0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2025-01-07 01:21:54 +00:00
bird/nest/rt-attr.c

1847 lines
42 KiB
C

/*
* BIRD -- Route Attribute Cache
*
* (c) 1998--2000 Martin Mares <mj@ucw.cz>
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
/**
* DOC: Route attribute cache
*
* Each route entry carries a set of route attributes. Several of them
* vary from route to route, but most attributes are usually common
* for a large number of routes. To conserve memory, we've decided to
* store only the varying ones directly in the &rte and hold the rest
* in a special structure called &rta which is shared among all the
* &rte's with these attributes.
*
* Each &rta contains all the static attributes of the route (i.e.,
* those which are always present) as structure members and a list of
* dynamic attributes represented by a linked list of &ea_list
* structures, each of them consisting of an array of &eattr's containing
* the individual attributes. An attribute can be specified more than once
* in the &ea_list chain and in such case the first occurrence overrides
* the others. This semantics is used especially when someone (for example
* a filter) wishes to alter values of several dynamic attributes, but
* it wants to preserve the original attribute lists maintained by
* another module.
*
* Each &eattr contains an attribute identifier (split to protocol ID and
* per-protocol attribute ID), protocol dependent flags, a type code (consisting
* of several bit fields describing attribute characteristics) and either an
* embedded 32-bit value or a pointer to a &adata structure holding attribute
* contents.
*
* There exist two variants of &rta's -- cached and un-cached ones. Un-cached
* &rta's can have arbitrarily complex structure of &ea_list's and they
* can be modified by any module in the route processing chain. Cached
* &rta's have their attribute lists normalized (that means at most one
* &ea_list is present and its values are sorted in order to speed up
* searching), they are stored in a hash table to make fast lookup possible
* and they are provided with a use count to allow sharing.
*
* Routing tables always contain only cached &rta's.
*/
#include "nest/bird.h"
#include "nest/route.h"
#include "nest/protocol.h"
#include "nest/iface.h"
#include "nest/cli.h"
#include "lib/attrs.h"
#include "lib/alloca.h"
#include "lib/hash.h"
#include "lib/idm.h"
#include "lib/resource.h"
#include "lib/string.h"
#include <stddef.h>
#include <stdlib.h>
const adata null_adata; /* adata of length 0 */
struct ea_class ea_gen_igp_metric = {
.name = "igp_metric",
.type = T_INT,
};
struct ea_class ea_gen_preference = {
.name = "preference",
.type = T_INT,
};
struct ea_class ea_gen_from = {
.name = "from",
.type = T_IP,
};
const char * const rta_src_names[RTS_MAX] = {
[RTS_STATIC] = "static",
[RTS_INHERIT] = "inherit",
[RTS_DEVICE] = "device",
[RTS_STATIC_DEVICE] = "static-device",
[RTS_REDIRECT] = "redirect",
[RTS_RIP] = "RIP",
[RTS_OSPF] = "OSPF",
[RTS_OSPF_IA] = "OSPF-IA",
[RTS_OSPF_EXT1] = "OSPF-E1",
[RTS_OSPF_EXT2] = "OSPF-E2",
[RTS_BGP] = "BGP",
[RTS_PIPE] = "pipe",
[RTS_BABEL] = "Babel",
[RTS_RPKI] = "RPKI",
[RTS_PERF] = "Perf",
[RTS_L3VPN] = "L3VPN",
[RTS_AGGREGATED] = "aggregated",
};
static void
ea_gen_source_format(const eattr *a, byte *buf, uint size)
{
if ((a->u.data >= RTS_MAX) || !rta_src_names[a->u.data])
bsnprintf(buf, size, "unknown");
else
bsnprintf(buf, size, "%s", rta_src_names[a->u.data]);
}
struct ea_class ea_gen_source = {
.name = "source",
.type = T_ENUM_RTS,
.readonly = 1,
.format = ea_gen_source_format,
};
struct ea_class ea_gen_nexthop = {
.name = "nexthop",
.type = T_NEXTHOP_LIST,
};
/*
* ea_set_hostentry() acquires hostentry from hostcache.
* New hostentry has zero use count. Cached rta locks its
* hostentry (increases its use count), uncached rta does not lock it.
* Hostentry with zero use count is removed asynchronously
* during host cache update, therefore it is safe to hold
* such hostentry temporarily as long as you hold the table lock.
*
* There is no need to hold a lock for hostentry->dep table, because that table
* contains routes responsible for that hostentry, and therefore is non-empty if
* given hostentry has non-zero use count. If the hostentry has zero use count,
* the entry is removed before dep is referenced.
