|
|
}
|
|
|
|
rte *
|
|
rte_do_cow(rte *r)
|
|
{
|
|
rte *e = sl_alloc(rte_slab);
|
|
|
|
memcpy(e, r, sizeof(rte));
|
|
|
|
rt_lock_source(e->src);
|
|
e->attrs = rta_clone(r->attrs);
|
|
e->flags = 0;
|
|
return e;
|
|
}
|
|
|
|
/**
|
|
* rte_cow_rta - get a private writable copy of &rte with writable &rta
|
|
* @r: a route entry to be copied
|
|
* @lp: a linpool from which to allocate &rta
|
|
*
|
|
* rte_cow_rta() takes a &rte and prepares it and associated &rta for
|
|
* modification. There are three possibilities: First, both &rte and &rta are
|
|
* private copies, in that case they are returned unchanged. Second, &rte is
|
|
* private copy, but &rta is cached, in that case &rta is duplicated using
|
|
* rta_do_cow(). Third, both &rte is shared and &rta is cached, in that case
|
|
* both structures are duplicated by rte_do_cow() and rta_do_cow().
|
|
*
|
|
* Note that in the second case, cached &rta loses one reference, while private
|
|
* copy created by rta_do_cow() is a shallow copy sharing indirect data (eattrs,
|
|
* nexthops, ...) with it. To work properly, original shared &rta should have
|
|
* another reference during the life of created private copy.
|
|
*
|
|
* Result: a pointer to the new writable &rte with writable &rta.
|
|
*/
|
|
rte *
|
|
rte_cow_rta(rte *r, linpool *lp)
|
|
{
|
|
if (!rta_is_cached(r->attrs))
|
|
return r;
|
|
|
|
r = rte_cow(r);
|
|
rta *a = rta_do_cow(r->attrs, lp);
|
|
rta_free(r->attrs);
|
|
r->attrs = a;
|
|
return r;
|
|
}
|
|
|
|
static int /* Actually better or at least as good as */
|
|
rte_better(rte *new, rte *old)
|
|
{
|
|
int (*better)(rte *, rte *);
|
|
|
|
if (!rte_is_valid(old))
|
|
return 1;
|
|
if (!rte_is_valid(new))
|
|
return 0;
|
|
|
|
if (new->attrs->pref > old->attrs->pref)
|
|
return 1;
|
|
if (new->attrs->pref < old->attrs->pref)
|
|
return 0;
|
|
if (new->src->proto->proto != old->src->proto->proto)
|
|
{
|
|
/*
|
|
* If the user has configured protocol preferences, so that two different protocols
|
|
* have the same preference, try to break the tie by comparing addresses. Not too
|
|
* useful, but keeps the ordering of routes unambiguous.
|
|
*/
|
|
return new->src->proto->proto > old->src->proto->proto;
|
|
}
|
|
if (better = new->src->proto->rte_better)
|
|
return better(new, old);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
rte_mergable(rte *pri, rte *sec)
|
|
{
|
|
int (*mergable)(rte *, rte *);
|
|
|
|
if (!rte_is_valid(pri) || !rte_is_valid(sec))
|
|
return 0;
|
|
|
|
if (pri->attrs->pref != sec->attrs->pref)
|
|
return 0;
|
|
|
|
if (pri->src->proto->proto != sec->src->proto->proto)
|
|
return 0;
|
|
|
|
if (mergable = pri->src->proto->rte_mergable)
|
|
return mergable(pri, sec);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
rte_trace(struct channel *c, rte *e, int dir, char *msg)
|
|
{
|
|
log(L_TRACE "%s.%s %c %s %N %uL %uG %s",
|
|
c->proto->name, c->name ?: "?", dir, msg, e->net->n.addr, e->src->private_id, e->src->global_id,
|
|
rta_dest_name(e->attrs->dest));
|
|
}
|
|
|
|
static inline void
|
|
rte_trace_in(uint flag, struct channel *c, rte *e, char *msg)
|
|
{
|
|
if ((c->debug & flag) || (c->proto->debug & flag))
|
|
rte_trace(c, e, '>', msg);
|
|
}
|
|
|
|
static inline void
|
|
rte_trace_out(uint flag, struct channel *c, rte *e, char *msg)
|
|
{
|
|
if ((c->debug & flag) || (c->proto->debug & flag))
|
|
rte_trace(c, e, '<', msg);
|
|
}
|
|
|
|
static rte *
|
|
export_filter_(struct channel *c, rte *rt0, rte **rt_free, linpool *pool, int silent)
|
|
{
|
|
struct proto *p = c->proto;
|
|
const struct filter *filter = c->out_filter;
|
|
struct proto_stats *stats = &c->stats;
|
|
rte *rt;
|
|
int v;
|
|
|
|
rt = rt0;
|
|
*rt_free = NULL;
|
|
|
|
v = p->preexport ? p->preexport(c, rt) : 0;
|
|
if (v < 0)
|
|
{
|
|
if (silent)
|
|
goto reject;
|
|
|
|
stats->exp_updates_rejected++;
|
|
if (v == RIC_REJECT)
|
|
rte_trace_out(D_FILTERS, c, rt, "rejected by protocol");
|
|
goto reject;
|
|
}
|
|
if (v > 0)
|
|
{
|
|
if (!silent)
|
|
rte_trace_out(D_FILTERS, c, rt, "forced accept by protocol");
|
|
goto accept;
|
|
}
|
|
|
|
v = filter && ((filter == FILTER_REJECT) ||
|
|
(f_run(filter, &rt, pool,
|
|
(silent ? FF_SILENT : 0)) > F_ACCEPT));
|
|
if (v)
|
|
{
|
|
if (silent)
|
|
goto reject;
|
|
|
|
stats->exp_updates_filtered++;
|
|
rte_trace_out(D_FILTERS, c, rt, "filtered out");
|
|
goto reject;
|
|
}
|
|
|
|
accept:
|
|
if (rt != rt0)
|
|
*rt_free = rt;
|
|
return rt;
|
|
|
|
reject:
|
|
/* Discard temporary rte */
|
|
if (rt != rt0)
|
|
rte_free(rt);
|
|
return NULL;
|
|
}
|
|
|
|
static inline rte *
|
|
export_filter(struct channel *c, rte *rt0, rte **rt_free, int silent)
|
|
{
|
|
return export_filter_(c, rt0, rt_free, rte_update_pool, silent);
|
|
}
|
|
|
|
static void
|
|
do_rt_notify(struct channel *c, net *net, rte *new, rte *old, int refeed)
|
|
{
|
|
struct proto *p = c->proto;
|
|
struct proto_stats *stats = &c->stats;
|
|
|
|
if (refeed && new)
|
|
c->refeed_count++;
|
|
|
|
/* Apply export limit */
|
|
struct channel_limit *l = &c->out_limit;
|
|
if (l->action && !old && new)
|
|
{
|
|
if (stats->exp_routes >= l->limit)
|
|
channel_notify_limit(c, l, PLD_OUT, stats->exp_routes);
|
|
|
|
if (l->state == PLS_BLOCKED)
|
|
{
|
|
stats->exp_updates_rejected++;
|
|
rte_trace_out(D_FILTERS, c, new, "rejected [limit]");
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Apply export table */
|
|
if (c->out_table && !rte_update_out(c, net->n.addr, new, old, refeed))
|
|
return;
|
|
|
|
if (new)
|
|
stats->exp_updates_accepted++;
|
|
else
|
|
stats->exp_withdraws_accepted++;
|
|
|
|
if (old)
|
|
{
|
|
bmap_clear(&c->export_map, old->id);
|
|
stats->exp_routes--;
|
|
}
|
|
|
|
if (new)
|
|
{
|
|
bmap_set(&c->export_map, new->id);
|
|
stats->exp_routes++;
|
|
}
|
|
|
|
if (p->debug & D_ROUTES)
|
|
{
|
|
if (new && old)
|
|
rte_trace_out(D_ROUTES, c, new, "replaced");
|
|
else if (new)
|
|
rte_trace_out(D_ROUTES, c, new, "added");
|
|
else if (old)
|
|
rte_trace_out(D_ROUTES, c, old, "removed");
|
|
}
|
|
|
|
p->rt_notify(p, c, net, new, old);
|
|
}
|
|
|
|
static void
|
|
rt_notify_basic(struct channel *c, net *net, rte *new, rte *old, int refeed)
|
|
{
|
|
// struct proto *p = c->proto;
|
|
rte *new_free = NULL;
|
|
|
|
if (new)
|
|
c->stats.exp_updates_received++;
|
|
else
|
|
c->stats.exp_withdraws_received++;
|
|
|
|
if (new)
|
|
new = export_filter(c, new, &new_free, 0);
|
|
|
|
if (old && !bmap_test(&c->export_map, old->id))
|
|
old = NULL;
|
|
|
|
if (!new && !old)
|
|
return;
|
|
|
|
do_rt_notify(c, net, new, old, refeed);
|
|
|
|
/* Discard temporary rte */
|
|
if (new_free)
|
|
rte_free(new_free);
|
|
}
|
|
|
|
static void
|
|
rt_notify_accepted(struct channel *c, net *net, rte *new_changed, rte *old_changed, int refeed)
|
|
{
|
|
// struct proto *p = c->proto;
|
|
rte *new_best = NULL;
|
|
rte *old_best = NULL;
|
|
rte *new_free = NULL;
|
|
int new_first = 0;
|
|
|
|
/*
|
|
* We assume that there are no changes in net route order except (added)
|
|
* new_changed and (removed) old_changed. Therefore, the function is not
|
|
* compatible with deterministic_med (where nontrivial reordering can happen
|
|
* as a result of a route change) and with recomputation of recursive routes
|
|
* due to next hop update (where many routes can be changed in one step).
|
|
*
|
|
* Note that we need this assumption just for optimizations, we could just
|
|
* run full new_best recomputation otherwise.
|
|
*
|
|
* There are three cases:
|
|
* feed or old_best is old_changed -> we need to recompute new_best
|
|
* old_best is before new_changed -> new_best is old_best, ignore
|
|
* old_best is after new_changed -> try new_changed, otherwise old_best
|
|
*/
|
|
|
|
if (net->routes)
|
|
c->stats.exp_updates_received++;
|
|
else
|
|
c->stats.exp_withdraws_received++;
|
|
|
|
/* Find old_best - either old_changed, or route for net->routes */
|
|
if (old_changed && bmap_test(&c->export_map, old_changed->id))
|
|
old_best = old_changed;
|
|
else
|
|
{
|
|
for (rte *r = net->routes; rte_is_valid(r); r = r->next)
|
|
{
|
|
if (bmap_test(&c->export_map, r->id))
|
|
{
|
|
old_best = r;
|
|
break;
|
|
}
|
|
|
|
/* Note if new_changed found before old_best */
|
|
if (r == new_changed)
|
|
new_first = 1;
|
|
}
|
|
}
|
|
|
|
/* Find new_best */
|
|
if ((new_changed == old_changed) || (old_best == old_changed))
|
|
{
|
|
/* Feed or old_best changed -> find first accepted by filters */
|
|
for (rte *r = net->routes; rte_is_valid(r); r = r->next)
|
|
if (new_best = export_filter(c, r, &new_free, 0))
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* Other cases -> either new_changed, or old_best (and nothing changed) */
|
|
if (new_first && (new_changed = export_filter(c, new_changed, &new_free, 0)))
|
|
new_best = new_changed;
|
|
else
|
|
return;
|
|
}
|
|
|
|
if (!new_best && !old_best)
|
|
return;
|
|
|
|
do_rt_notify(c, net, new_best, old_best, refeed);
|
|
|
|
/* Discard temporary rte */
|
|
if (new_free)
|
|
rte_free(new_free);
|
|
}
|
|
|
|
|
|
static struct nexthop *
|
|
nexthop_merge_rta(struct nexthop *nhs, rta *a, linpool *pool, int max)
|
|
{
|
|
return nexthop_merge(nhs, &(a->nh), 1, 0, max, pool);
|
|
}
|
|
|
|
rte *
|
|
rt_export_merged(struct channel *c, net *net, rte **rt_free, linpool *pool, int silent)
|
|
{
|
|
// struct proto *p = c->proto;
|
|
struct nexthop *nhs = NULL;
|
|
rte *best0, *best, *rt0, *rt, *tmp;
|
|
|
|
best0 = net->routes;
|
|
*rt_free = NULL;
|
|
|
|
if (!rte_is_valid(best0))
|
|
return NULL;
|
|
|
|
best = export_filter_(c, best0, rt_free, pool, silent);
|
|
|
|
if (!best || !rte_is_reachable(best))
|
|
return best;
|
|
|
|
for (rt0 = best0->next; rt0; rt0 = rt0->next)
|
|
{
|
|
if (!rte_mergable(best0, rt0))
|
|
continue;
|
|
|
|
rt = export_filter_(c, rt0, &tmp, pool, 1);
|
|
|
|
if (!rt)
|
|
continue;
|
|
|
|
if (rte_is_reachable(rt))
|
|
nhs = nexthop_merge_rta(nhs, rt->attrs, pool, c->merge_limit);
|
|
|
|
if (tmp)
|
|
rte_free(tmp);
|
|
}
|
|
|
|
if (nhs)
|
|
{
|
|
nhs = nexthop_merge_rta(nhs, best->attrs, pool, c->merge_limit);
|
|
|
|
if (nhs->next)
|
|
{
|
|
best = rte_cow_rta(best, pool);
|
|
nexthop_link(best->attrs, nhs);
|
|
}
|
|
}
|
|
|
|
if (best != best0)
|
|
*rt_free = best;
|
|
|
|
return best;
|
|
}
|
|
|
|
|
|
static void
|
|
rt_notify_merged(struct channel *c, net *net, rte *new_changed, rte *old_changed,
|
|
rte *new_best, rte *old_best, int refeed)
|
|
{
|
|
// struct proto *p = c->proto;
|
|
rte *new_free = NULL;
|
|
|
|
/* We assume that all rte arguments are either NULL or rte_is_valid() */
|
|
|
|
/* This check should be done by the caller */
|
|
if (!new_best && !old_best)
|
|
return;
|
|
|
|
/* Check whether the change is relevant to the merged route */
|
|
if ((new_best == old_best) &&
|
|
(new_changed != old_changed) &&
|
|
!rte_mergable(new_best, new_changed) &&
|
|
!rte_mergable(old_best, old_changed))
|
|
return;
|
|
|
|
if (new_best)
|
|
c->stats.exp_updates_received++;
|
|
else
|
|
c->stats.exp_withdraws_received++;
|
|
|
|
/* Prepare new merged route */
|
|
if (new_best)
|
|
new_best = rt_export_merged(c, net, &new_free, rte_update_pool, 0);
|
|
|
|
/* Check old merged route */
|
|
if (old_best && !bmap_test(&c->export_map, old_best->id))
|
|
old_best = NULL;
|
|
|
|
if (!new_best && !old_best)
|
|
return;
|
|
|
|
do_rt_notify(c, net, new_best, old_best, refeed);
|
|
|
|
/* Discard temporary rte */
|
|
if (new_free)
|
|
rte_free(new_free);
|
|
}
|
|
|
|
|
|
/**
|
|
* rte_announce - announce a routing table change
|
|
* @tab: table the route has been added to
|
|
* @type: type of route announcement (RA_UNDEF or RA_ANY)
|
|
* @net: network in question
|
|
* @new: the new or changed route
|
|
* @old: the previous route replaced by the new one
|
|
* @new_best: the new best route for the same network
|
|
* @old_best: the previous best route for the same network
|
|
*
|
|
* This function gets a routing table update and announces it to all protocols
|
|
* that are connected to the same table by their channels.
