0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2025-01-22 17:01:53 +00:00
bird/proto/ospf/ospf.c
2023-11-02 14:43:15 +01:00

1563 lines
40 KiB
C

/*
* BIRD -- OSPF
*
* (c) 1999--2004 Ondrej Filip <feela@network.cz>
* (c) 2009--2014 Ondrej Zajicek <santiago@crfreenet.org>
* (c) 2009--2014 CZ.NIC z.s.p.o.
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
/**
* DOC: Open Shortest Path First (OSPF)
*
* The OSPF protocol is quite complicated and its complex implemenation is split
* to many files. In |ospf.c|, you will find mainly the interface for
* communication with the core (e.g., reconfiguration hooks, shutdown and
* initialisation and so on). File |iface.c| contains the interface state
* machine and functions for allocation and deallocation of OSPF's interface
* data structures. Source |neighbor.c| includes the neighbor state machine and
* functions for election of Designated Router and Backup Designated router. In
* |packet.c|, you will find various functions for sending and receiving generic
* OSPF packets. There are also routines for authentication and checksumming.
* In |hello.c|, there are routines for sending and receiving of hello packets
* as well as functions for maintaining wait times and the inactivity timer.
* Files |lsreq.c|, |lsack.c|, |dbdes.c| contain functions for sending and
* receiving of link-state requests, link-state acknowledgements and database
* descriptions respectively. In |lsupd.c|, there are functions for sending and
* receiving of link-state updates and also the flooding algorithm. Source
* |topology.c| is a place where routines for searching LSAs in the link-state
* database, adding and deleting them reside, there also are functions for
* originating of various types of LSAs (router LSA, net LSA, external LSA).
* File |rt.c| contains routines for calculating the routing table. |lsalib.c|
* is a set of various functions for working with the LSAs (endianity
* conversions, calculation of checksum etc.).
*
* One instance of the protocol is able to hold LSA databases for multiple OSPF
* areas, to exchange routing information between multiple neighbors and to
* calculate the routing tables. The core structure is &ospf_proto to which
* multiple &ospf_area and &ospf_iface structures are connected. &ospf_proto is
* also connected to &top_hash_graph which is a dynamic hashing structure that
* describes the link-state database. It allows fast search, addition and
* deletion. Each LSA is kept in two pieces: header and body. Both of them are
* kept in the endianity of the CPU.
*
* In OSPFv2 specification, it is implied that there is one IP prefix for each
* physical network/interface (unless it is an ptp link). But in modern systems,
* there might be more independent IP prefixes associated with an interface. To
* handle this situation, we have one &ospf_iface for each active IP prefix
* (instead for each active iface); This behaves like virtual interface for the
* purpose of OSPF. If we receive packet, we associate it with a proper virtual
* interface mainly according to its source address.
*
* OSPF keeps one socket per &ospf_iface. This allows us (compared to one socket
* approach) to evade problems with a limit of multicast groups per socket and
* with sending multicast packets to appropriate interface in a portable way.
* The socket is associated with underlying physical iface and should not
* receive packets received on other ifaces (unfortunately, this is not true on
* BSD). Generally, one packet can be received by more sockets (for example, if
* there are more &ospf_iface on one physical iface), therefore we explicitly
* filter received packets according to src/dst IP address and received iface.
*
* Vlinks are implemented using particularly degenerate form of &ospf_iface,
* which has several exceptions: it does not have its iface or socket (it copies
* these from 'parent' &ospf_iface) and it is present in iface list even when
* down (it is not freed in ospf_iface_down()).
*
* The heart beat of ospf is ospf_disp(). It is called at regular intervals
* (&ospf_proto->tick). It is responsible for aging and flushing of LSAs in the
* database, updating topology information in LSAs and for routing table
* calculation.
*
* To every &ospf_iface, we connect one or more &ospf_neighbor's -- a structure
* containing many timers and queues for building adjacency and for exchange of
* routing messages.
*
* BIRD's OSPF implementation respects RFC2328 in every detail, but some of
* internal algorithms do differ. The RFC recommends making a snapshot of the
* link-state database when a new adjacency is forming and sending the database
* description packets based on the information in this snapshot. The database
* can be quite large in some networks, so rather we walk through a &slist
* structure which allows us to continue even if the actual LSA we were working
* with is deleted. New LSAs are added at the tail of this &slist.
*
* We also do not keep a separate OSPF routing table, because the core helps us
* by being able to recognize when a route is updated to an identical one and it
* suppresses the update automatically. Due to this, we can flush all the routes
* we have recalculated and also those we have deleted to the core's routing
* table and the core will take care of the rest. This simplifies the process
* and conserves memory.