*
* The protocol responsible for routes with recursive next hops should hold a
* lock for a 'source' table governing that routes (argument tab),
* because its routes reference hostentries related to the governing table.
* When all such routes are
* removed, rtas are immediately removed achieving zero uc. Then the 'source'
* table lock could be immediately released, although hostentries may still
* exist - they will be freed together with the 'source' table.
*/
static void
ea_gen_hostentry_stored(const eattr *ea)
{
struct hostentry_adata *had = (struct hostentry_adata *) ea->u.ptr;
had->he->uc++;
}
static void
ea_gen_hostentry_freed(const eattr *ea)
{
struct hostentry_adata *had = (struct hostentry_adata *) ea->u.ptr;
had->he->uc--;
}
struct ea_class ea_gen_hostentry = {
.name = "hostentry",
.type = T_HOSTENTRY,
.readonly = 1,
.stored = ea_gen_hostentry_stored,
.freed = ea_gen_hostentry_freed,
};
const char * rta_dest_names[RTD_MAX] = {
[RTD_NONE] = "",
[RTD_UNICAST] = "unicast",
[RTD_BLACKHOLE] = "blackhole",
[RTD_UNREACHABLE] = "unreachable",
[RTD_PROHIBIT] = "prohibited",
};
struct ea_class ea_gen_flowspec_valid = {
.name = "flowspec_valid",
.type = T_ENUM_FLOWSPEC_VALID,
.readonly = 1,
};
const char * flowspec_valid_names[FLOWSPEC__MAX] = {
[FLOWSPEC_UNKNOWN] = "unknown",
[FLOWSPEC_VALID] = "",
[FLOWSPEC_INVALID] = "invalid",
};
DOMAIN(attrs) attrs_domain;
pool *rta_pool;
/* Assuming page size of 4096, these are magic values for slab allocation */
static const uint ea_slab_sizes[] = { 56, 112, 168, 288, 448, 800, 1344 };
static slab *ea_slab[ARRAY_SIZE(ea_slab_sizes)];
static slab *rte_src_slab;
static struct idm src_ids;
#define SRC_ID_INIT_SIZE 4
/* rte source hash */
#define RSH_KEY(n) n->private_id
#define RSH_NEXT(n) n->next
#define RSH_EQ(n1,n2) n1 == n2
#define RSH_FN(n) u64_hash(n)
#define RSH_REHASH rte_src_rehash
#define RSH_PARAMS /2, *2, 1, 1, 8, 20
#define RSH_INIT_ORDER 2
static struct rte_src * _Atomic * _Atomic rte_src_global;
static _Atomic uint rte_src_global_max;
static void
rte_src_init(void)
{
rte_src_slab = sl_new(rta_pool, sizeof(struct rte_src));
uint gmax = SRC_ID_INIT_SIZE * 32;
struct rte_src * _Atomic *g = mb_alloc(rta_pool, sizeof(struct rte_src * _Atomic) * gmax);
for (uint i = 0; i < gmax; i++)
atomic_store_explicit(&g[i], NULL, memory_order_relaxed);
atomic_store_explicit(&rte_src_global, g, memory_order_release);
atomic_store_explicit(&rte_src_global_max, gmax, memory_order_release);
idm_init(&src_ids, rta_pool, SRC_ID_INIT_SIZE);
}
HASH_DEFINE_REHASH_FN(RSH, struct rte_src)
static struct rte_src *
rt_find_source(struct rte_owner *p, u32 id)
{
return HASH_FIND(p->hash, RSH, id);
}
struct rte_src *
rt_get_source_o(struct rte_owner *p, u32 id)
{
if (p->stop)
bug("Stopping route owner asked for another source.");
ASSERT_DIE(birdloop_inside(p->list->loop));
struct rte_src *src = rt_find_source(p, id);
if (src)
{
lfuc_lock_revive(&src->uc);
return src;
}
RTA_LOCK;
src = sl_allocz(rte_src_slab);
src->owner = p;
src->private_id = id;
src->global_id = idm_alloc(&src_ids);
lfuc_init(&src->uc);
p->uc++;
HASH_INSERT2(p->hash, RSH, rta_pool, src);
if (p->debug & D_ROUTES)
log(L_TRACE "%s: new rte_src ID %luL %uG, have %u sources now",
p->name, src->private_id, src->global_id, p->uc);
uint gm = atomic_load_explicit(&rte_src_global_max, memory_order_relaxed);
struct rte_src * _Atomic * g = atomic_load_explicit(&rte_src_global, memory_order_relaxed);
if (src->global_id >= gm)
{
/* Allocate new block */
size_t old_len = sizeof(struct rte_src * _Atomic) * gm;
struct rte_src * _Atomic * new_block = mb_alloc(rta_pool, old_len * 2);
memcpy(new_block, g, old_len);
for (uint i = 0; i < gm; i++)
atomic_store_explicit(&new_block[gm+i], NULL, memory_order_relaxed);
/* Update the pointer */
atomic_store_explicit(&rte_src_global, new_block, memory_order_release);
atomic_store_explicit(&rte_src_global_max, gm * 2, memory_order_release);
/* Wait for readers */
synchronize_rcu();
/* Free the old block */
mb_free(g);
g = new_block;
}
atomic_store_explicit(&g[src->global_id], src, memory_order_release);
RTA_UNLOCK;
return src;
}
/**
* Find a rte source by its global ID. Only available for existing and locked
* sources stored by their ID. Checking for non-existent or foreign source is unsafe.