|
|
*
|
|
* There are two ways of how routing table changes are announced. First, there
|
|
* is a change of just one route in @net (which may caused a change of the best
|
|
* route of the network). In this case @new and @old describes the changed route
|
|
* and @new_best and @old_best describes best routes. Other routes are not
|
|
* affected, but in sorted table the order of other routes might change.
|
|
*
|
|
* Second, There is a bulk change of multiple routes in @net, with shared best
|
|
* route selection. In such case separate route changes are described using
|
|
* @type of %RA_ANY, with @new and @old specifying the changed route, while
|
|
* @new_best and @old_best are NULL. After that, another notification is done
|
|
* where @new_best and @old_best are filled (may be the same), but @new and @old
|
|
* are NULL.
|
|
*
|
|
* The function announces the change to all associated channels. For each
|
|
* channel, an appropriate preprocessing is done according to channel &ra_mode.
|
|
* For example, %RA_OPTIMAL channels receive just changes of best routes.
|
|
*
|
|
* In general, we first call preexport() hook of a protocol, which performs
|
|
* basic checks on the route (each protocol has a right to veto or force accept
|
|
* of the route before any filter is asked). Then we consult an export filter
|
|
* of the channel and verify the old route in an export map of the channel.
|
|
* Finally, the rt_notify() hook of the protocol gets called.
|
|
*
|
|
* Note that there are also calls of rt_notify() hooks due to feed, but that is
|
|
* done outside of scope of rte_announce().
|
|
*/
|
|
static void
|
|
rte_announce(rtable *tab, uint type, net *net, rte *new, rte *old,
|
|
rte *new_best, rte *old_best)
|
|
{
|
|
if (!rte_is_valid(new))
|
|
new = NULL;
|
|
|
|
if (!rte_is_valid(old))
|
|
old = NULL;
|
|
|
|
if (!rte_is_valid(new_best))
|
|
new_best = NULL;
|
|
|
|
if (!rte_is_valid(old_best))
|
|
old_best = NULL;
|
|
|
|
if (!new && !old && !new_best && !old_best)
|
|
return;
|
|
|
|
if (new_best != old_best)
|
|
{
|
|
if (new_best)
|
|
new_best->sender->stats.pref_routes++;
|
|
if (old_best)
|
|
old_best->sender->stats.pref_routes--;
|
|
|
|
if (tab->hostcache)
|
|
rt_notify_hostcache(tab, net);
|
|
|
|
if (!EMPTY_LIST(tab->flowspec_links))
|
|
rt_flowspec_notify(tab, net);
|
|
}
|
|
|
|
rt_schedule_notify(tab);
|
|
|
|
struct channel *c; node *n;
|
|
WALK_LIST2(c, n, tab->channels, table_node)
|
|
{
|
|
if (c->export_state == ES_DOWN)
|
|
continue;
|
|
|
|
if (type && (type != c->ra_mode))
|
|
continue;
|
|
|
|
switch (c->ra_mode)
|
|
{
|
|
case RA_OPTIMAL:
|
|
if (new_best != old_best)
|
|
rt_notify_basic(c, net, new_best, old_best, 0);
|
|
break;
|
|
|
|
case RA_ANY:
|
|
if (new != old)
|
|
rt_notify_basic(c, net, new, old, 0);
|
|
break;
|
|
|
|
case RA_ACCEPTED:
|
|
rt_notify_accepted(c, net, new, old, 0);
|
|
break;
|
|
|
|
case RA_MERGED:
|
|
rt_notify_merged(c, net, new, old, new_best, old_best, 0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
rte_validate(rte *e)
|
|
{
|
|
int c;
|
|
net *n = e->net;
|
|
|
|
if (!net_validate(n->n.addr))
|
|
{
|
|
log(L_WARN "Ignoring bogus prefix %N received via %s",
|
|
n->n.addr, e->sender->proto->name);
|
|
return 0;
|
|
}
|
|
|
|
/* FIXME: better handling different nettypes */
|
|
c = !net_is_flow(n->n.addr) ?
|
|
net_classify(n->n.addr): (IADDR_HOST | SCOPE_UNIVERSE);
|
|
if ((c < 0) || !(c & IADDR_HOST) || ((c & IADDR_SCOPE_MASK) <= SCOPE_LINK))
|
|
{
|
|
log(L_WARN "Ignoring bogus route %N received via %s",
|
|
n->n.addr, e->sender->proto->name);
|
|
return 0;
|
|
}
|
|
|
|
if (net_type_match(n->n.addr, NB_DEST) == !e->attrs->dest)
|
|
{
|
|
/* Exception for flowspec that failed validation */
|
|
if (net_is_flow(n->n.addr) && (e->attrs->dest == RTD_UNREACHABLE))
|
|
return 1;
|
|
|
|
log(L_WARN "Ignoring route %N with invalid dest %d received via %s",
|
|
n->n.addr, e->attrs->dest, e->sender->proto->name);
|
|
return 0;
|
|
}
|
|
|
|
if ((e->attrs->dest == RTD_UNICAST) && !nexthop_is_sorted(&(e->attrs->nh)))
|
|
{
|
|
log(L_WARN "Ignoring unsorted multipath route %N received via %s",
|
|
n->n.addr, e->sender->proto->name);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* rte_free - delete a &rte
|
|
* @e: &rte to be deleted
|
|
*
|
|
* rte_free() deletes the given &rte from the routing table it's linked to.
|
|
*/
|
|
void
|
|
rte_free(rte *e)
|
|
{
|
|
rt_unlock_source(e->src);
|
|
if (rta_is_cached(e->attrs))
|
|
rta_free(e->attrs);
|
|
sl_free(e);
|
|
}
|
|
|
|
static inline void
|
|
rte_free_quick(rte *e)
|
|
{
|
|
rt_unlock_source(e->src);
|
|
rta_free(e->attrs);
|
|
sl_free(e);
|
|
}
|
|
|
|
static int
|
|
rte_same(rte *x, rte *y)
|
|
{
|
|
/* rte.flags are not checked, as they are mostly internal to rtable */
|
|
return
|
|
x->attrs == y->attrs &&
|
|
x->pflags == y->pflags &&
|
|
x->src == y->src &&
|
|
rte_is_filtered(x) == rte_is_filtered(y);
|
|
}
|
|
|
|
static inline int rte_is_ok(rte *e) { return e && !rte_is_filtered(e); }
|
|
|
|
static void
|
|
rte_recalculate(struct channel *c, net *net, rte *new, struct rte_src *src)
|
|
{
|
|
struct proto *p = c->proto;
|
|
struct rtable *table = c->table;
|
|
struct proto_stats *stats = &c->stats;
|
|
static struct tbf rl_pipe = TBF_DEFAULT_LOG_LIMITS;
|
|
rte *before_old = NULL;
|
|
rte *old_best = net->routes;
|
|
rte *old = NULL;
|
|
rte **k;
|
|
|
|
k = &net->routes; /* Find and remove original route from the same protocol */
|
|
while (old = *k)
|
|
{
|
|
if (old->src == src)
|
|
{
|
|
/* If there is the same route in the routing table but from
|
|
* a different sender, then there are two paths from the
|
|
* source protocol to this routing table through transparent
|
|
* pipes, which is not allowed.
|
|
*
|
|
* We log that and ignore the route. If it is withdraw, we
|
|
* ignore it completely (there might be 'spurious withdraws',
|
|
* see FIXME in do_rte_announce())
|
|
*/
|
|
if (old->sender->proto != p)
|
|
{
|
|
if (new)
|
|
{
|
|
log_rl(&rl_pipe, L_ERR "Pipe collision detected when sending %N to table %s",
|
|
net->n.addr, table->name);
|
|
rte_free_quick(new);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (new && rte_same(old, new))
|
|
{
|
|
/* No changes, ignore the new route and refresh the old one */
|
|
|
|
old->flags &= ~(REF_STALE | REF_DISCARD | REF_MODIFY);
|
|
|
|
if (!rte_is_filtered(new))
|
|
{
|
|
stats->imp_updates_ignored++;
|
|
rte_trace_in(D_ROUTES, c, new, "ignored");
|
|
}
|
|
|
|
rte_free_quick(new);
|
|
return;
|
|
}
|
|
*k = old->next;
|
|
table->rt_count--;
|
|
break;
|
|
}
|
|
k = &old->next;
|
|
before_old = old;
|
|
}
|
|
|
|
/* Save the last accessed position */
|
|
rte **pos = k;
|
|
|
|
if (!old)
|
|
before_old = NULL;
|
|
|
|
if (!old && !new)
|
|
{
|
|
stats->imp_withdraws_ignored++;
|
|
return;
|
|
}
|
|
|
|
int new_ok = rte_is_ok(new);
|
|
int old_ok = rte_is_ok(old);
|
|
|
|
struct channel_limit *l = &c->rx_limit;
|
|
if (l->action && !old && new && !c->in_table)
|
|
{
|
|
u32 all_routes = stats->imp_routes + stats->filt_routes;
|
|
|
|
if (all_routes >= l->limit)
|
|
channel_notify_limit(c, l, PLD_RX, all_routes);
|
|
|
|
if (l->state == PLS_BLOCKED)
|
|
{
|
|
/* In receive limit the situation is simple, old is NULL so
|
|
we just free new and exit like nothing happened */
|
|
|
|
stats->imp_updates_ignored++;
|
|
rte_trace_in(D_FILTERS, c, new, "ignored [limit]");
|
|
rte_free_quick(new);
|
|
return;
|
|
}
|
|
}
|
|
|
|
l = &c->in_limit;
|
|
if (l->action && !old_ok && new_ok)
|
|
{
|
|
if (stats->imp_routes >= l->limit)
|
|
channel_notify_limit(c, l, PLD_IN, stats->imp_routes);
|
|
|
|
if (l->state == PLS_BLOCKED)
|
|
{
|
|
/* In import limit the situation is more complicated. We
|
|
shouldn't just drop the route, we should handle it like
|
|
it was filtered. We also have to continue the route
|
|
processing if old or new is non-NULL, but we should exit
|
|
if both are NULL as this case is probably assumed to be
|
|
already handled. */
|
|
|
|
stats->imp_updates_ignored++;
|
|
rte_trace_in(D_FILTERS, c, new, "ignored [limit]");
|
|
|
|
if (c->in_keep_filtered)
|
|
new->flags |= REF_FILTERED;
|
|
else
|
|
{ rte_free_quick(new); new = NULL; }
|
|
|
|
/* Note that old && !new could be possible when
|
|
c->in_keep_filtered changed in the recent past. */
|
|
|
|
if (!old && !new)
|
|
return;
|
|
|
|
new_ok = 0;
|
|
goto skip_stats1;
|
|
}
|
|
}
|
|
|
|
if (new_ok)
|
|
stats->imp_updates_accepted++;
|
|
else if (old_ok)
|
|
stats->imp_withdraws_accepted++;
|
|
else
|
|
stats->imp_withdraws_ignored++;
|
|
|
|
if (old_ok || new_ok)
|
|
table->last_rt_change = current_time();
|
|
|
|
skip_stats1:
|
|
|
|
if (new)
|
|
rte_is_filtered(new) ? stats->filt_routes++ : stats->imp_routes++;
|
|
if (old)
|
|
rte_is_filtered(old) ? stats->filt_routes-- : stats->imp_routes--;
|
|
|
|
if (table->config->sorted)
|
|
{
|
|
/* If routes are sorted, just insert new route to appropriate position */
|
|
if (new)
|
|
{
|
|
if (before_old && !rte_better(new, before_old))
|
|
k = &before_old->next;
|
|
else
|
|
k = &net->routes;
|
|
|
|
for (; *k; k=&(*k)->next)
|
|
if (rte_better(new, *k))
|
|
break;
|
|
|
|
new->next = *k;
|
|
*k = new;
|
|
|
|
table->rt_count++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* If routes are not sorted, find the best route and move it on
|
|
the first position. There are several optimized cases. */
|
|
|
|
if (src->proto->rte_recalculate && src->proto->rte_recalculate(table, net, new, old, old_best))
|
|
goto do_recalculate;
|
|
|
|
if (new && rte_better(new, old_best))
|
|
{
|
|
/* The first case - the new route is cleary optimal,
|
|
we link it at the first position */
|
|
|
|
new->next = net->routes;
|
|
net->routes = new;
|
|
|
|
table->rt_count++;
|
|
}
|
|
else if (old == old_best)
|
|
{
|
|
/* The second case - the old best route disappeared, we add the
|
|
new route (if we have any) to the list (we don't care about
|
|
position) and then we elect the new optimal route and relink
|
|
that route at the first position and announce it. New optimal
|
|
route might be NULL if there is no more routes */
|
|
|
|
do_recalculate:
|
|
/* Add the new route to the list */
|
|
if (new)
|
|
{
|
|
new->next = *pos;
|
|
*pos = new;
|
|
|
|
table->rt_count++;
|
|
}
|
|
|
|
/* Find a new optimal route (if there is any) */
|
|
if (net->routes)
|
|
{
|
|
rte **bp = &net->routes;
|
|
for (k=&(*bp)->next; *k; k=&(*k)->next)
|
|
if (rte_better(*k, *bp))
|
|
bp = k;
|
|
|
|
/* And relink it */
|
|
rte *best = *bp;
|
|
*bp = best->next;
|
|
best->next = net->routes;
|
|
net->routes = best;
|
|
}
|
|
}
|
|
else if (new)
|
|
{
|
|
/* The third case - the new route is not better than the old
|
|
best route (therefore old_best != NULL) and the old best
|
|
route was not removed (therefore old_best == net->routes).