*
* Supported standards:
* - RFC 2328 - main OSPFv2 standard
* - RFC 5340 - main OSPFv3 standard
* - RFC 3101 - OSPFv2 NSSA areas
* - RFC 3623 - OSPFv2 Graceful Restart
* - RFC 4576 - OSPFv2 VPN loop prevention
* - RFC 5187 - OSPFv3 Graceful Restart
* - RFC 5250 - OSPFv2 Opaque LSAs
* - RFC 5709 - OSPFv2 HMAC-SHA Cryptographic Authentication
* - RFC 5838 - OSPFv3 Support of Address Families
* - RFC 6549 - OSPFv2 Multi-Instance Extensions
* - RFC 6987 - OSPF Stub Router Advertisement
* - RFC 7166 - OSPFv3 Authentication Trailer
* - RFC 7770 - OSPF Router Information LSA
*/
#include <stdlib.h>
#include "ospf.h"
#include "lib/macro.h"
static int ospf_preexport(struct channel *C, rte *new);
static int ospf_reload_routes(struct channel *C, struct channel_import_request *cir);
static int ospf_rte_better(const rte *new, const rte *old);
static u32 ospf_rte_igp_metric(const rte *rt);
static void ospf_disp(timer *timer);
static void
add_area_nets(struct ospf_area *oa, struct ospf_area_config *ac)
{
struct ospf_proto *p = oa->po;
struct area_net_config *anc;
struct area_net *an;
fib_init(&oa->net_fib, p->p.pool, ospf_get_af(p),
sizeof(struct area_net), OFFSETOF(struct area_net, fn), 0, NULL);
fib_init(&oa->enet_fib, p->p.pool, ospf_get_af(p),
sizeof(struct area_net), OFFSETOF(struct area_net, fn), 0, NULL);
WALK_LIST(anc, ac->net_list)
{
an = fib_get(&oa->net_fib, &anc->prefix);
an->hidden = anc->hidden;
}
WALK_LIST(anc, ac->enet_list)
{
an = fib_get(&oa->enet_fib, &anc->prefix);
an->hidden = anc->hidden;
an->tag = anc->tag;
}
}
static inline uint
ospf_opts(struct ospf_proto *p)
{
if (ospf_is_v2(p))
return OPT_O;
return ((ospf_is_ip6(p) && !p->af_mc) ? OPT_V6 : 0) |
(!p->stub_router ? OPT_R : 0) | (p->af_ext ? OPT_AF : 0);
}
static void
ospf_area_add(struct ospf_proto *p, struct ospf_area_config *ac)
{
struct ospf_area *oa;
OSPF_TRACE(D_EVENTS, "Adding area %R", ac->areaid);
oa = mb_allocz(p->p.pool, sizeof(struct ospf_area));
add_tail(&p->area_list, NODE oa);
p->areano++;
oa->ac = ac;
oa->areaid = ac->areaid;
oa->rt = NULL;
oa->po = p;
fib_init(&oa->rtr, p->p.pool, NET_IP4, sizeof(ort), OFFSETOF(ort, fn), 0, NULL);
add_area_nets(oa, ac);
if (oa->areaid == 0)
p->backbone = oa;
oa->options = ac->type | ospf_opts(p);
ospf_notify_rt_lsa(oa);
}
static void
ospf_flush_area(struct ospf_proto *p, u32 areaid)
{
struct top_hash_entry *en;
WALK_SLIST(en, p->lsal)
if ((LSA_SCOPE(en->lsa_type) == LSA_SCOPE_AREA) && (en->domain == areaid))
ospf_flush_lsa(p, en);
}
static void
ospf_area_remove(struct ospf_area *oa)
{
struct ospf_proto *p = oa->po;
OSPF_TRACE(D_EVENTS, "Removing area %R", oa->areaid);
/* We suppose that interfaces are already removed */
ospf_flush_area(p, oa->areaid);
fib_free(&oa->rtr);
fib_free(&oa->net_fib);
fib_free(&oa->enet_fib);
if (oa->translator_timer)
rfree(oa->translator_timer);
p->areano--;
rem_node(NODE oa);
mb_free(oa);
}
struct ospf_area *
ospf_find_area(struct ospf_proto *p, u32 aid)
{
struct ospf_area *oa;
WALK_LIST(oa, p->area_list)
if (((struct ospf_area *) oa)->areaid == aid)
return oa;
return NULL;
}
static struct ospf_iface *
ospf_find_vlink(struct ospf_proto *p, u32 voa, u32 vid)
{
struct ospf_iface *ifa;
WALK_LIST(ifa, p->iface_list)
if ((ifa->type == OSPF_IT_VLINK) && (ifa->voa->areaid == voa) && (ifa->vid == vid))
return ifa;
return NULL;
}
static void
ospf_start_gr_recovery(struct ospf_proto *p)
{
OSPF_TRACE(D_EVENTS, "Graceful restart started");
p->gr_recovery = 1;
p->gr_timeout = current_time() + (p->gr_time S);
channel_graceful_restart_lock(p->p.main_channel);
p->p.main_channel->gr_wait = 1;
/* NOTE: We should get end of grace period from non-volatile storage */
}
void
ospf_stop_gr_recovery(struct ospf_proto *p)
{
p->gr_recovery = 0;
p->gr_cleanup = 1;
p->gr_timeout = 0;
/* Reorigination of router/network LSAs is already scheduled */
/* Rest is done in ospf_cleanup_gr_recovery() */
}
static void
ospf_cleanup_gr_recovery(struct ospf_proto *p)
{
struct top_hash_entry *en;
/* Flush dirty LSAa except external ones, these will be handled by feed */
WALK_SLIST(en, p->lsal)
if (en->gr_dirty)
{
if ((en->lsa_type == LSA_T_EXT) || (en->lsa_type == LSA_T_NSSA))
en->mode = LSA_M_EXPORT;
else
ospf_flush_lsa(p, en);
}
/* End graceful restart on channel, will also schedule feed */
channel_graceful_restart_unlock(p->p.main_channel);
p->gr_cleanup = 0;
}
static int
ospf_start(struct proto *P)
{
struct ospf_proto *p = (struct ospf_proto *) P;
struct ospf_config *c = (struct ospf_config *) (P->cf);
struct ospf_area_config *ac;
p->router_id = proto_get_router_id(P->cf);
p->ospf2 = c->ospf2;
p->af_ext = c->af_ext;
p->af_mc = c->af_mc;
p->rfc1583 = c->rfc1583;
p->stub_router = c->stub_router;
p->merge_external = c->merge_external;
p->instance_id = c->instance_id;
p->asbr = c->asbr;
p->vpn_pe = c->vpn_pe;
p->ecmp = c->ecmp;
p->gr_mode = c->gr_mode;
p->gr_time = c->gr_time;
p->tick = c->tick;
p->disp_timer = tm_new_init(P->pool_up, ospf_disp, p, p->tick S, 0);
tm_start(p->disp_timer, 100 MS);
p->lsab_size = 256;