|
|
We just link the new route to the old/last position. */
|
|
|
|
new->next = *pos;
|
|
*pos = new;
|
|
|
|
table->rt_count++;
|
|
}
|
|
/* The fourth (empty) case - suboptimal route was removed, nothing to do */
|
|
}
|
|
|
|
if (new)
|
|
{
|
|
new->lastmod = current_time();
|
|
|
|
if (!old)
|
|
{
|
|
new->id = hmap_first_zero(&table->id_map);
|
|
hmap_set(&table->id_map, new->id);
|
|
}
|
|
else
|
|
new->id = old->id;
|
|
}
|
|
|
|
/* Log the route change */
|
|
if ((c->debug & D_ROUTES) || (p->debug & D_ROUTES))
|
|
{
|
|
if (new_ok)
|
|
rte_trace(c, new, '>', new == net->routes ? "added [best]" : "added");
|
|
else if (old_ok)
|
|
{
|
|
if (old != old_best)
|
|
rte_trace(c, old, '>', "removed");
|
|
else if (rte_is_ok(net->routes))
|
|
rte_trace(c, old, '>', "removed [replaced]");
|
|
else
|
|
rte_trace(c, old, '>', "removed [sole]");
|
|
}
|
|
}
|
|
|
|
/* Propagate the route change */
|
|
rte_announce(table, RA_UNDEF, net, new, old, net->routes, old_best);
|
|
|
|
if (!net->routes &&
|
|
(table->gc_counter++ >= table->config->gc_threshold))
|
|
rt_kick_prune_timer(table);
|
|
|
|
if (old_ok && p->rte_remove)
|
|
p->rte_remove(net, old);
|
|
if (new_ok && p->rte_insert)
|
|
p->rte_insert(net, new);
|
|
|
|
if (old)
|
|
{
|
|
if (!new)
|
|
hmap_clear(&table->id_map, old->id);
|
|
|
|
rte_free_quick(old);
|
|
}
|
|
}
|
|
|
|
static int rte_update_nest_cnt; /* Nesting counter to allow recursive updates */
|
|
|
|
static inline void
|
|
rte_update_lock(void)
|
|
{
|
|
rte_update_nest_cnt++;
|
|
}
|
|
|
|
static inline void
|
|
rte_update_unlock(void)
|
|
{
|
|
if (!--rte_update_nest_cnt)
|
|
lp_flush(rte_update_pool);
|
|
}
|
|
|
|
/**
|
|
* rte_update - enter a new update to a routing table
|
|
* @table: table to be updated
|
|
* @c: channel doing the update
|
|
* @net: network node
|
|
* @p: protocol submitting the update
|
|
* @src: protocol originating the update
|
|
* @new: a &rte representing the new route or %NULL for route removal.
|
|
*
|
|
* This function is called by the routing protocols whenever they discover
|
|
* a new route or wish to update/remove an existing route. The right announcement
|
|
* sequence is to build route attributes first (either un-cached with @aflags set
|
|
* to zero or a cached one using rta_lookup(); in this case please note that
|
|
* you need to increase the use count of the attributes yourself by calling
|
|
* rta_clone()), call rte_get_temp() to obtain a temporary &rte, fill in all
|
|
* the appropriate data and finally submit the new &rte by calling rte_update().
|
|
*
|
|
* @src specifies the protocol that originally created the route and the meaning
|
|
* of protocol-dependent data of @new. If @new is not %NULL, @src have to be the
|
|
* same value as @new->attrs->proto. @p specifies the protocol that called
|
|
* rte_update(). In most cases it is the same protocol as @src. rte_update()
|
|
* stores @p in @new->sender;
|
|
*
|
|
* When rte_update() gets any route, it automatically validates it (checks,
|
|
* whether the network and next hop address are valid IP addresses and also
|
|
* whether a normal routing protocol doesn't try to smuggle a host or link
|
|
* scope route to the table), converts all protocol dependent attributes stored
|
|
* in the &rte to temporary extended attributes, consults import filters of the
|
|
* protocol to see if the route should be accepted and/or its attributes modified,
|
|
* stores the temporary attributes back to the &rte.
|
|
*
|
|
* Now, having a "public" version of the route, we
|
|
* automatically find any old route defined by the protocol @src
|
|
* for network @n, replace it by the new one (or removing it if @new is %NULL),
|
|
* recalculate the optimal route for this destination and finally broadcast
|
|
* the change (if any) to all routing protocols by calling rte_announce().
|
|
*
|
|
* All memory used for attribute lists and other temporary allocations is taken
|
|
* from a special linear pool @rte_update_pool and freed when rte_update()
|
|
* finishes.
|
|
*/
|
|
|
|
void
|
|
rte_update2(struct channel *c, const net_addr *n, rte *new, struct rte_src *src)
|
|
{
|
|
// struct proto *p = c->proto;
|
|
struct proto_stats *stats = &c->stats;
|
|
const struct filter *filter = c->in_filter;
|
|
net *nn;
|
|
|
|
ASSERT(c->channel_state == CS_UP);
|
|
|
|
rte_update_lock();
|
|
if (new)
|
|
{
|
|
/* Create a temporary table node */
|
|
nn = alloca(sizeof(net) + n->length);
|
|
memset(nn, 0, sizeof(net) + n->length);
|
|
net_copy(nn->n.addr, n);
|
|
|
|
new->net = nn;
|
|
new->sender = c;
|
|
|
|
stats->imp_updates_received++;
|
|
if (!rte_validate(new))
|
|
{
|
|
rte_trace_in(D_FILTERS, c, new, "invalid");
|
|
stats->imp_updates_invalid++;
|
|
goto drop;
|
|
}
|
|
|
|
if (filter == FILTER_REJECT)
|
|
{
|
|
stats->imp_updates_filtered++;
|
|
rte_trace_in(D_FILTERS, c, new, "filtered out");
|
|
|
|
if (! c->in_keep_filtered)
|
|
goto drop;
|
|
|
|
/* new is a private copy, i could modify it */
|
|
new->flags |= REF_FILTERED;
|
|
}
|
|
else if (filter)
|
|
{
|
|
int fr = f_run(filter, &new, rte_update_pool, 0);
|
|
if (fr > F_ACCEPT)
|
|
{
|
|
stats->imp_updates_filtered++;
|
|
rte_trace_in(D_FILTERS, c, new, "filtered out");
|
|
|
|
if (! c->in_keep_filtered)
|
|
goto drop;
|
|
|
|
new->flags |= REF_FILTERED;
|
|
}
|
|
}
|
|
if (!rta_is_cached(new->attrs)) /* Need to copy attributes */
|
|
new->attrs = rta_lookup(new->attrs);
|
|
new->flags |= REF_COW;
|
|
|
|
/* Use the actual struct network, not the dummy one */
|
|
nn = net_get(c->table, n);
|
|
new->net = nn;
|
|
}
|
|
else
|
|
{
|
|
stats->imp_withdraws_received++;
|
|
|
|
if (!(nn = net_find(c->table, n)) || !src)
|
|
{
|
|
stats->imp_withdraws_ignored++;
|
|
rte_update_unlock();
|
|
return;
|
|
}
|
|
}
|
|
|
|
recalc:
|
|
/* And recalculate the best route */
|
|
rte_recalculate(c, nn, new, src);
|
|
|
|
rte_update_unlock();
|
|
return;
|
|
|
|
drop:
|
|
rte_free(new);
|
|
new = NULL;
|
|
if (nn = net_find(c->table, n))
|
|
goto recalc;
|
|
|
|
rte_update_unlock();
|
|
}
|
|
|
|
/* Independent call to rte_announce(), used from next hop
|
|
recalculation, outside of rte_update(). new must be non-NULL */
|
|
static inline void
|
|
rte_announce_i(rtable *tab, uint type, net *net, rte *new, rte *old,
|
|
rte *new_best, rte *old_best)
|
|
{
|
|
rte_update_lock();
|
|
rte_announce(tab, type, net, new, old, new_best, old_best);
|
|
rte_update_unlock();
|
|
}
|
|
|
|
static inline void
|
|
rte_discard(rte *old) /* Non-filtered route deletion, used during garbage collection */
|
|
{
|
|
rte_update_lock();
|
|
rte_recalculate(old->sender, old->net, NULL, old->src);
|
|
rte_update_unlock();
|
|
}
|
|
|
|
/* Modify existing route by protocol hook, used for long-lived graceful restart */
|
|
static inline void
|
|
rte_modify(rte *old)
|
|
{
|
|
rte_update_lock();
|
|
|
|
rte *new = old->sender->proto->rte_modify(old, rte_update_pool);
|
|
if (new != old)
|
|
{
|
|
if (new)
|
|
{
|
|
if (!rta_is_cached(new->attrs))
|
|
new->attrs = rta_lookup(new->attrs);
|
|
new->flags = (old->flags & ~REF_MODIFY) | REF_COW;
|
|
}
|
|
|
|
rte_recalculate(old->sender, old->net, new, old->src);
|
|
}
|
|
|
|
rte_update_unlock();
|
|
}
|
|
|
|
/* Check rtable for best route to given net whether it would be exported do p */
|
|
int
|
|
rt_examine(rtable *t, net_addr *a, struct channel *c, const struct filter *filter)
|
|
{
|
|
struct proto *p = c->proto;
|
|
net *n = net_find(t, a);
|
|
rte *rt = n ? n->routes : NULL;
|
|
|
|
if (!rte_is_valid(rt))
|
|
return 0;
|
|
|
|
rte_update_lock();
|
|
|
|
/* Rest is stripped down export_filter() */
|
|
int v = p->preexport ? p->preexport(c, rt) : 0;
|
|
if (v == RIC_PROCESS)
|
|
v = (f_run(filter, &rt, rte_update_pool, FF_SILENT) <= F_ACCEPT);
|
|
|
|
/* Discard temporary rte */
|
|
if (rt != n->routes)
|
|
rte_free(rt);
|
|
|
|
rte_update_unlock();
|
|
|
|
return v > 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* rt_refresh_begin - start a refresh cycle
|
|
* @t: related routing table
|
|
* @c related channel
|
|
*
|
|
* This function starts a refresh cycle for given routing table and announce
|
|
* hook. The refresh cycle is a sequence where the protocol sends all its valid
|
|
* routes to the routing table (by rte_update()). After that, all protocol
|
|
* routes (more precisely routes with @c as @sender) not sent during the
|
|
* refresh cycle but still in the table from the past are pruned. This is
|
|
* implemented by marking all related routes as stale by REF_STALE flag in
|
|
* rt_refresh_begin(), then marking all related stale routes with REF_DISCARD
|
|
* flag in rt_refresh_end() and then removing such routes in the prune loop.
|
|
*/
|
|
void
|
|
rt_refresh_begin(rtable *t, struct channel *c)
|
|
{
|
|
FIB_WALK(&t->fib, net, n)
|
|
{
|
|
rte *e;
|
|
for (e = n->routes; e; e = e->next)
|
|
if (e->sender == c)
|
|
e->flags |= REF_STALE;
|
|
}
|
|
FIB_WALK_END;
|
|
}
|
|
|
|
/**
|
|
* rt_refresh_end - end a refresh cycle
|
|
* @t: related routing table
|
|
* @c: related channel
|
|
*
|
|
* This function ends a refresh cycle for given routing table and announce
|
|
* hook. See rt_refresh_begin() for description of refresh cycles.
|
|
*/
|
|
void
|
|
rt_refresh_end(rtable *t, struct channel *c)
|
|
{
|
|
int prune = 0;
|
|
|
|
FIB_WALK(&t->fib, net, n)
|
|
{
|
|
rte *e;
|
|
for (e = n->routes; e; e = e->next)
|
|
if ((e->sender == c) && (e->flags & REF_STALE))
|
|
{
|
|
e->flags |= REF_DISCARD;
|
|
prune = 1;
|
|
}
|
|
}
|
|
FIB_WALK_END;
|
|
|
|
if (prune)
|
|
rt_schedule_prune(t);
|
|
}
|
|
|
|
void
|
|
rt_modify_stale(rtable *t, struct channel *c)
|
|
{
|
|
int prune = 0;
|
|
|
|
FIB_WALK(&t->fib, net, n)
|
|
{
|
|
rte *e;
|
|
for (e = n->routes; e; e = e->next)
|
|
if ((e->sender == c) && (e->flags & REF_STALE) && !(e->flags & REF_FILTERED))
|
|
{
|
|
e->flags |= REF_MODIFY;
|
|
prune = 1;
|
|
}
|
|
}
|
|
FIB_WALK_END;
|
|
|
|
if (prune)
|
|
rt_schedule_prune(t);
|
|
}
|
|
|
|
/**
|
|
* rte_dump - dump a route
|
|
* @e: &rte to be dumped
|
|
*
|
|
* This functions dumps contents of a &rte to debug output.
|
|
*/
|
|
void
|
|
rte_dump(rte *e)
|
|
{
|
|
net *n = e->net;
|
|
debug("%-1N ", n->n.addr);
|
|
debug("PF=%02x ", e->pflags);
|
|
rta_dump(e->attrs);
|
|
debug("\n");
|
|
}
|
|
|
|
/**
|
|
* rt_dump - dump a routing table
|
|
* @t: routing table to be dumped
|
|
*
|
|
* This function dumps contents of a given routing table to debug output.
|
|
*/
|
|
void
|
|
rt_dump(rtable *t)
|
|
{
|
|
debug("Dump of routing table <%s>\n", t->name);
|
|
#ifdef DEBUGGING
|
|
fib_check(&t->fib);
|
|
#endif
|
|
FIB_WALK(&t->fib, net, n)
|
|
{
|
|
rte *e;
|
|
for(e=n->routes; e; e=e->next)
|
|
rte_dump(e);
|
|
}
|
|
FIB_WALK_END;
|
|
debug("\n");
|
|
}
|
|
|
|
/**
|
|
* rt_dump_all - dump all routing tables
|
|
*
|
|
* This function dumps contents of all routing tables to debug output.
|
|
*/
|
|
void
|
|
rt_dump_all(void)
|
|
{
|
|
rtable *t;
|
|
node *n;
|
|
|
|
WALK_LIST2(t, n, routing_tables, n)
|
|
rt_dump(t);
|
|
}
|
|
|
|
static inline void
|
|
rt_schedule_hcu(rtable *tab)
|
|
{
|
|
if (tab->hcu_scheduled)
|
|
return;
|
|
|
|
tab->hcu_scheduled = 1;
|
|
ev_schedule(tab->rt_event);
|
|
}
|
|
|
|
static inline void
|
|
rt_schedule_nhu(rtable *tab)
|
|
{
|
|
if (tab->nhu_state == NHU_CLEAN)
|
|
ev_schedule(tab->rt_event);
|
|
|
|
/* state change:
|
|
* NHU_CLEAN -> NHU_SCHEDULED
|
|
* NHU_RUNNING -> NHU_DIRTY
|
|
*/
|
|
tab->nhu_state |= NHU_SCHEDULED;
|
|
}
|
|
|
|
void
|
|
rt_schedule_prune(rtable *tab)
|
|
{
|
|
if (tab->prune_state == 0)
|
|
ev_schedule(tab->rt_event);
|
|
|
|
/* state change 0->1, 2->3 */
|
|
tab->prune_state |= 1;
|
|
}
|
|
|
|
|
|
static void
|
|
rt_event(void *ptr)
|
|
{
|
|
rtable *tab = ptr;
|
|
|
|
rt_lock_table(tab);
|
|
|
|
if (tab->hcu_scheduled)
|
|
rt_update_hostcache(tab);
|
|
|
|
if (tab->nhu_state)
|
|
rt_next_hop_update(tab);
|
|
|
|
if (tab->prune_state)
|
|
rt_prune_table(tab);
|
|
|
|
rt_unlock_table(tab);
|
|
}
|
|
|
|
|
|
static void
|
|
rt_prune_timer(timer *t)
|
|
{
|
|
rtable *tab = t->data;
|
|
|
|
if (tab->gc_counter >= tab->config->gc_threshold)
|
|
rt_schedule_prune(tab);
|
|
}
|
|
|
|
static void
|
|
rt_kick_prune_timer(rtable *tab)
|
|
{
|
|
/* Return if prune is already scheduled */
|
|
if (tm_active(tab->prune_timer) || (tab->prune_state & 1))
|
|
return;
|
|
|
|
/* Randomize GC period to +/- 50% */
|
|
btime gc_period = tab->config->gc_period;
|
|
gc_period = (gc_period / 2) + (random_u32() % (uint) gc_period);
|
|
tm_start(tab->prune_timer, gc_period);
|
|
}
|
|
|
|
|
|
static inline btime
|
|
rt_settled_time(rtable *tab)
|
|
{
|
|
ASSUME(tab->base_settle_time != 0);
|
|
|
|
return MIN(tab->last_rt_change + tab->config->min_settle_time,
|
|
tab->base_settle_time + tab->config->max_settle_time);
|
|
}
|
|
|
|
static void
|
|
rt_settle_timer(timer *t)
|
|
{
|
|
rtable *tab = t->data;
|
|
|
|
if (!tab->base_settle_time)
|
|
return;
|
|
|
|
btime settled_time = rt_settled_time(tab);
|
|
if (current_time() < settled_time)
|
|
{
|
|
tm_set(tab->settle_timer, settled_time);
|
|
return;
|
|
}
|
|
|
|
/* Settled */
|
|
tab->base_settle_time = 0;
|
|
|
|
struct rt_subscription *s;
|
|
WALK_LIST(s, tab->subscribers)
|
|
s->hook(s);
|
|
}
|
|
|
|
static void
|
|
rt_kick_settle_timer(rtable *tab)
|
|
{
|
|
tab->base_settle_time = current_time();
|
|
|
|
if (!tab->settle_timer)
|
|
tab->settle_timer = tm_new_init(tab->rp, rt_settle_timer, tab, 0, 0);
|
|
|
|
if (!tm_active(tab->settle_timer))
|
|
tm_set(tab->settle_timer, rt_settled_time(tab));
|
|
}
|
|
|
|
static inline void
|
|
rt_schedule_notify(rtable *tab)
|
|
{
|
|
if (EMPTY_LIST(tab->subscribers))
|
|
return;
|
|
|
|
if (tab->base_settle_time)
|
|
return;
|
|
|
|
rt_kick_settle_timer(tab);
|
|
}
|
|
|
|
void
|
|
rt_subscribe(rtable *tab, struct rt_subscription *s)
|
|
{
|
|
s->tab = tab;
|
|
rt_lock_table(tab);
|
|
add_tail(&tab->subscribers, &s->n);
|
|
}
|
|
|
|
void
|
|
rt_unsubscribe(struct rt_subscription *s)
|
|
{
|
|
rem_node(&s->n);
|
|
rt_unlock_table(s->tab);
|
|
}
|
|
|
|
static struct rt_flowspec_link *
|
|
rt_flowspec_find_link(rtable *src, rtable *dst)
|
|
{
|
|
struct rt_flowspec_link *ln;
|
|
WALK_LIST(ln, src->flowspec_links)
|
|
if ((ln->src == src) && (ln->dst == dst))
|
|
return ln;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void
|
|
rt_flowspec_link(rtable *src, rtable *dst)
|
|
{
|
|
ASSERT(rt_is_ip(src));
|
|
ASSERT(rt_is_flow(dst));
|
|
|
|
struct rt_flowspec_link *ln = rt_flowspec_find_link(src, dst);
|
|
|
|
if (!ln)
|
|
{
|
|
rt_lock_table(src);
|
|
rt_lock_table(dst);
|
|
|
|
ln = mb_allocz(src->rp, sizeof(struct rt_flowspec_link));
|
|
ln->src = src;
|
|
ln->dst = dst;
|
|
add_tail(&src->flowspec_links, &ln->n);
|
|
}
|
|
|
|
ln->uc++;
|
|
}
|
|
|
|
void
|
|
rt_flowspec_unlink(rtable *src, rtable *dst)
|
|
{
|
|
struct rt_flowspec_link *ln = rt_flowspec_find_link(src, dst);
|
|
|
|
ASSERT(ln && (ln->uc > 0));
|
|
|
|
ln->uc--;
|
|
|
|
if (!ln->uc)
|
|
{
|
|
rem_node(&ln->n);
|
|
mb_free(ln);
|
|
|
|
rt_unlock_table(src);
|
|
rt_unlock_table(dst);
|
|
}
|
|
}
|
|
|
|
static void
|
|
rt_flowspec_notify(rtable *src, net *net)
|
|
{
|
|
/* Only IP tables are src links */
|
|
ASSERT(rt_is_ip(src));
|
|
|
|
struct rt_flowspec_link *ln;
|
|
WALK_LIST(ln, src->flowspec_links)
|
|
{
|
|
rtable *dst = ln->dst;
|
|
ASSERT(rt_is_flow(dst));
|
|
|
|
/* No need to inspect it further if recalculation is already active */
|
|
if ((dst->nhu_state == NHU_SCHEDULED) || (dst->nhu_state == NHU_DIRTY))
|
|
continue;
|
|
|
|
if (trie_match_net(dst->flowspec_trie, net->n.addr))
|
|
rt_schedule_nhu(dst);
|
|
}
|
|
}
|
|
|
|
static void
|
|
rt_flowspec_reset_trie(rtable *tab)
|
|
{
|
|
linpool *lp = tab->flowspec_trie->lp;
|
|
int ipv4 = tab->flowspec_trie->ipv4;
|
|
|
|
lp_flush(lp);
|
|
tab->flowspec_trie = f_new_trie(lp, 0);
|
|
tab->flowspec_trie->ipv4 = ipv4;
|
|
}
|
|
|
|
static void
|
|
rt_free(resource *_r)
|
|
{
|
|
rtable *r = (rtable *) _r;
|
|
|
|
DBG("Deleting routing table %s\n", r->name);
|
|
ASSERT_DIE(r->use_count == 0);
|
|
|
|
if (r->internal)
|
|
return;
|
|
|
|
r->config->table = NULL;
|
|
rem_node(&r->n);
|
|
|
|
if (r->hostcache)
|
|
rt_free_hostcache(r);
|
|
|
|
/* Freed automagically by the resource pool
|
|
fib_free(&r->fib);
|
|
hmap_free(&r->id_map);
|
|
rfree(r->rt_event);
|
|
rfree(r->settle_timer);
|
|
mb_free(r);
|
|
*/
|
|
}
|
|
|
|
static void
|
|
rt_res_dump(resource *_r)
|
|
{
|
|
rtable *r = (rtable *) _r;
|
|
debug("name \"%s\", addr_type=%s, rt_count=%u, use_count=%d\n",
|
|
r->name, net_label[r->addr_type], r->rt_count, r->use_count);
|
|
}
|
|
|
|
static struct resclass rt_class = {
|
|
.name = "Routing table",
|
|
.size = sizeof(struct rtable),
|
|
.free = rt_free,
|
|
.dump = rt_res_dump,
|
|
.lookup = NULL,
|
|
.memsize = NULL,
|
|
};
|
|
|
|
rtable *
|
|
rt_setup(pool *pp, struct rtable_config *cf)
|
|
{
|
|
pool *p = rp_newf(pp, "Routing table %s", cf->name);
|
|
|
|
rtable *t = ralloc(p, &rt_class);
|
|
t->rp = p;
|
|
|
|
t->name = cf->name;
|
|
t->config = cf;
|
|
t->addr_type = cf->addr_type;
|
|
|
|
fib_init(&t->fib, p, t->addr_type, sizeof(net), OFFSETOF(net, n), 0, NULL);
|
|
|
|
if (cf->trie_used)
|
|
{
|
|
t->trie = f_new_trie(lp_new_default(p), 0);
|
|
t->trie->ipv4 = net_val_match(t->addr_type, NB_IP4 | NB_VPN4 | NB_ROA4);
|
|
|
|
t->fib.init = net_init_with_trie;
|
|
}
|
|
|
|
init_list(&t->channels);
|
|
init_list(&t->flowspec_links);
|
|
init_list(&t->subscribers);
|
|
|
|
if (!(t->internal = cf->internal))
|
|
{
|
|
hmap_init(&t->id_map, p, 1024);
|
|
hmap_set(&t->id_map, 0);
|
|
|
|
t->rt_event = ev_new_init(p, rt_event, t);
|
|
t->prune_timer = tm_new_init(p, rt_prune_timer, t, 0, 0);
|
|
t->last_rt_change = t->gc_time = current_time();
|
|
|
|
if (rt_is_flow(t))
|
|
{
|
|
t->flowspec_trie = f_new_trie(lp_new_default(p), 0);
|
|
t->flowspec_trie->ipv4 = (t->addr_type == NET_FLOW4);
|
|
}
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
/**
|
|
* rt_init - initialize routing tables
|
|
*
|
|
* This function is called during BIRD startup. It initializes the
|
|
* routing table module.