p->lsab_used = 0;
p->lsab = mb_alloc(P->pool, p->lsab_size);
p->nhpool = lp_new(P->pool);
init_list(&(p->iface_list));
init_list(&(p->area_list));
fib_init(&p->rtf, P->pool, ospf_get_af(p), sizeof(ort), OFFSETOF(ort, fn), 0, NULL);
if (ospf_is_v3(p))
idm_init(&p->idm, P->pool, 16);
p->areano = 0;
p->gr = ospf_top_new(p, P->pool);
s_init_list(&(p->lsal));
p->flood_event = ev_new_init(P->pool, ospf_flood_event, p);
p->log_pkt_tbf = (struct tbf){ .rate = 1, .burst = 5 };
p->log_lsa_tbf = (struct tbf){ .rate = 4, .burst = 20 };
/* Lock the channel when in GR recovery mode */
if (p->p.gr_recovery && (p->gr_mode == OSPF_GR_ABLE))
ospf_start_gr_recovery(p);
WALK_LIST(ac, c->area_list)
ospf_area_add(p, ac);
if (c->abr)
ospf_open_vlink_sk(p);
/* Add all virtual links */
struct ospf_iface_patt *ic;
WALK_LIST(ic, c->vlink_list)
ospf_iface_new_vlink(p, ic);
return PS_UP;
}
static void
ospf_dump(struct proto *P)
{
struct ospf_proto *p = (struct ospf_proto *) P;
struct ospf_iface *ifa;
struct ospf_neighbor *n;
OSPF_TRACE(D_EVENTS, "Area number: %d", p->areano);
WALK_LIST(ifa, p->iface_list)
{
OSPF_TRACE(D_EVENTS, "Interface: %s", ifa->ifname);
OSPF_TRACE(D_EVENTS, "state: %u", ifa->state);
OSPF_TRACE(D_EVENTS, "DR: %R", ifa->drid);
OSPF_TRACE(D_EVENTS, "BDR: %R", ifa->bdrid);
WALK_LIST(n, ifa->neigh_list)
{
OSPF_TRACE(D_EVENTS, " neighbor %R in state %u", n->rid, n->state);
}
}
/*
OSPF_TRACE(D_EVENTS, "LSA graph dump start:");
ospf_top_dump(p->gr, p);
OSPF_TRACE(D_EVENTS, "LSA graph dump finished");
*/
neigh_dump_all();
}
static struct proto *
ospf_init(struct proto_config *CF)
{
struct ospf_config *cf = (struct ospf_config *) CF;
struct proto *P = proto_new(CF);
P->main_channel = proto_add_channel(P, proto_cf_main_channel(CF));
P->rt_notify = ospf_rt_notify;
P->iface_sub.if_notify = ospf_if_notify;
P->iface_sub.ifa_notify = cf->ospf2 ? ospf_ifa_notify2 : ospf_ifa_notify3;
P->preexport = ospf_preexport;
P->reload_routes = ospf_reload_routes;
P->feed_begin = ospf_feed_begin;
P->feed_end = ospf_feed_end;
P->sources.class = &ospf_rte_owner_class;
return P;
}
/* If new is better return 1 */
static int
ospf_rte_better(const rte *new, const rte *old)
{
u32 new_metric1 = ea_get_int(new->attrs, &ea_ospf_metric1, LSINFINITY);
if (new_metric1 == LSINFINITY)
return 0;
u32 ns = rt_get_source_attr(new);
u32 os = rt_get_source_attr(old);
if (ns < os) return 1;
if (ns > os) return 0;
if (ns == RTS_OSPF_EXT2)
{
u32 old_metric2 = ea_get_int(old->attrs, &ea_ospf_metric2, LSINFINITY);
u32 new_metric2 = ea_get_int(new->attrs, &ea_ospf_metric2, LSINFINITY);
if (new_metric2 < old_metric2) return 1;
if (new_metric2 > old_metric2) return 0;
}
u32 old_metric1 = ea_get_int(old->attrs, &ea_ospf_metric1, LSINFINITY);
if (new_metric1 < old_metric1)
return 1;
return 0; /* Old is shorter or same */
}
static u32
ospf_rte_igp_metric(const rte *rt)
{
if (rt_get_source_attr(rt) == RTS_OSPF_EXT2)
return IGP_METRIC_UNKNOWN;
return ea_get_int(rt->attrs, &ea_ospf_metric1, LSINFINITY);
}
void
ospf_schedule_rtcalc(struct ospf_proto *p)
{
if (p->calcrt)
return;
OSPF_TRACE(D_EVENTS, "Scheduling routing table calculation");
p->calcrt = 1;
}
static int
ospf_reload_routes(struct channel *C, struct channel_import_request *cir)
{
struct ospf_proto *p = (struct ospf_proto *) C->proto;
cir->next = p->cir;
p->cir = cir;
if (p->calcrt == 2)
return 1;
OSPF_TRACE(D_EVENTS, "Scheduling routing table calculation with route reload");
p->calcrt = 2;
return 1;
}
/**
* ospf_disp - invokes routing table calculation, aging and also area_disp()
* @timer: timer usually called every @ospf_proto->tick second, @timer->data
* point to @ospf_proto
*/
static void
ospf_disp(timer * timer)
{
struct ospf_proto *p = timer->data;
/* Check for end of graceful restart */
if (p->gr_recovery)
ospf_update_gr_recovery(p);
/* Originate or flush local topology LSAs */
ospf_update_topology(p);
/* Process LSA DB */
ospf_update_lsadb(p);
/* Calculate routing table */
if (p->calcrt)
ospf_rt_spf(p);
/* Cleanup after graceful restart */
if (p->gr_cleanup)
ospf_cleanup_gr_recovery(p);
}
/**
* ospf_preexport - accept or reject new route from nest's routing table
* @P: OSPF protocol instance
* @new: the new route
* @attrs: list of attributes
* @pool: pool for allocation of attributes
*
* Its quite simple. It does not accept our own routes and leaves the decision on
* import to the filters.
*/
static int
ospf_preexport(struct channel *C, rte *e)
{
struct ospf_proto *p = (struct ospf_proto *) C->proto;
struct ospf_area *oa = ospf_main_area(p);
/* Reject our own routes */
if (e->sender == C->in_req.hook)
return -1;
/* Do not export routes to stub areas */
if (oa_is_stub(oa))
return -1;
return 0;
}
/**
* ospf_shutdown - Finish of OSPF instance
* @P: OSPF protocol instance
*
* RFC does not define any action that should be taken before router
* shutdown. To make my neighbors react as fast as possible, I send
* them hello packet with empty neighbor list. They should start
* their neighbor state machine with event %NEIGHBOR_1WAY.