|
|
*/
|
|
void
|
|
rt_init(void)
|
|
{
|
|
rta_init();
|
|
rt_table_pool = rp_new(&root_pool, "Routing tables");
|
|
rte_update_pool = lp_new_default(rt_table_pool);
|
|
rte_slab = sl_new(rt_table_pool, sizeof(rte));
|
|
init_list(&routing_tables);
|
|
}
|
|
|
|
|
|
/**
|
|
* rt_prune_table - prune a routing table
|
|
*
|
|
* The prune loop scans routing tables and removes routes belonging to flushing
|
|
* protocols, discarded routes and also stale network entries. It is called from
|
|
* rt_event(). The event is rescheduled if the current iteration do not finish
|
|
* the table. The pruning is directed by the prune state (@prune_state),
|
|
* specifying whether the prune cycle is scheduled or running, and there
|
|
* is also a persistent pruning iterator (@prune_fit).
|
|
*
|
|
* The prune loop is used also for channel flushing. For this purpose, the
|
|
* channels to flush are marked before the iteration and notified after the
|
|
* iteration.
|
|
*/
|
|
static void
|
|
rt_prune_table(rtable *tab)
|
|
{
|
|
struct fib_iterator *fit = &tab->prune_fit;
|
|
int limit = 2000;
|
|
|
|
struct channel *c;
|
|
node *n, *x;
|
|
|
|
DBG("Pruning route table %s\n", tab->name);
|
|
#ifdef DEBUGGING
|
|
fib_check(&tab->fib);
|
|
#endif
|
|
|
|
if (tab->prune_state == 0)
|
|
return;
|
|
|
|
if (tab->prune_state == 1)
|
|
{
|
|
/* Mark channels to flush */
|
|
WALK_LIST2(c, n, tab->channels, table_node)
|
|
if (c->channel_state == CS_FLUSHING)
|
|
c->flush_active = 1;
|
|
|
|
FIB_ITERATE_INIT(fit, &tab->fib);
|
|
tab->prune_state = 2;
|
|
|
|
tab->gc_counter = 0;
|
|
tab->gc_time = current_time();
|
|
|
|
if (tab->prune_trie)
|
|
{
|
|
/* Init prefix trie pruning */
|
|
tab->trie_new = f_new_trie(lp_new_default(tab->rp), 0);
|
|
tab->trie_new->ipv4 = tab->trie->ipv4;
|
|
}
|
|
}
|
|
|
|
again:
|
|
FIB_ITERATE_START(&tab->fib, fit, net, n)
|
|
{
|
|
rte *e;
|
|
|
|
rescan:
|
|
if (limit <= 0)
|
|
{
|
|
FIB_ITERATE_PUT(fit);
|
|
ev_schedule(tab->rt_event);
|
|
return;
|
|
}
|
|
|
|
for (e=n->routes; e; e=e->next)
|
|
{
|
|
if (e->sender->flush_active || (e->flags & REF_DISCARD))
|
|
{
|
|
rte_discard(e);
|
|
limit--;
|
|
|
|
goto rescan;
|
|
}
|
|
|
|
if (e->flags & REF_MODIFY)
|
|
{
|
|
rte_modify(e);
|
|
limit--;
|
|
|
|
goto rescan;
|
|
}
|
|
}
|
|
|
|
if (!n->routes) /* Orphaned FIB entry */
|
|
{
|
|
FIB_ITERATE_PUT(fit);
|
|
fib_delete(&tab->fib, n);
|
|
goto again;
|
|
}
|
|
|
|
if (tab->trie_new)
|
|
{
|
|
trie_add_prefix(tab->trie_new, n->n.addr, n->n.addr->pxlen, n->n.addr->pxlen);
|
|
limit--;
|
|
}
|
|
}
|
|
FIB_ITERATE_END;
|
|
|
|
#ifdef DEBUGGING
|
|
fib_check(&tab->fib);
|
|
#endif
|
|
|
|
/* state change 2->0, 3->1 */
|
|
tab->prune_state &= 1;
|
|
|
|
if (tab->trie_new)
|
|
{
|
|
/* Finish prefix trie pruning */
|
|
|
|
if (!tab->trie_lock_count)
|
|
{
|
|
rfree(tab->trie->lp);
|
|
}
|
|
else
|
|
{
|
|
ASSERT(!tab->trie_old);
|
|
tab->trie_old = tab->trie;
|
|
tab->trie_old_lock_count = tab->trie_lock_count;
|
|
tab->trie_lock_count = 0;
|
|
}
|
|
|
|
tab->trie = tab->trie_new;
|
|
tab->trie_new = NULL;
|
|
tab->prune_trie = 0;
|
|
}
|
|
else
|
|
{
|
|
/* Schedule prefix trie pruning */
|
|
if (tab->trie && !tab->trie_old && (tab->trie->prefix_count > (2 * tab->fib.entries)))
|
|
{
|
|
/* state change 0->1, 2->3 */
|
|
tab->prune_state |= 1;
|
|
tab->prune_trie = 1;
|
|
}
|
|
}
|
|
|
|
if (tab->prune_state > 0)
|
|
ev_schedule(tab->rt_event);
|
|
|
|
/* FIXME: This should be handled in a better way */
|
|
rt_prune_sources();
|
|
|
|
/* Close flushed channels */
|
|
WALK_LIST2_DELSAFE(c, n, x, tab->channels, table_node)
|
|
if (c->flush_active)
|
|
{
|
|
c->flush_active = 0;
|
|
channel_set_state(c, CS_DOWN);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* rt_lock_trie - lock a prefix trie of a routing table
|
|
* @tab: routing table with prefix trie to be locked
|
|
*
|
|
* The prune loop may rebuild the prefix trie and invalidate f_trie_walk_state
|
|
* structures. Therefore, asynchronous walks should lock the prefix trie using
|
|
* this function. That allows the prune loop to rebuild the trie, but postpones
|
|
* its freeing until all walks are done (unlocked by rt_unlock_trie()).
|
|
*
|
|
* Return a current trie that will be locked, the value should be passed back to
|
|
* rt_unlock_trie() for unlocking.
|
|
*
|
|
*/
|
|
struct f_trie *
|
|
rt_lock_trie(rtable *tab)
|
|
{
|
|
ASSERT(tab->trie);
|
|
|
|
tab->trie_lock_count++;
|
|
return tab->trie;
|
|
}
|
|
|
|
/**
|
|
* rt_unlock_trie - unlock a prefix trie of a routing table
|
|
* @tab: routing table with prefix trie to be locked
|
|
* @trie: value returned by matching rt_lock_trie()
|
|
*
|
|
* Done for trie locked by rt_lock_trie() after walk over the trie is done.
|
|
* It may free the trie and schedule next trie pruning.
|
|
*/
|
|
void
|
|
rt_unlock_trie(rtable *tab, struct f_trie *trie)
|
|
{
|
|
ASSERT(trie);
|
|
|
|
if (trie == tab->trie)
|
|
{
|
|
/* Unlock the current prefix trie */
|
|
ASSERT(tab->trie_lock_count);
|
|
tab->trie_lock_count--;
|
|
}
|
|
else if (trie == tab->trie_old)
|
|
{
|
|
/* Unlock the old prefix trie */
|
|
ASSERT(tab->trie_old_lock_count);
|
|
tab->trie_old_lock_count--;
|
|
|
|
/* Free old prefix trie that is no longer needed */
|
|
if (!tab->trie_old_lock_count)
|
|
{
|
|
rfree(tab->trie_old->lp);
|
|
tab->trie_old = NULL;
|
|
|
|
/* Kick prefix trie pruning that was postponed */
|
|
if (tab->trie && (tab->trie->prefix_count > (2 * tab->fib.entries)))
|
|
{
|
|
tab->prune_trie = 1;
|
|
rt_schedule_prune(tab);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
log(L_BUG "Invalid arg to rt_unlock_trie()");
|
|
}
|
|
|
|
|
|
void
|
|
rt_preconfig(struct config *c)
|
|
{
|
|
init_list(&c->tables);
|
|
|
|
rt_new_table(cf_get_symbol("master4"), NET_IP4);
|
|
rt_new_table(cf_get_symbol("master6"), NET_IP6);
|
|
}
|
|
|
|
void
|
|
rt_postconfig(struct config *c)
|
|
{
|
|
uint num_tables = list_length(&c->tables);
|
|
btime def_gc_period = 400 MS * num_tables;
|
|
def_gc_period = MAX(def_gc_period, 10 S);
|
|
def_gc_period = MIN(def_gc_period, 600 S);
|
|
|
|
struct rtable_config *rc;
|
|
WALK_LIST(rc, c->tables)
|
|
if (rc->gc_period == (uint) -1)
|
|
rc->gc_period = (uint) def_gc_period;
|
|
}
|
|
|
|
|
|
/*
|
|
* Some functions for handing internal next hop updates
|
|
* triggered by rt_schedule_nhu().
|
|
*/
|
|
|
|
void
|
|
rta_apply_hostentry(rta *a, struct hostentry *he, mpls_label_stack *mls)
|
|
{
|
|
a->hostentry = he;
|
|
a->dest = he->dest;
|
|
a->igp_metric = he->igp_metric;
|
|
|
|
if (a->dest != RTD_UNICAST)
|
|
{
|
|
/* No nexthop */
|
|
no_nexthop:
|
|
a->nh = (struct nexthop) {};
|
|
if (mls)
|
|
{ /* Store the label stack for later changes */
|
|
a->nh.labels_orig = a->nh.labels = mls->len;
|
|
memcpy(a->nh.label, mls->stack, mls->len * sizeof(u32));
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (((!mls) || (!mls->len)) && he->nexthop_linkable)
|
|
{ /* Just link the nexthop chain, no label append happens. */
|
|
memcpy(&(a->nh), &(he->src->nh), nexthop_size(&(he->src->nh)));
|
|
return;
|
|
}
|
|
|
|
struct nexthop *nhp = NULL, *nhr = NULL;
|
|
int skip_nexthop = 0;
|
|
|
|
for (struct nexthop *nh = &(he->src->nh); nh; nh = nh->next)
|
|
{
|
|
if (skip_nexthop)
|
|
skip_nexthop--;
|
|
else
|
|
{
|
|
nhr = nhp;
|
|
nhp = (nhp ? (nhp->next = lp_alloc(rte_update_pool, NEXTHOP_MAX_SIZE)) : &(a->nh));
|
|
}
|
|
|
|
memset(nhp, 0, NEXTHOP_MAX_SIZE);
|
|
nhp->iface = nh->iface;
|
|
nhp->weight = nh->weight;
|
|
|
|
if (mls)
|
|
{
|
|
nhp->labels = nh->labels + mls->len;
|
|
nhp->labels_orig = mls->len;
|
|
if (nhp->labels <= MPLS_MAX_LABEL_STACK)
|
|
{
|
|
memcpy(nhp->label, nh->label, nh->labels * sizeof(u32)); /* First the hostentry labels */
|
|
memcpy(&(nhp->label[nh->labels]), mls->stack, mls->len * sizeof(u32)); /* Then the bottom labels */
|
|
}
|
|
else
|
|
{
|
|
log(L_WARN "Sum of label stack sizes %d + %d = %d exceedes allowed maximum (%d)",
|
|
nh->labels, mls->len, nhp->labels, MPLS_MAX_LABEL_STACK);
|
|
skip_nexthop++;
|
|
continue;
|
|
}
|
|
}
|
|
else if (nh->labels)
|
|
{
|
|
nhp->labels = nh->labels;
|
|
nhp->labels_orig = 0;
|
|
memcpy(nhp->label, nh->label, nh->labels * sizeof(u32));
|
|
}
|
|
|
|
if (ipa_nonzero(nh->gw))
|
|
{
|
|
nhp->gw = nh->gw; /* Router nexthop */
|
|
nhp->flags |= (nh->flags & RNF_ONLINK);
|
|
}
|
|
else if (!(nh->iface->flags & IF_MULTIACCESS) || (nh->iface->flags & IF_LOOPBACK))
|
|
nhp->gw = IPA_NONE; /* PtP link - no need for nexthop */
|
|
else if (ipa_nonzero(he->link))
|
|
nhp->gw = he->link; /* Device nexthop with link-local address known */
|
|
else
|
|
nhp->gw = he->addr; /* Device nexthop with link-local address unknown */
|
|
}
|
|
|
|
if (skip_nexthop)
|
|
if (nhr)
|
|
nhr->next = NULL;
|
|
else
|
|
{
|
|
a->dest = RTD_UNREACHABLE;
|
|
log(L_WARN "No valid nexthop remaining, setting route unreachable");
|
|
goto no_nexthop;
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
rta_next_hop_outdated(rta *a)
|
|
{
|
|
struct hostentry *he = a->hostentry;
|
|
|
|
if (!he)
|
|
return 0;
|
|
|
|
if (!he->src)
|
|
return a->dest != RTD_UNREACHABLE;
|
|
|
|
return (a->dest != he->dest) || (a->igp_metric != he->igp_metric) ||
|
|
(!he->nexthop_linkable) || !nexthop_same(&(a->nh), &(he->src->nh));
|
|
}
|
|
|
|
static inline rte *
|
|
rt_next_hop_update_rte(rtable *tab UNUSED, rte *old)
|
|
{
|
|
if (!rta_next_hop_outdated(old->attrs))
|
|
return NULL;
|
|
|
|
rta *a = alloca(RTA_MAX_SIZE);
|
|
memcpy(a, old->attrs, rta_size(old->attrs));
|
|
|
|
mpls_label_stack mls = { .len = a->nh.labels_orig };
|
|
memcpy(mls.stack, &a->nh.label[a->nh.labels - mls.len], mls.len * sizeof(u32));
|
|
|
|
rta_apply_hostentry(a, old->attrs->hostentry, &mls);
|
|
a->cached = 0;
|
|
|
|
rte *e = sl_alloc(rte_slab);
|
|
memcpy(e, old, sizeof(rte));
|
|
e->attrs = rta_lookup(a);
|
|
rt_lock_source(e->src);
|
|
|
|
return e;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_BGP
|
|
|
|
static inline int
|
|
net_flow_has_dst_prefix(const net_addr *n)
|
|
{
|
|
ASSUME(net_is_flow(n));
|
|
|
|
if (n->pxlen)
|
|
return 1;
|
|
|
|
if (n->type == NET_FLOW4)
|
|
{
|
|
const net_addr_flow4 *n4 = (void *) n;
|
|
return (n4->length > sizeof(net_addr_flow4)) && (n4->data[0] == FLOW_TYPE_DST_PREFIX);
|
|
}
|
|
else
|
|
{
|
|
const net_addr_flow6 *n6 = (void *) n;
|
|
return (n6->length > sizeof(net_addr_flow6)) && (n6->data[0] == FLOW_TYPE_DST_PREFIX);
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
rta_as_path_is_empty(rta *a)
|
|
{
|
|
eattr *e = ea_find(a->eattrs, EA_CODE(PROTOCOL_BGP, BA_AS_PATH));
|
|
return !e || (as_path_getlen(e->u.ptr) == 0);
|
|
}
|
|
|
|
static inline u32
|
|
rta_get_first_asn(rta *a)
|
|
{
|
|
eattr *e = ea_find(a->eattrs, EA_CODE(PROTOCOL_BGP, BA_AS_PATH));
|
|
u32 asn;
|
|
|
|
return (e && as_path_get_first_regular(e->u.ptr, &asn)) ? asn : 0;
|
|
}
|
|
|
|
int
|
|
rt_flowspec_check(rtable *tab_ip, rtable *tab_flow, const net_addr *n, rta *a, int interior)
|
|
{
|
|
ASSERT(rt_is_ip(tab_ip));
|
|
ASSERT(rt_is_flow(tab_flow));
|
|
ASSERT(tab_ip->trie);
|
|
|
|
/* RFC 8955 6. a) Flowspec has defined dst prefix */
|
|
if (!net_flow_has_dst_prefix(n))
|
|
return 0;
|
|
|
|
/* RFC 9117 4.1. Accept AS_PATH is empty (fr */
|
|
if (interior && rta_as_path_is_empty(a))
|
|
return 1;
|
|
|
|
|
|
/* RFC 8955 6. b) Flowspec and its best-match route have the same originator */
|
|
|
|
/* Find flowspec dst prefix */
|
|
net_addr dst;
|
|
if (n->type == NET_FLOW4)
|
|
net_fill_ip4(&dst, net4_prefix(n), net4_pxlen(n));
|
|
else
|
|
net_fill_ip6(&dst, net6_prefix(n), net6_pxlen(n));
|
|
|
|
/* Find best-match BGP unicast route for flowspec dst prefix */
|
|
net *nb = net_route(tab_ip, &dst);
|
|
rte *rb = nb ? nb->routes : NULL;
|
|
|
|
/* Register prefix to trie for tracking further changes */
|
|
int max_pxlen = (n->type == NET_FLOW4) ? IP4_MAX_PREFIX_LENGTH : IP6_MAX_PREFIX_LENGTH;
|
|
trie_add_prefix(tab_flow->flowspec_trie, &dst, (nb ? nb->n.addr->pxlen : 0), max_pxlen);
|
|
|
|
/* No best-match BGP route -> no flowspec */
|
|
if (!rb || (rb->attrs->source != RTS_BGP))
|
|
return 0;
|
|
|
|
/* Find ORIGINATOR_ID values */
|
|
u32 orig_a = ea_get_int(a->eattrs, EA_CODE(PROTOCOL_BGP, BA_ORIGINATOR_ID), 0);
|
|
u32 orig_b = ea_get_int(rb->attrs->eattrs, EA_CODE(PROTOCOL_BGP, BA_ORIGINATOR_ID), 0);
|
|
|
|
/* Originator is either ORIGINATOR_ID (if present), or BGP neighbor address (if not) */
|
|
if ((orig_a != orig_b) || (!orig_a && !orig_b && !ipa_equal(a->from, rb->attrs->from)))
|
|
return 0;
|
|
|
|
|
|
/* Find ASN of the best-match route, for use in next checks */
|
|
u32 asn_b = rta_get_first_asn(rb->attrs);
|
|
if (!asn_b)
|
|
return 0;
|
|
|
|
/* RFC 9117 4.2. For EBGP, flowspec and its best-match route are from the same AS */
|
|
if (!interior && (rta_get_first_asn(a) != asn_b))
|
|
return 0;
|
|
|
|
/* RFC 8955 6. c) More-specific routes are from the same AS as the best-match route */
|
|
TRIE_WALK(tab_ip->trie, subnet, &dst)
|
|
{
|
|
net *nc = net_find_valid(tab_ip, &subnet);
|
|
if (!nc)
|
|
continue;
|
|
|
|
rte *rc = nc->routes;
|
|
if (rc->attrs->source != RTS_BGP)
|
|
return 0;
|
|
|
|
if (rta_get_first_asn(rc->attrs) != asn_b)
|
|
return 0;
|
|
}
|
|
TRIE_WALK_END;
|
|
|
|
return 1;
|
|
}
|
|
|
|
#endif /* CONFIG_BGP */
|
|
|
|
static rte *
|
|
rt_flowspec_update_rte(rtable *tab, rte *r)
|
|
{
|
|
#ifdef CONFIG_BGP
|
|
if ((r->attrs->source != RTS_BGP) || (r->sender->proto != r->src->proto))
|
|
return NULL;
|
|
|
|
struct bgp_channel *bc = (struct bgp_channel *) r->sender;
|
|
if (!bc->base_table)
|
|
return NULL;
|
|
|
|
const net_addr *n = r->net->n.addr;
|
|
struct bgp_proto *p = (void *) r->src->proto;
|
|
int valid = rt_flowspec_check(bc->base_table, tab, n, r->attrs, p->is_interior);
|
|
int dest = valid ? RTD_NONE : RTD_UNREACHABLE;
|
|
|
|
if (dest == r->attrs->dest)
|
|
return NULL;
|
|
|
|
rta *a = alloca(RTA_MAX_SIZE);
|
|
memcpy(a, r->attrs, rta_size(r->attrs));
|
|
a->dest = dest;
|
|
a->cached = 0;
|
|
|
|
rte *new = sl_alloc(rte_slab);
|
|
memcpy(new, r, sizeof(rte));
|
|
new->attrs = rta_lookup(a);
|
|
rt_lock_source(new->src);
|
|
|
|
return new;
|
|
#else
|
|
return NULL;
|
|
#endif
|
|
}
|
|
|
|
|
|
static inline int
|
|
rt_next_hop_update_net(rtable *tab, net *n)
|
|
{
|
|
rte **k, *e, *new, *old_best, **new_best;
|
|
int count = 0;
|
|
int free_old_best = 0;
|
|
|
|
old_best = n->routes;
|
|
if (!old_best)
|
|
return 0;
|
|
|
|
for (k = &n->routes; e = *k; k = &e->next)
|
|
{
|
|
if (!net_is_flow(n->n.addr))
|
|
new = rt_next_hop_update_rte(tab, e);
|
|
else
|
|
new = rt_flowspec_update_rte(tab, e);
|
|
|
|
if (new)
|
|
{
|
|
*k = new;
|
|
|
|
rte_trace_in(D_ROUTES, new->sender, new, "updated");
|
|
rte_announce_i(tab, RA_ANY, n, new, e, NULL, NULL);
|
|
|
|
/* Call a pre-comparison hook */
|
|
/* Not really an efficient way to compute this */
|
|
if (e->src->proto->rte_recalculate)
|
|
e->src->proto->rte_recalculate(tab, n, new, e, NULL);
|
|
|
|
if (e != old_best)
|
|
rte_free_quick(e);
|
|
else /* Freeing of the old best rte is postponed */
|
|
free_old_best = 1;
|
|
|
|
e = new;
|
|
count++;
|
|
}
|
|
}
|
|
|
|
if (!count)
|
|
return 0;
|
|
|
|
/* Find the new best route */
|
|
new_best = NULL;
|
|
for (k = &n->routes; e = *k; k = &e->next)
|
|
{
|
|
if (!new_best || rte_better(e, *new_best))
|
|
new_best = k;
|
|
}
|
|
|
|
/* Relink the new best route to the first position */
|
|
new = *new_best;
|
|
if (new != n->routes)
|
|
{
|
|
*new_best = new->next;
|
|
new->next = n->routes;
|
|
n->routes = new;
|
|
}
|
|
|
|
/* Announce the new best route */
|
|
if (new != old_best)
|
|
rte_trace_in(D_ROUTES, new->sender, new, "updated [best]");
|
|
|
|
/* Propagate changes */
|
|
rte_announce_i(tab, RA_UNDEF, n, NULL, NULL, n->routes, old_best);
|
|
|
|
if (free_old_best)
|
|
rte_free_quick(old_best);
|
|
|
|
return count;
|
|
}
|
|
|
|
static void
|
|
rt_next_hop_update(rtable *tab)
|
|
{
|
|
struct fib_iterator *fit = &tab->nhu_fit;
|
|
int max_feed = 32;
|
|
|
|
if (tab->nhu_state == NHU_CLEAN)
|
|
return;
|
|
|
|
if (tab->nhu_state == NHU_SCHEDULED)
|
|
{
|
|
FIB_ITERATE_INIT(fit, &tab->fib);
|
|
tab->nhu_state = NHU_RUNNING;
|
|
|
|
if (tab->flowspec_trie)
|
|
rt_flowspec_reset_trie(tab);
|
|
}
|
|
|
|
FIB_ITERATE_START(&tab->fib, fit, net, n)
|
|
{
|
|
if (max_feed <= 0)
|
|
{
|
|
FIB_ITERATE_PUT(fit);
|
|
ev_schedule(tab->rt_event);
|
|
return;
|
|
}
|
|
max_feed -= rt_next_hop_update_net(tab, n);
|
|
}
|
|
FIB_ITERATE_END;
|
|
|
|
/* State change:
|
|
* NHU_DIRTY -> NHU_SCHEDULED
|
|
* NHU_RUNNING -> NHU_CLEAN
|
|
*/
|
|
tab->nhu_state &= 1;
|
|
|
|
if (tab->nhu_state != NHU_CLEAN)
|
|
ev_schedule(tab->rt_event);
|
|
}
|
|
|
|
|
|
struct rtable_config *
|
|
rt_new_table(struct symbol *s, uint addr_type)
|
|
{
|
|
/* Hack that allows to 'redefine' the master table */
|
|
if ((s->class == SYM_TABLE) &&
|
|
(s->table == new_config->def_tables[addr_type]) &&
|
|
((addr_type == NET_IP4) || (addr_type == NET_IP6)))
|
|
return s->table;
|
|
|
|
struct rtable_config *c = cfg_allocz(sizeof(struct rtable_config));
|
|
|
|
cf_define_symbol(s, SYM_TABLE, table, c);
|
|
c->name = s->name;
|
|
c->addr_type = addr_type;
|
|
c->gc_threshold = 1000;
|
|
c->gc_period = (uint) -1; /* set in rt_postconfig() */
|
|
c->min_settle_time = 1 S;
|
|
c->max_settle_time = 20 S;
|
|
|
|
add_tail(&new_config->tables, &c->n);
|
|
|
|
/* First table of each type is kept as default */
|
|
if (! new_config->def_tables[addr_type])
|
|
new_config->def_tables[addr_type] = c;
|
|
|
|
return c;
|
|
}
|
|
|
|
/**
|
|
* rt_lock_table - lock a routing table
|
|
* @r: routing table to be locked
|
|
*
|
|
* Lock a routing table, because it's in use by a protocol,
|
|
* preventing it from being freed when it gets undefined in a new
|
|
* configuration.