*/
static int
ospf_shutdown(struct proto *P)
{
struct ospf_proto *p = (struct ospf_proto *) P;
struct ospf_iface *ifa;
OSPF_TRACE(D_EVENTS, "Shutdown requested");
if ((P->down_code == PDC_CMD_GR_DOWN) && (p->gr_mode == OSPF_GR_ABLE))
{
/* Originate Grace LSAs */
WALK_LIST(ifa, p->iface_list)
ospf_originate_gr_lsa(p, ifa);
}
else
{
/* Send to all my neighbors 1WAY */
WALK_LIST(ifa, p->iface_list)
ospf_iface_shutdown(ifa);
}
/* Cleanup locked rta entries */
FIB_WALK(&p->rtf, ort, nf)
{
ea_free(nf->old_ea);
}
FIB_WALK_END;
return PS_DOWN;
}
static void
ospf_get_status(struct proto *P, byte * buf)
{
struct ospf_proto *p = (struct ospf_proto *) P;
if (p->p.proto_state == PS_DOWN)
buf[0] = 0;
else
{
struct ospf_iface *ifa;
struct ospf_neighbor *n;
int adj = 0;
WALK_LIST(ifa, p->iface_list)
WALK_LIST(n, ifa->neigh_list) if (n->state == NEIGHBOR_FULL)
adj = 1;
if (adj == 0)
strcpy(buf, "Alone");
else
strcpy(buf, "Running");
}
}
static void
ospf_get_route_info(const rte * rte, byte * buf)
{
char *type = "<bug>";
uint source = rt_get_source_attr(rte);
switch (source)
{
case RTS_OSPF:
type = "I";
break;
case RTS_OSPF_IA:
type = "IA";
break;
case RTS_OSPF_EXT1:
type = "E1";
break;
case RTS_OSPF_EXT2:
type = "E2";
break;
}
buf += bsprintf(buf, " %s", type);
buf += bsprintf(buf, " (%d/%d", rt_get_preference(rte), ea_get_int(rte->attrs, &ea_ospf_metric1, LSINFINITY));
if (source == RTS_OSPF_EXT2)
buf += bsprintf(buf, "/%d", ea_get_int(rte->attrs, &ea_ospf_metric2, LSINFINITY));
buf += bsprintf(buf, ")");
if (source == RTS_OSPF_EXT1 || source == RTS_OSPF_EXT2)
{
eattr *ea = ea_find(rte->attrs, &ea_ospf_tag);
if (ea && (ea->u.data > 0))
buf += bsprintf(buf, " [%x]", ea->u.data);
}
eattr *ea = ea_find(rte->attrs, &ea_ospf_router_id);
if (ea)
buf += bsprintf(buf, " [%R]", ea->u.data);
}
static void
ospf_tag_format(const eattr * a, byte * buf, uint buflen)
{
bsnprintf(buf, buflen, "0x%08x", a->u.data);
}
static void
ospf_area_reconfigure(struct ospf_area *oa, struct ospf_area_config *nac)
{
struct ospf_proto *p = oa->po;
struct ospf_area_config *oac = oa->ac;
struct ospf_iface *ifa, *ifx;
oa->ac = nac;
oa->options = nac->type | ospf_opts(p);
if (nac->type != oac->type)
{
log(L_INFO "%s: Restarting area %R", p->p.name, oa->areaid);
/* Remove area interfaces, will be re-added later */
WALK_LIST_DELSAFE(ifa, ifx, p->iface_list)
if (ifa->oa == oa)
{
ospf_iface_shutdown(ifa);
ospf_iface_remove(ifa);
}
/* Flush area LSAs */
ospf_flush_area(p, oa->areaid);
}
/* Handle net_list */
fib_free(&oa->net_fib);
fib_free(&oa->enet_fib);
add_area_nets(oa, nac);
/* No need to handle stubnet_list */
oa->marked = 0;
ospf_notify_rt_lsa(oa);
}
/**
* ospf_reconfigure - reconfiguration hook
* @P: current instance of protocol (with old configuration)
* @c: new configuration requested by user
*
* This hook tries to be a little bit intelligent. Instance of OSPF
* will survive change of many constants like hello interval,
* password change, addition or deletion of some neighbor on
* nonbroadcast network, cost of interface, etc.
*/
static int
ospf_reconfigure(struct proto *P, struct proto_config *CF)
{
struct ospf_proto *p = (struct ospf_proto *) P;
struct ospf_config *old = (struct ospf_config *) (P->cf);
struct ospf_config *new = (struct ospf_config *) CF;
struct ospf_area_config *oac, *nac;
struct ospf_area *oa, *oax;
struct ospf_iface *ifa, *ifx;
struct ospf_iface_patt *ip;
if (proto_get_router_id(CF) != p->router_id)
return 0;
if (p->ospf2 != new->ospf2)
return 0;
if (p->rfc1583 != new->rfc1583)
return 0;
if (p->instance_id != new->instance_id)
return 0;
if (old->abr != new->abr)
return 0;
if (p->areano == 1)
{
oac = HEAD(old->area_list);
nac = HEAD(new->area_list);
if (oac->type != nac->type)
return 0;
}
if (old->vpn_pe != new->vpn_pe)
return 0;
if ((p->af_ext != new->af_ext) || (p->af_mc != new->af_mc))
return 0;
if (!proto_configure_channel(P, &P->main_channel, proto_cf_main_channel(CF)))
return 0;
p->stub_router = new->stub_router;
p->merge_external = new->merge_external;
p->asbr = new->asbr;
p->ecmp = new->ecmp;
p->gr_mode = new->gr_mode;
p->gr_time = new->gr_time;
p->tick = new->tick;
p->disp_timer->recurrent = p->tick S;