|
|
*/
|
|
void
|
|
rt_lock_table(rtable *r)
|
|
{
|
|
r->use_count++;
|
|
}
|
|
|
|
/**
|
|
* rt_unlock_table - unlock a routing table
|
|
* @r: routing table to be unlocked
|
|
*
|
|
* Unlock a routing table formerly locked by rt_lock_table(),
|
|
* that is decrease its use count and delete it if it's scheduled
|
|
* for deletion by configuration changes.
|
|
*/
|
|
void
|
|
rt_unlock_table(rtable *r)
|
|
{
|
|
if (!--r->use_count && r->deleted)
|
|
{
|
|
struct config *conf = r->deleted;
|
|
|
|
/* Delete the routing table by freeing its pool */
|
|
rt_shutdown(r);
|
|
config_del_obstacle(conf);
|
|
}
|
|
}
|
|
|
|
static int
|
|
rt_reconfigure(rtable *tab, struct rtable_config *new, struct rtable_config *old)
|
|
{
|
|
if ((new->addr_type != old->addr_type) ||
|
|
(new->sorted != old->sorted) ||
|
|
(new->trie_used != old->trie_used))
|
|
return 0;
|
|
|
|
DBG("\t%s: same\n", new->name);
|
|
new->table = tab;
|
|
tab->name = new->name;
|
|
tab->config = new;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static struct rtable_config *
|
|
rt_find_table_config(struct config *cf, char *name)
|
|
{
|
|
struct symbol *sym = cf_find_symbol(cf, name);
|
|
return (sym && (sym->class == SYM_TABLE)) ? sym->table : NULL;
|
|
}
|
|
|
|
/**
|
|
* rt_commit - commit new routing table configuration
|
|
* @new: new configuration
|
|
* @old: original configuration or %NULL if it's boot time config
|
|
*
|
|
* Scan differences between @old and @new configuration and modify
|
|
* the routing tables according to these changes. If @new defines a
|
|
* previously unknown table, create it, if it omits a table existing
|
|
* in @old, schedule it for deletion (it gets deleted when all protocols
|
|
* disconnect from it by calling rt_unlock_table()), if it exists
|
|
* in both configurations, leave it unchanged.
|
|
*/
|
|
void
|
|
rt_commit(struct config *new, struct config *old)
|
|
{
|
|
struct rtable_config *o, *r;
|
|
|
|
DBG("rt_commit:\n");
|
|
if (old)
|
|
{
|
|
WALK_LIST(o, old->tables)
|
|
{
|
|
rtable *tab = o->table;
|
|
if (tab->deleted)
|
|
continue;
|
|
|
|
r = rt_find_table_config(new, o->name);
|
|
if (r && !new->shutdown && rt_reconfigure(tab, r, o))
|
|
continue;
|
|
|
|
DBG("\t%s: deleted\n", o->name);
|
|
tab->deleted = old;
|
|
config_add_obstacle(old);
|
|
rt_lock_table(tab);
|
|
rt_unlock_table(tab);
|
|
}
|
|
}
|
|
|
|
WALK_LIST(r, new->tables)
|
|
if (!r->table)
|
|
{
|
|
r->table = rt_setup(rt_table_pool, r);
|
|
DBG("\t%s: created\n", r->name);
|
|
add_tail(&routing_tables, &r->table->n);
|
|
}
|
|
DBG("\tdone\n");
|
|
}
|
|
|
|
static inline void
|
|
do_feed_channel(struct channel *c, net *n, rte *e)
|
|
{
|
|
rte_update_lock();
|
|
if (c->ra_mode == RA_ACCEPTED)
|
|
rt_notify_accepted(c, n, NULL, NULL, c->refeeding);
|
|
else if (c->ra_mode == RA_MERGED)
|
|
rt_notify_merged(c, n, NULL, NULL, e, e, c->refeeding);
|
|
else /* RA_BASIC */
|
|
rt_notify_basic(c, n, e, e, c->refeeding);
|
|
rte_update_unlock();
|
|
}
|
|
|
|
/**
|
|
* rt_feed_channel - advertise all routes to a channel
|
|
* @c: channel to be fed
|
|
*
|
|
* This function performs one pass of advertisement of routes to a channel that
|
|
* is in the ES_FEEDING state. It is called by the protocol code as long as it
|
|
* has something to do. (We avoid transferring all the routes in single pass in
|
|
* order not to monopolize CPU time.)
|
|
*/
|
|
int
|
|
rt_feed_channel(struct channel *c)
|
|
{
|
|
struct fib_iterator *fit = &c->feed_fit;
|
|
int max_feed = 256;
|
|
|
|
ASSERT(c->export_state == ES_FEEDING);
|
|
|
|
if (!c->feed_active)
|
|
{
|
|
FIB_ITERATE_INIT(fit, &c->table->fib);
|
|
c->feed_active = 1;
|
|
}
|
|
|
|
FIB_ITERATE_START(&c->table->fib, fit, net, n)
|
|
{
|
|
rte *e = n->routes;
|
|
if (max_feed <= 0)
|
|
{
|
|
FIB_ITERATE_PUT(fit);
|
|
return 0;
|
|
}
|
|
|
|
if ((c->ra_mode == RA_OPTIMAL) ||
|
|
(c->ra_mode == RA_ACCEPTED) ||
|
|
(c->ra_mode == RA_MERGED))
|
|
if (rte_is_valid(e))
|
|
{
|
|
/* In the meantime, the protocol may fell down */
|
|
if (c->export_state != ES_FEEDING)
|
|
goto done;
|
|
|
|
do_feed_channel(c, n, e);
|
|
max_feed--;
|
|
}
|
|
|
|
if (c->ra_mode == RA_ANY)
|
|
for(e = n->routes; e; e = e->next)
|
|
{
|
|
/* In the meantime, the protocol may fell down */
|
|
if (c->export_state != ES_FEEDING)
|
|
goto done;
|
|
|
|
if (!rte_is_valid(e))
|
|
continue;
|
|
|
|
do_feed_channel(c, n, e);
|
|
max_feed--;
|
|
}
|
|
}
|
|
FIB_ITERATE_END;
|
|
|
|
done:
|
|
c->feed_active = 0;
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* rt_feed_baby_abort - abort protocol feeding
|
|
* @c: channel
|
|
*
|
|
* This function is called by the protocol code when the protocol stops or
|
|
* ceases to exist during the feeding.
|
|
*/
|
|
void
|
|
rt_feed_channel_abort(struct channel *c)
|
|
{
|
|
if (c->feed_active)
|
|
{
|
|
/* Unlink the iterator */
|
|
fit_get(&c->table->fib, &c->feed_fit);
|
|
c->feed_active = 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Import table
|
|
*/
|
|
|
|
int
|
|
rte_update_in(struct channel *c, const net_addr *n, rte *new, struct rte_src *src)
|
|
{
|
|
struct rtable *tab = c->in_table;
|
|
rte *old, **pos;
|
|
net *net;
|
|
|
|
if (new)
|
|
{
|
|
net = net_get(tab, n);
|
|
|
|
if (!rta_is_cached(new->attrs))
|
|
new->attrs = rta_lookup(new->attrs);
|
|
}
|
|
else
|
|
{
|
|
net = net_find(tab, n);
|
|
|
|
if (!net)
|
|
goto drop_withdraw;
|
|
}
|
|
|
|
/* Find the old rte */
|
|
for (pos = &net->routes; old = *pos; pos = &old->next)
|
|
if (old->src == src)
|
|
{
|
|
if (new && rte_same(old, new))
|
|
{
|
|
/* Refresh the old rte, continue with update to main rtable */
|
|
if (old->flags & (REF_STALE | REF_DISCARD | REF_MODIFY))
|
|
{
|
|
old->flags &= ~(REF_STALE | REF_DISCARD | REF_MODIFY);
|
|
return 1;
|
|
}
|
|
|
|
goto drop_update;
|
|
}
|
|
|
|
/* Move iterator if needed */
|
|
if (old == c->reload_next_rte)
|
|
c->reload_next_rte = old->next;
|
|
|
|
/* Remove the old rte */
|
|
*pos = old->next;
|
|
rte_free_quick(old);
|
|
tab->rt_count--;
|
|
|
|
break;
|
|
}
|
|
|
|
if (!new)
|
|
{
|
|
if (!old)
|
|
goto drop_withdraw;
|
|
|
|
if (!net->routes)
|
|
fib_delete(&tab->fib, net);
|
|
|
|
return 1;
|
|
}
|
|
|
|
struct channel_limit *l = &c->rx_limit;
|
|
if (l->action && !old)
|
|
{
|
|
if (tab->rt_count >= l->limit)
|
|
channel_notify_limit(c, l, PLD_RX, tab->rt_count);
|
|
|
|
if (l->state == PLS_BLOCKED)
|
|
{
|
|
/* Required by rte_trace_in() */
|
|
new->net = net;
|
|
|
|
rte_trace_in(D_FILTERS, c, new, "ignored [limit]");
|
|
goto drop_update;
|
|
}
|
|
}
|
|
|
|
/* Insert the new rte */
|
|
rte *e = rte_do_cow(new);
|
|
e->flags |= REF_COW;
|
|
e->net = net;
|
|
e->sender = c;
|
|
e->lastmod = current_time();
|
|
e->next = *pos;
|
|
*pos = e;
|
|
tab->rt_count++;
|
|
return 1;
|
|
|
|
drop_update:
|
|
c->stats.imp_updates_received++;
|
|
c->stats.imp_updates_ignored++;
|
|
rte_free(new);
|
|
|
|
if (!net->routes)
|
|
fib_delete(&tab->fib, net);
|
|
|
|
return 0;
|
|
|
|
drop_withdraw:
|
|
c->stats.imp_withdraws_received++;
|
|
c->stats.imp_withdraws_ignored++;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rt_reload_channel(struct channel *c)
|
|
{
|
|
struct rtable *tab = c->in_table;
|
|
struct fib_iterator *fit = &c->reload_fit;
|
|
int max_feed = 64;
|
|
|
|
ASSERT(c->channel_state == CS_UP);
|
|
|
|
if (!c->reload_active)
|
|
{
|
|
FIB_ITERATE_INIT(fit, &tab->fib);
|
|
c->reload_active = 1;
|
|
}
|
|
|
|
do {
|
|
for (rte *e = c->reload_next_rte; e; e = e->next)
|
|
{
|
|
if (max_feed-- <= 0)
|
|
{
|
|
c->reload_next_rte = e;
|
|
debug("%s channel reload burst split (max_feed=%d)", c->proto->name, max_feed);
|
|
return 0;
|
|
}
|
|
|
|
rte_update2(c, e->net->n.addr, rte_do_cow(e), e->src);
|
|
}
|
|
|
|
c->reload_next_rte = NULL;
|
|
|
|
FIB_ITERATE_START(&tab->fib, fit, net, n)
|
|
{
|
|
if (c->reload_next_rte = n->routes)
|
|
{
|
|
FIB_ITERATE_PUT_NEXT(fit, &tab->fib);
|
|
break;
|
|
}
|
|
}
|
|
FIB_ITERATE_END;
|
|
}
|
|
while (c->reload_next_rte);
|
|
|
|
c->reload_active = 0;
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
rt_reload_channel_abort(struct channel *c)
|
|
{
|
|
if (c->reload_active)
|
|
{
|
|
/* Unlink the iterator */
|
|
fit_get(&c->in_table->fib, &c->reload_fit);
|
|
c->reload_next_rte = NULL;
|
|
c->reload_active = 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
rt_prune_sync(rtable *t, int all)
|
|
{
|
|
struct fib_iterator fit;
|
|
|
|
FIB_ITERATE_INIT(&fit, &t->fib);
|
|
|
|
again:
|
|
FIB_ITERATE_START(&t->fib, &fit, net, n)
|
|
{
|
|
rte *e, **ee = &n->routes;
|
|
|
|
while (e = *ee)
|
|
{
|
|
if (all || (e->flags & (REF_STALE | REF_DISCARD)))
|
|
{
|
|
*ee = e->next;
|
|
rte_free_quick(e);
|
|
t->rt_count--;
|
|
}
|
|
else
|
|
ee = &e->next;
|
|
}
|
|
|
|
if (all || !n->routes)
|
|
{
|
|
FIB_ITERATE_PUT(&fit);
|
|
fib_delete(&t->fib, n);
|
|
goto again;
|
|
}
|
|
}
|
|
FIB_ITERATE_END;
|
|
}
|
|
|
|
|
|
/*
|
|
* Export table
|
|
*/
|
|
|
|
int
|
|
rte_update_out(struct channel *c, const net_addr *n, rte *new, rte *old0, int refeed)
|
|
{
|
|
struct rtable *tab = c->out_table;
|
|
struct rte_src *src;
|
|
rte *old, **pos;
|
|
net *net;
|
|
|
|
if (new)
|
|
{
|
|
net = net_get(tab, n);
|
|
src = new->src;
|
|
|
|
if (!rta_is_cached(new->attrs))
|
|
new->attrs = rta_lookup(new->attrs);
|
|
}
|
|
else
|
|
{
|
|
net = net_find(tab, n);
|
|
src = old0->src;
|
|
|
|
if (!net)
|
|
goto drop_withdraw;
|
|
}
|
|
|
|
/* Find the old rte */
|
|
for (pos = &net->routes; old = *pos; pos = &old->next)