tm_start(p->disp_timer, 10 MS);
/* Mark all areas and ifaces */
WALK_LIST(oa, p->area_list)
oa->marked = 1;
WALK_LIST(ifa, p->iface_list)
ifa->marked = 1;
/* Add and update areas */
WALK_LIST(nac, new->area_list)
{
oa = ospf_find_area(p, nac->areaid);
if (oa)
ospf_area_reconfigure(oa, nac);
else
ospf_area_add(p, nac);
}
/* Add and update interfaces */
ospf_reconfigure_ifaces(p);
/* Add and update vlinks */
WALK_LIST(ip, new->vlink_list)
{
ifa = ospf_find_vlink(p, ip->voa, ip->vid);
if (ifa)
ospf_iface_reconfigure(ifa, ip);
else
ospf_iface_new_vlink(p, ip);
}
/* Delete remaining ifaces and areas */
WALK_LIST_DELSAFE(ifa, ifx, p->iface_list)
if (ifa->marked)
{
ospf_iface_shutdown(ifa);
ospf_iface_remove(ifa);
}
WALK_LIST_DELSAFE(oa, oax, p->area_list)
if (oa->marked)
ospf_area_remove(oa);
ospf_schedule_rtcalc(p);
return 1;
}
void
ospf_sh_neigh(struct proto *P, const char *iff)
{
struct ospf_proto *p = (struct ospf_proto *) P;
struct ospf_iface *ifa = NULL;
struct ospf_neighbor *n;
if (p->p.proto_state != PS_UP)
{
cli_msg(-1013, "%s: is not up", p->p.name);
return;
}
cli_msg(-1013, "%s:", p->p.name);
cli_msg(-1013, "%-12s\t%3s\t%-15s\t%-5s\t%-10s %s", "Router ID", "Pri",
" State", "DTime", "Interface", "Router IP");
WALK_LIST(ifa, p->iface_list)
if ((iff == NULL) || patmatch(iff, ifa->ifname))
WALK_LIST(n, ifa->neigh_list)
ospf_sh_neigh_info(n);
}
void
ospf_sh(struct proto *P)
{
struct ospf_proto *p = (struct ospf_proto *) P;
struct ospf_area *oa;
struct ospf_iface *ifa;
struct ospf_neighbor *n;
int ifano, nno, adjno, firstfib;
if (p->p.proto_state != PS_UP)
{
cli_msg(-1014, "%s: is not up", p->p.name);
return;
}
cli_msg(-1014, "%s:", p->p.name);
cli_msg(-1014, "RFC1583 compatibility: %s", (p->rfc1583 ? "enabled" : "disabled"));
cli_msg(-1014, "Stub router: %s", (p->stub_router ? "Yes" : "No"));
cli_msg(-1014, "RT scheduler tick: %d", p->tick);
cli_msg(-1014, "Number of areas: %u", p->areano);
cli_msg(-1014, "Number of LSAs in DB:\t%u", p->gr->hash_entries);
WALK_LIST(oa, p->area_list)
{
cli_msg(-1014, "\tArea: %R (%u) %s", oa->areaid, oa->areaid,
oa->areaid == 0 ? "[BACKBONE]" : "");
ifano = 0;
nno = 0;
adjno = 0;
WALK_LIST(ifa, p->iface_list)
{
if (oa == ifa->oa)
{
ifano++;
WALK_LIST(n, ifa->neigh_list)
{
nno++;
if (n->state == NEIGHBOR_FULL)
adjno++;
}
}
}
cli_msg(-1014, "\t\tStub:\t%s", oa_is_stub(oa) ? "Yes" : "No");
cli_msg(-1014, "\t\tNSSA:\t%s", oa_is_nssa(oa) ? "Yes" : "No");
cli_msg(-1014, "\t\tTransit:\t%s", oa->trcap ? "Yes" : "No");
if (oa_is_nssa(oa))
cli_msg(-1014, "\t\tNSSA translation:\t%s%s", oa->translate ? "Yes" : "No",
oa->translate == TRANS_WAIT ? " (run down)" : "");
cli_msg(-1014, "\t\tNumber of interfaces:\t%u", ifano);
cli_msg(-1014, "\t\tNumber of neighbors:\t%u", nno);
cli_msg(-1014, "\t\tNumber of adjacent neighbors:\t%u", adjno);
firstfib = 1;
FIB_WALK(&oa->net_fib, struct area_net, anet)
{
if(firstfib)
{
cli_msg(-1014, "\t\tArea networks:");
firstfib = 0;
}
cli_msg(-1014, "\t\t\t%1N\t%s\t%s", anet->fn.addr,
anet->hidden ? "Hidden" : "Advertise", anet->active ? "Active" : "");
}
FIB_WALK_END;
firstfib = 1;
FIB_WALK(&oa->enet_fib, struct area_net, anet)
{
if(firstfib)
{
cli_msg(-1014, "\t\tArea external networks:");
firstfib = 0;
}
cli_msg(-1014, "\t\t\t%1N\t%s\t%s", anet->fn.addr,
anet->hidden ? "Hidden" : "Advertise", anet->active ? "Active" : "");
}
FIB_WALK_END;
}
}
void
ospf_sh_iface(struct proto *P, const char *iff)
{
struct ospf_proto *p = (struct ospf_proto *) P;
struct ospf_iface *ifa = NULL;
if (p->p.proto_state != PS_UP)
{
cli_msg(-1015, "%s: is not up", p->p.name);
return;
}
cli_msg(-1015, "%s:", p->p.name);
WALK_LIST(ifa, p->iface_list)
if ((iff == NULL) || patmatch(iff, ifa->ifname))
ospf_iface_info(ifa);
}
/* lsa_compare_for_state() - Compare function for 'show ospf state'
*
* First we want to separate network-LSAs and other LSAs (because network-LSAs
* will be presented as network nodes and other LSAs together as router nodes)
* Network-LSAs are sorted according to network prefix, other LSAs are sorted
* according to originating router id (to get all LSA needed to represent one
* router node together). Then, according to LSA type, ID and age.
*
* For OSPFv3, we have to handle also Prefix-LSAs. We would like to put each
* immediately after the referenced LSA. We will make faked LSA based on ref_
* values
*/
static struct ospf_lsa_header *
fake_lsa_from_prefix_lsa(struct ospf_lsa_header *dst, struct ospf_lsa_header *src,
struct ospf_lsa_prefix *px)
{
dst->age = src->age;
dst->type_raw = px->ref_type;
dst->id = px->ref_id;
dst->rt = px->ref_rt;
dst->sn = src->sn;
return dst;
}
static int lsa_compare_ospf3;
static int
lsa_compare_for_state(const void *p1, const void *p2)
{
struct top_hash_entry *he1 = * (struct top_hash_entry **) p1;
struct top_hash_entry *he2 = * (struct top_hash_entry **) p2;
struct ospf_lsa_header *lsa1 = &(he1->lsa);
struct ospf_lsa_header *lsa2 = &(he2->lsa);
struct ospf_lsa_header lsatmp1, lsatmp2;
u16 lsa1_type = he1->lsa_type;
u16 lsa2_type = he2->lsa_type;
if (he1->domain < he2->domain)
return -1;
if (he1->domain > he2->domain)
return 1;
/* px1 or px2 assumes OSPFv3 */
int px1 = (lsa1_type == LSA_T_PREFIX);
int px2 = (lsa2_type == LSA_T_PREFIX);
if (px1)
{
lsa1 = fake_lsa_from_prefix_lsa(&lsatmp1, lsa1, he1->lsa_body);
lsa1_type = lsa1->type_raw; /* FIXME: handle unknown ref_type */
}
if (px2)
{
lsa2 = fake_lsa_from_prefix_lsa(&lsatmp2, lsa2, he2->lsa_body);
lsa2_type = lsa2->type_raw;
}
int nt1 = (lsa1_type == LSA_T_NET);
int nt2 = (lsa2_type == LSA_T_NET);
if (nt1 != nt2)
return nt1 - nt2;
if (nt1)
{
/* In OSPFv3, networks are named based on ID of DR */
if (lsa_compare_ospf3)
{
if (lsa1->rt < lsa2->rt)
return -1;
if (lsa1->rt > lsa2->rt)
return 1;
}
/* For OSPFv2, this is IP of the network,
for OSPFv3, this is interface ID */
if (lsa1->id < lsa2->id)
return -1;
if (lsa1->id > lsa2->id)
return 1;
if (px1 != px2)
return px1 - px2;
return lsa1->sn - lsa2->sn;
}
else
{
if (lsa1->rt < lsa2->rt)
return -1;
if (lsa1->rt > lsa2->rt)
return 1;
if (lsa1_type < lsa2_type)
return -1;
if (lsa1_type > lsa2_type)
return 1;
if (lsa1->id < lsa2->id)
return -1;
if (lsa1->id > lsa2->id)
return 1;
if (px1 != px2)
return px1 - px2;
return lsa1->sn - lsa2->sn;
}
}
static int
ext_compare_for_state(const void *p1, const void *p2)
{
struct top_hash_entry * he1 = * (struct top_hash_entry **) p1;
struct top_hash_entry * he2 = * (struct top_hash_entry **) p2;
struct ospf_lsa_header *lsa1 = &(he1->lsa);
struct ospf_lsa_header *lsa2 = &(he2->lsa);
if (lsa1->rt < lsa2->rt)
return -1;
if (lsa1->rt > lsa2->rt)
return 1;
if (lsa1->id < lsa2->id)
return -1;
if (lsa1->id > lsa2->id)
return 1;
return lsa1->sn - lsa2->sn;
}
static inline void
show_lsa_distance(struct top_hash_entry *he)
{
if (he->color == INSPF)
cli_msg(-1016, "\t\tdistance %u", he->dist);
else
cli_msg(-1016, "\t\tunreachable");
}
static inline void
show_lsa_router(struct ospf_proto *p, struct top_hash_entry *he, int verbose)
{
struct ospf_lsa_rt_walk rtl;
cli_msg(-1016, "");
cli_msg(-1016, "\trouter %R", he->lsa.rt);
show_lsa_distance(he);
lsa_walk_rt_init(p, he, &rtl);
while (lsa_walk_rt(&rtl))
if (rtl.type == LSART_VLNK)
cli_msg(-1016, "\t\tvlink %R metric %u", rtl.id, rtl.metric);
lsa_walk_rt_init(p, he, &rtl);
while (lsa_walk_rt(&rtl))
if (rtl.type == LSART_PTP)
cli_msg(-1016, "\t\trouter %R metric %u", rtl.id, rtl.metric);
lsa_walk_rt_init(p, he, &rtl);
while (lsa_walk_rt(&rtl))
if (rtl.type == LSART_NET)
{
if (ospf_is_v2(p))
{
/* In OSPFv2, we try to find network-LSA to get prefix/pxlen */
struct top_hash_entry *net_he = ospf_hash_find_net2(p->gr, he->domain, rtl.id);
if (net_he && (net_he->lsa.age < LSA_MAXAGE))
{
struct ospf_lsa_header *net_lsa = &(net_he->lsa);
struct ospf_lsa_net *net_ln = net_he->lsa_body;
cli_msg(-1016, "\t\tnetwork %I/%d metric %u",
ipa_from_u32(net_lsa->id & net_ln->optx),
u32_masklen(net_ln->optx), rtl.metric);
}
else
cli_msg(-1016, "\t\tnetwork [%R] metric %u", rtl.id, rtl.metric);
}
else
cli_msg(-1016, "\t\tnetwork [%R-%u] metric %u", rtl.id, rtl.nif, rtl.metric);
}
if (ospf_is_v2(p) && verbose)
{
lsa_walk_rt_init(p, he, &rtl);
while (lsa_walk_rt(&rtl))
if (rtl.type == LSART_STUB)
cli_msg(-1016, "\t\tstubnet %I/%d metric %u",
ipa_from_u32(rtl.id), u32_masklen(rtl.data), rtl.metric);
}
}
static inline void
show_lsa_network(struct top_hash_entry *he, int ospf2)
{
struct ospf_lsa_header *lsa = &(he->lsa);
struct ospf_lsa_net *ln = he->lsa_body;
u32 i;
if (ospf2)
{