|
|
if ((c->ra_mode != RA_ANY) || (old->src == src))
|
|
{
|
|
if (new && rte_same(old, new))
|
|
{
|
|
/* REF_STALE / REF_DISCARD not used in export table */
|
|
/*
|
|
if (old->flags & (REF_STALE | REF_DISCARD | REF_MODIFY))
|
|
{
|
|
old->flags &= ~(REF_STALE | REF_DISCARD | REF_MODIFY);
|
|
return 1;
|
|
}
|
|
*/
|
|
|
|
goto drop_update;
|
|
}
|
|
|
|
/* Remove the old rte */
|
|
*pos = old->next;
|
|
rte_free_quick(old);
|
|
tab->rt_count--;
|
|
|
|
break;
|
|
}
|
|
|
|
if (!new)
|
|
{
|
|
if (!old)
|
|
goto drop_withdraw;
|
|
|
|
if (!net->routes)
|
|
fib_delete(&tab->fib, net);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Insert the new rte */
|
|
rte *e = rte_do_cow(new);
|
|
e->flags |= REF_COW;
|
|
e->net = net;
|
|
e->sender = c;
|
|
e->lastmod = current_time();
|
|
e->next = *pos;
|
|
*pos = e;
|
|
tab->rt_count++;
|
|
return 1;
|
|
|
|
drop_update:
|
|
return refeed;
|
|
|
|
drop_withdraw:
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Hostcache
|
|
*/
|
|
|
|
static inline u32
|
|
hc_hash(ip_addr a, rtable *dep)
|
|
{
|
|
return ipa_hash(a) ^ ptr_hash(dep);
|
|
}
|
|
|
|
static inline void
|
|
hc_insert(struct hostcache *hc, struct hostentry *he)
|
|
{
|
|
uint k = he->hash_key >> hc->hash_shift;
|
|
he->next = hc->hash_table[k];
|
|
hc->hash_table[k] = he;
|
|
}
|
|
|
|
static inline void
|
|
hc_remove(struct hostcache *hc, struct hostentry *he)
|
|
{
|
|
struct hostentry **hep;
|
|
uint k = he->hash_key >> hc->hash_shift;
|
|
|
|
for (hep = &hc->hash_table[k]; *hep != he; hep = &(*hep)->next);
|
|
*hep = he->next;
|
|
}
|
|
|
|
#define HC_DEF_ORDER 10
|
|
#define HC_HI_MARK *4
|
|
#define HC_HI_STEP 2
|
|
#define HC_HI_ORDER 16 /* Must be at most 16 */
|
|
#define HC_LO_MARK /5
|
|
#define HC_LO_STEP 2
|
|
#define HC_LO_ORDER 10
|
|
|
|
static void
|
|
hc_alloc_table(struct hostcache *hc, pool *p, unsigned order)
|
|
{
|
|
uint hsize = 1 << order;
|
|
hc->hash_order = order;
|
|
hc->hash_shift = 32 - order;
|
|
hc->hash_max = (order >= HC_HI_ORDER) ? ~0U : (hsize HC_HI_MARK);
|
|
hc->hash_min = (order <= HC_LO_ORDER) ? 0U : (hsize HC_LO_MARK);
|
|
|
|
hc->hash_table = mb_allocz(p, hsize * sizeof(struct hostentry *));
|
|
}
|
|
|
|
static void
|
|
hc_resize(struct hostcache *hc, pool *p, unsigned new_order)
|
|
{
|
|
struct hostentry **old_table = hc->hash_table;
|
|
struct hostentry *he, *hen;
|
|
uint old_size = 1 << hc->hash_order;
|
|
uint i;
|
|
|
|
hc_alloc_table(hc, p, new_order);
|
|
for (i = 0; i < old_size; i++)
|
|
for (he = old_table[i]; he != NULL; he=hen)
|
|
{
|
|
hen = he->next;
|
|
hc_insert(hc, he);
|
|
}
|
|
mb_free(old_table);
|
|
}
|
|
|
|
static struct hostentry *
|
|
hc_new_hostentry(struct hostcache *hc, pool *p, ip_addr a, ip_addr ll, rtable *dep, unsigned k)
|
|
{
|
|
struct hostentry *he = sl_alloc(hc->slab);
|
|
|
|
*he = (struct hostentry) {
|
|
.addr = a,
|
|
.link = ll,
|
|
.tab = dep,
|
|
.hash_key = k,
|
|
};
|
|
|
|
add_tail(&hc->hostentries, &he->ln);
|
|
hc_insert(hc, he);
|
|
|
|
hc->hash_items++;
|
|
if (hc->hash_items > hc->hash_max)
|
|
hc_resize(hc, p, hc->hash_order + HC_HI_STEP);
|
|
|
|
return he;
|
|
}
|
|
|
|
static void
|
|
hc_delete_hostentry(struct hostcache *hc, pool *p, struct hostentry *he)
|
|
{
|
|
rta_free(he->src);
|
|
|
|
rem_node(&he->ln);
|
|
hc_remove(hc, he);
|
|
sl_free(he);
|
|
|
|
hc->hash_items--;
|
|
if (hc->hash_items < hc->hash_min)
|
|
hc_resize(hc, p, hc->hash_order - HC_LO_STEP);
|
|
}
|
|
|
|
static void
|
|
rt_init_hostcache(rtable *tab)
|
|
{
|
|
struct hostcache *hc = mb_allocz(tab->rp, sizeof(struct hostcache));
|
|
init_list(&hc->hostentries);
|
|
|
|
hc->hash_items = 0;
|
|
hc_alloc_table(hc, tab->rp, HC_DEF_ORDER);
|
|
hc->slab = sl_new(tab->rp, sizeof(struct hostentry));
|
|
|
|
hc->lp = lp_new(tab->rp);
|
|
hc->trie = f_new_trie(hc->lp, 0);
|
|
|
|
tab->hostcache = hc;
|
|
}
|
|
|
|
static void
|
|
rt_free_hostcache(rtable *tab)
|
|
{
|
|
struct hostcache *hc = tab->hostcache;
|
|
|
|
node *n;
|
|
WALK_LIST(n, hc->hostentries)
|
|
{
|
|
struct hostentry *he = SKIP_BACK(struct hostentry, ln, n);
|
|
rta_free(he->src);
|
|
|
|
if (he->uc)
|
|
log(L_ERR "Hostcache is not empty in table %s", tab->name);
|
|
}
|
|
|
|
/* Freed automagically by the resource pool
|
|
rfree(hc->slab);
|
|
rfree(hc->lp);
|
|
mb_free(hc->hash_table);
|
|
mb_free(hc);
|
|
*/
|
|
}
|
|
|
|
static void
|
|
rt_notify_hostcache(rtable *tab, net *net)
|
|
{
|
|
if (tab->hcu_scheduled)
|
|
return;
|
|
|
|
if (trie_match_net(tab->hostcache->trie, net->n.addr))
|
|
rt_schedule_hcu(tab);
|
|
}
|
|
|
|
static int
|
|
if_local_addr(ip_addr a, struct iface *i)
|
|
{
|
|
struct ifa *b;
|
|
|
|
WALK_LIST(b, i->addrs)
|
|
if (ipa_equal(a, b->ip))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
u32
|
|
rt_get_igp_metric(rte *rt)
|
|
{
|
|
eattr *ea = ea_find(rt->attrs->eattrs, EA_GEN_IGP_METRIC);
|
|
|
|
if (ea)
|
|
return ea->u.data;
|
|
|
|
if (rt->attrs->source == RTS_DEVICE)
|
|
return 0;
|
|
|
|
if (rt->src->proto->rte_igp_metric)
|
|
return rt->src->proto->rte_igp_metric(rt);
|
|
|
|
return IGP_METRIC_UNKNOWN;
|
|
}
|
|
|
|
static int
|
|
rt_update_hostentry(rtable *tab, struct hostentry *he)
|
|
{
|
|
rta *old_src = he->src;
|
|
int direct = 0;
|
|
int pxlen = 0;
|
|
|
|
/* Reset the hostentry */
|
|
he->src = NULL;
|
|
he->dest = RTD_UNREACHABLE;
|
|
he->nexthop_linkable = 0;
|
|
he->igp_metric = 0;
|
|
|
|
net_addr he_addr;
|
|
net_fill_ip_host(&he_addr, he->addr);
|
|
net *n = net_route(tab, &he_addr);
|
|
if (n)
|
|
{
|
|
rte *e = n->routes;
|
|
rta *a = e->attrs;
|
|
word pref = a->pref;
|
|
|
|
for (rte *ee = n->routes; ee; ee = ee->next)
|
|
if ((ee->attrs->pref >= pref) && ee->attrs->hostentry)
|
|
{
|
|
/* Recursive route should not depend on another recursive route */
|
|
log(L_WARN "Next hop address %I resolvable through recursive route for %N",
|
|
he->addr, n->n.addr);
|
|
goto done;
|
|
}
|
|
|
|
pxlen = n->n.addr->pxlen;
|
|
|
|
if (a->dest == RTD_UNICAST)
|
|
{
|
|
for (struct nexthop *nh = &(a->nh); nh; nh = nh->next)
|
|
if (ipa_zero(nh->gw))
|
|
{
|
|
if (if_local_addr(he->addr, nh->iface))
|
|
{
|
|
/* The host address is a local address, this is not valid */
|
|
log(L_WARN "Next hop address %I is a local address of iface %s",
|
|
he->addr, nh->iface->name);
|
|
goto done;
|
|
}
|
|
|
|
direct++;
|
|
}
|
|
}
|
|
|
|
he->src = rta_clone(a);
|
|
he->dest = a->dest;
|
|
he->nexthop_linkable = !direct;
|
|
he->igp_metric = rt_get_igp_metric(e);
|
|
}
|
|
|
|
done:
|
|
/* Add a prefix range to the trie */
|
|
trie_add_prefix(tab->hostcache->trie, &he_addr, pxlen, he_addr.pxlen);
|
|
|
|
rta_free(old_src);
|
|
return old_src != he->src;
|
|
}
|
|
|
|
static void
|
|
rt_update_hostcache(rtable *tab)
|
|
{
|
|
struct hostcache *hc = tab->hostcache;
|
|
struct hostentry *he;
|
|
node *n, *x;
|
|
|
|
/* Reset the trie */
|
|
lp_flush(hc->lp);
|
|
hc->trie = f_new_trie(hc->lp, 0);
|
|
|
|
WALK_LIST_DELSAFE(n, x, hc->hostentries)
|
|
{
|
|
he = SKIP_BACK(struct hostentry, ln, n);
|
|
if (!he->uc)
|
|
{
|
|
hc_delete_hostentry(hc, tab->rp, he);
|
|
continue;
|
|
}
|
|
|
|
if (rt_update_hostentry(tab, he))
|
|
rt_schedule_nhu(he->tab);
|
|
}
|
|
|
|
tab->hcu_scheduled = 0;
|
|
}
|
|
|
|
struct hostentry *
|
|
rt_get_hostentry(rtable *tab, ip_addr a, ip_addr ll, rtable *dep)
|
|
{
|
|
ip_addr link = ipa_zero(ll) ? a : ll;
|
|
struct hostentry *he;
|
|
|
|
if (!tab->hostcache)
|
|
rt_init_hostcache(tab);
|
|
|
|
u32 k = hc_hash(a, dep);
|
|
struct hostcache *hc = tab->hostcache;
|
|
for (he = hc->hash_table[k >> hc->hash_shift]; he != NULL; he = he->next)
|
|
if (ipa_equal(he->addr, a) && ipa_equal(he->link, link) && (he->tab == dep))
|
|
return he;
|
|
|
|
he = hc_new_hostentry(hc, tab->rp, a, link, dep, k);
|
|
rt_update_hostentry(tab, he);
|
|
return he;
|
|
}
|
|
|
|
|
|
/*
|
|
* Documentation for functions declared inline in route.h
|
|
*/
|
|
#if 0
|
|
|
|
/**
|
|
* net_find - find a network entry
|
|
* @tab: a routing table
|
|
* @addr: address of the network
|
|
*
|
|
* net_find() looks up the given network in routing table @tab and
|
|
* returns a pointer to its &net entry or %NULL if no such network
|
|
* exists.
|
|
*/
|
|
static inline net *net_find(rtable *tab, net_addr *addr)
|
|
{ DUMMY; }
|
|
|
|
/**
|
|
* net_get - obtain a network entry
|
|
* @tab: a routing table
|
|
* @addr: address of the network
|
|
*
|
|
* net_get() looks up the given network in routing table @tab and
|
|
* returns a pointer to its &net entry. If no such entry exists, it's
|
|
* created.
|
|
*/
|
|
static inline net *net_get(rtable *tab, net_addr *addr)
|
|
{ DUMMY; }
|
|
|
|
/**
|
|
* rte_cow - copy a route for writing
|
|
* @r: a route entry to be copied
|
|
*
|
|
* rte_cow() takes a &rte and prepares it for modification. The exact action
|
|
* taken depends on the flags of the &rte -- if it's a temporary entry, it's
|
|
* just returned unchanged, else a new temporary entry with the same contents
|
|
* is created.
|
|
*
|
|
* The primary use of this function is inside the filter machinery -- when
|
|
* a filter wants to modify &rte contents (to change the preference or to
|
|
* attach another set of attributes), it must ensure that the &rte is not
|
|
* shared with anyone else (and especially that it isn't stored in any routing
|
|
* table).
|
|
*
|
|
* Result: a pointer to the new writable &rte.
|
|
*/
|
|
static inline rte * rte_cow(rte *r)
|
|
{ DUMMY; }
|
|
|
|
#endif
|