cli_msg(-1016, "");
cli_msg(-1016, "\tnetwork %I/%d", ipa_from_u32(lsa->id & ln->optx), u32_masklen(ln->optx));
cli_msg(-1016, "\t\tdr %R", lsa->rt);
}
else
{
cli_msg(-1016, "");
cli_msg(-1016, "\tnetwork [%R-%u]", lsa->rt, lsa->id);
}
show_lsa_distance(he);
for (i = 0; i < lsa_net_count(lsa); i++)
cli_msg(-1016, "\t\trouter %R", ln->routers[i]);
}
static inline void
show_lsa_sum_net(struct top_hash_entry *he, int ospf2, int af)
{
net_addr net;
u8 pxopts;
u32 metric;
lsa_parse_sum_net(he, ospf2, af, &net, &pxopts, &metric);
cli_msg(-1016, "\t\txnetwork %N metric %u", &net, metric);
}
static inline void
show_lsa_sum_rt(struct top_hash_entry *he, int ospf2)
{
u32 metric;
u32 dst_rid;
u32 options;
lsa_parse_sum_rt(he, ospf2, &dst_rid, &metric, &options);
cli_msg(-1016, "\t\txrouter %R metric %u", dst_rid, metric);
}
static inline void
show_lsa_external(struct top_hash_entry *he, int ospf2, int af)
{
struct ospf_lsa_ext_local rt;
char str_via[IPA_MAX_TEXT_LENGTH + 8] = "";
char str_tag[16] = "";
if (he->lsa_type == LSA_T_EXT)
he->domain = 0; /* Unmark the LSA */
lsa_parse_ext(he, ospf2, af, &rt);
if (rt.fbit)
bsprintf(str_via, " via %I", rt.fwaddr);
if (rt.tag)
bsprintf(str_tag, " tag %08x", rt.tag);
cli_msg(-1016, "\t\t%s %N metric%s %u%s%s",
(he->lsa_type == LSA_T_NSSA) ? "nssa-ext" : "external",
&rt.net, rt.ebit ? "2" : "", rt.metric, str_via, str_tag);
}
static inline void
show_lsa_prefix(struct top_hash_entry *he, struct top_hash_entry *cnode, int af)
{
struct ospf_lsa_prefix *px = he->lsa_body;
u32 *buf;
int i;
/* We check whether given prefix-LSA is related to the current node */
if ((px->ref_type != cnode->lsa.type_raw) || (px->ref_rt != cnode->lsa.rt))
return;
if ((px->ref_type == LSA_T_RT) && (px->ref_id != 0))
return;
if ((px->ref_type == LSA_T_NET) && (px->ref_id != cnode->lsa.id))
return;
buf = px->rest;
for (i = 0; i < px->pxcount; i++)
{
net_addr net;
u8 pxopts;
u16 metric;
buf = ospf3_get_prefix(buf, af, &net, &pxopts, &metric);
if (px->ref_type == LSA_T_RT)
cli_msg(-1016, "\t\tstubnet %N metric %u", &net, metric);
else
cli_msg(-1016, "\t\taddress %N", &net);
}
}
void
ospf_sh_state(struct proto *P, int verbose, int reachable)
{
struct ospf_proto *p = (struct ospf_proto *) P;
int ospf2 = ospf_is_v2(p);
int af = ospf_get_af(p);
uint i, ix, j1, jx;
u32 last_area = 0xFFFFFFFF;
if (p->p.proto_state != PS_UP)
{
cli_msg(-1016, "%s: is not up", p->p.name);
cli_msg(0, "");
return;
}
/* We store interesting area-scoped LSAs in array hea and
global-scoped (LSA_T_EXT) LSAs in array hex */
uint num = p->gr->hash_entries;
struct top_hash_entry *hea[num];
struct top_hash_entry **hex = verbose ? alloca(num * sizeof(struct top_hash_entry *)) : NULL;
struct top_hash_entry *he;
struct top_hash_entry *cnode = NULL;
j1 = jx = 0;
WALK_SLIST(he, p->lsal)
{
int accept;
if (he->lsa.age == LSA_MAXAGE)
continue;
switch (he->lsa_type)
{
case LSA_T_RT:
case LSA_T_NET:
accept = 1;
break;
case LSA_T_SUM_NET:
case LSA_T_SUM_RT:
case LSA_T_NSSA:
case LSA_T_PREFIX:
accept = verbose;
break;
case LSA_T_EXT:
if (verbose)
{
he->domain = 1; /* Abuse domain field to mark the LSA */
hex[jx++] = he;
}
/* fallthrough */
default:
accept = 0;
}
if (accept)
hea[j1++] = he;
}
ASSERT(j1 <= num && jx <= num);
lsa_compare_ospf3 = !ospf2;
qsort(hea, j1, sizeof(struct top_hash_entry *), lsa_compare_for_state);
if (verbose)
qsort(hex, jx, sizeof(struct top_hash_entry *), ext_compare_for_state);
/*
* This code is a bit tricky, we have a primary LSAs (router and
* network) that are presented as a node, and secondary LSAs that
* are presented as a part of a primary node. cnode represents an
* currently opened node (whose header was presented). The LSAs are
* sorted to get secondary LSAs just after related primary LSA (if
* available). We present secondary LSAs only when related primary
* LSA is opened.
*
* AS-external LSAs are stored separately as they might be presented
* several times (for each area when related ASBR is opened). When
* the node is closed, related external routes are presented. We
* also have to take into account that in OSPFv3, there might be
* more router-LSAs and only the first should be considered as a
* primary. This is handled by not closing old router-LSA when next
* one is processed (which is not opened because there is already
* one opened).
*/
ix = 0;
for (i = 0; i < j1; i++)
{
he = hea[i];
/* If there is no opened node, we open the LSA (if appropriate) or skip to the next one */
if (!cnode)
{
if (((he->lsa_type == LSA_T_RT) || (he->lsa_type == LSA_T_NET))
&& ((he->color == INSPF) || !reachable))
{
cnode = he;
if (he->domain != last_area)
{
cli_msg(-1016, "");
cli_msg(-1016, "area %R", he->domain);
last_area = he->domain;
ix = 0;
}
}
else
continue;
}
ASSERT(cnode && (he->domain == last_area) && (he->lsa.rt == cnode->lsa.rt));
switch (he->lsa_type)
{
case LSA_T_RT:
if (he->lsa.id == cnode->lsa.id)
show_lsa_router(p, he, verbose);
break;
case LSA_T_NET:
show_lsa_network(he, ospf2);
break;
case LSA_T_SUM_NET:
if (cnode->lsa_type == LSA_T_RT)
show_lsa_sum_net(he, ospf2, af);
break;
case LSA_T_SUM_RT:
if (cnode->lsa_type == LSA_T_RT)
show_lsa_sum_rt(he, ospf2);
break;
case LSA_T_EXT:
case LSA_T_NSSA:
show_lsa_external(he, ospf2, af);
break;
case LSA_T_PREFIX:
show_lsa_prefix(he, cnode, af);
break;
}
/* In these cases, we close the current node */
if ((i+1 == j1)
|| (hea[i+1]->domain != last_area)
|| (hea[i+1]->lsa.rt != cnode->lsa.rt)
|| (hea[i+1]->lsa_type == LSA_T_NET))
{
while ((ix < jx) && (hex[ix]->lsa.rt < cnode->lsa.rt))
ix++;
while ((ix < jx) && (hex[ix]->lsa.rt == cnode->lsa.rt))
show_lsa_external(hex[ix++], ospf2, af);
cnode = NULL;
}
}
int hdr = 0;
u32 last_rt = 0xFFFFFFFF;
for (ix = 0; ix < jx; ix++)
{
he = hex[ix];
/* If it is still marked, we show it now. */
if (he->domain)
{
he->domain = 0;
if ((he->color != INSPF) && reachable)
continue;
if (!hdr)
{
cli_msg(-1016, "");
cli_msg(-1016, "other ASBRs");
hdr = 1;
}
if (he->lsa.rt != last_rt)
{
cli_msg(-1016, "");
cli_msg(-1016, "\trouter %R", he->lsa.rt);
last_rt = he->lsa.rt;
}
show_lsa_external(he, ospf2, af);
}
}
cli_msg(0, "");
}
static int
lsa_compare_for_lsadb(const void *p1, const void *p2)
{
struct top_hash_entry * he1 = * (struct top_hash_entry **) p1;
struct top_hash_entry * he2 = * (struct top_hash_entry **) p2;
struct ospf_lsa_header *lsa1 = &(he1->lsa);
struct ospf_lsa_header *lsa2 = &(he2->lsa);
int sc1 = LSA_SCOPE(he1->lsa_type);
int sc2 = LSA_SCOPE(he2->lsa_type);
if (sc1 != sc2)
return sc2 - sc1;
if (he1->domain != he2->domain)
return he1->domain - he2->domain;
if (lsa1->rt != lsa2->rt)
return lsa1->rt - lsa2->rt;
if (lsa1->id != lsa2->id)
return lsa1->id - lsa2->id;
if (he1->lsa_type != he2->lsa_type)
return he1->lsa_type - he2->lsa_type;
return lsa1->sn - lsa2->sn;
}
void
ospf_sh_lsadb(struct lsadb_show_data *ld)
{
struct ospf_proto *p = ld->proto;
uint num = p->gr->hash_entries;
uint i, j;
int last_dscope = -1;
u32 last_domain = 0;
u16 type_mask = ospf_is_v2(p) ? 0x00ff : 0xffff; /* see lsa_etype() */
if (p->p.proto_state != PS_UP)
{
cli_msg(-1017, "%s: is not up", p->p.name);
cli_msg(0, "");
return;
}
if (ld->router == SH_ROUTER_SELF)
ld->router = p->router_id;
struct top_hash_entry *hea[num];
struct top_hash_entry *he;
j = 0;
WALK_SLIST(he, p->lsal)
if (he->lsa_body)
hea[j++] = he;
ASSERT(j <= num);
qsort(hea, j, sizeof(struct top_hash_entry *), lsa_compare_for_lsadb);
for (i = 0; i < j; i++)
{
struct ospf_lsa_header *lsa = &(hea[i]->lsa);
u16 lsa_type = lsa->type_raw & type_mask;
u16 dscope = LSA_SCOPE(hea[i]->lsa_type);
/* Hack: 1 is used for LSA_SCOPE_LINK, fixed by & 0xf000 */
if (ld->scope && (dscope != (ld->scope & 0xf000)))
continue;
if ((ld->scope == LSA_SCOPE_AREA) && (hea[i]->domain != ld->area))
continue;
/* For user convenience ignore high nibble */
if (ld->type && ((lsa_type & 0x0fff) != (ld->type & 0x0fff)))
continue;
if (ld->lsid && (lsa->id != ld->lsid))
continue;
if (ld->router && (lsa->rt != ld->router))
continue;
if ((dscope != last_dscope) || (hea[i]->domain != last_domain))
{
cli_msg(-1017, "");
switch (dscope)
{
case LSA_SCOPE_AS:
cli_msg(-1017, "Global");
break;
case LSA_SCOPE_AREA:
cli_msg(-1017, "Area %R", hea[i]->domain);
break;
case LSA_SCOPE_LINK:
{
struct iface *ifa = if_find_by_index(hea[i]->domain);
cli_msg(-1017, "Link %s", (ifa != NULL) ? ifa->name : "?");
}
break;
}
cli_msg(-1017, "");
cli_msg(-1017," Type LS ID Router Sequence Age Checksum");
last_dscope = dscope;
last_domain = hea[i]->domain;
}
cli_msg(-1017," %04x %-15R %-15R %08x %5u %04x",
lsa_type, lsa->id, lsa->rt, lsa->sn, lsa->age, lsa->checksum);
}
cli_msg(0, "");
}
struct rte_owner_class ospf_rte_owner_class = {
.get_route_info = ospf_get_route_info,
.rte_better = ospf_rte_better,
.rte_igp_metric = ospf_rte_igp_metric,
};
struct protocol proto_ospf = {
.name = "OSPF",
.template = "ospf%d",
.preference = DEF_PREF_OSPF,
.channel_mask = NB_IP,
.proto_size = sizeof(struct ospf_proto),
.config_size = sizeof(struct ospf_config),
.init = ospf_init,
.dump = ospf_dump,
.start = ospf_start,
.shutdown = ospf_shutdown,
.reconfigure = ospf_reconfigure,
.get_status = ospf_get_status,
};
struct ea_class ea_ospf_metric1 = {
.name = "ospf_metric1",
.type = T_INT,
};
struct ea_class ea_ospf_metric2 = {
.name = "ospf_metric2",
.type = T_INT,
};
struct ea_class ea_ospf_tag = {
.name = "ospf_tag",
.type = T_INT,
.format = ospf_tag_format,
};
struct ea_class ea_ospf_router_id = {
.name = "ospf_router_id",
.type = T_QUAD,
};
void
ospf_build(void)
{
proto_build(&proto_ospf);
EA_REGISTER_ALL(
&ea_ospf_metric1,
&ea_ospf_metric2,
&ea_ospf_tag,
&ea_ospf_router_id
);
}