*
* @id: requested global ID
*
* Returns the found source or dies. Result of this function is guaranteed to
* be a valid source as long as the caller owns it.
*/
struct rte_src *
rt_find_source_global(u32 id)
{
rcu_read_lock();
ASSERT_DIE(id < atomic_load_explicit(&rte_src_global_max, memory_order_acquire));
struct rte_src * _Atomic * g = atomic_load_explicit(&rte_src_global, memory_order_acquire);
struct rte_src *src = atomic_load_explicit(&g[id], memory_order_acquire);
ASSERT_DIE(src);
ASSERT_DIE(src->global_id == id);
rcu_read_unlock();
return src;
}
static inline void
rt_done_sources(struct rte_owner *o)
{
ev_send(o->list, o->stop);
}
void
rt_prune_sources(void *data)
{
struct rte_owner *o = data;
HASH_WALK_FILTER(o->hash, next, src, sp)
{
if (lfuc_finished(&src->uc))
{
o->uc--;
if (o->debug & D_ROUTES)
log(L_TRACE "%s: freed rte_src ID %luL %uG, have %u sources now",
o->name, src->private_id, src->global_id, o->uc);
HASH_DO_REMOVE(o->hash, RSH, sp);
RTA_LOCK;
struct rte_src * _Atomic * g = atomic_load_explicit(&rte_src_global, memory_order_acquire);
atomic_store_explicit(&g[src->global_id], NULL, memory_order_release);
idm_free(&src_ids, src->global_id);
sl_free(src);
RTA_UNLOCK;
}
}
HASH_WALK_FILTER_END;
RTA_LOCK;
HASH_MAY_RESIZE_DOWN(o->hash, RSH, rta_pool);
if (o->stop && !o->uc)
{
rfree(o->prune);
RTA_UNLOCK;
if (o->debug & D_EVENTS)
log(L_TRACE "%s: all rte_src's pruned, scheduling stop event", o->name);
rt_done_sources(o);
}
else
RTA_UNLOCK;
}
void
rt_dump_sources(struct rte_owner *o)
{
debug("\t%s: hord=%u, uc=%u, cnt=%u prune=%p, stop=%p\n",
o->name, o->hash.order, o->uc, o->hash.count, o->prune, o->stop);
debug("\tget_route_info=%p, better=%p, mergable=%p, igp_metric=%p, recalculate=%p",
o->class->get_route_info, o->class->rte_better, o->class->rte_mergable,
o->class->rte_igp_metric, o->rte_recalculate);
int splitting = 0;
HASH_WALK(o->hash, next, src)
{
debug("%c%c%uL %uG %luU",
(splitting % 8) ? ',' : '\n',
(splitting % 8) ? ' ' : '\t',
src->private_id, src->global_id,
atomic_load_explicit(&src->uc.uc, memory_order_relaxed));
splitting++;
}
HASH_WALK_END;
debug("\n");
}
void
rt_init_sources(struct rte_owner *o, const char *name, event_list *list)
{
RTA_LOCK;
HASH_INIT(o->hash, rta_pool, RSH_INIT_ORDER);
o->hash_key = random_u32();
o->uc = 0;
o->name = name;
o->prune = ev_new_init(rta_pool, rt_prune_sources, o);
o->stop = NULL;
o->list = list;
RTA_UNLOCK;
if (o->debug & D_EVENTS)
log(L_TRACE "%s: initialized rte_src owner", o->name);
}
void
rt_destroy_sources(struct rte_owner *o, event *done)
{
o->stop = done;
if (!o->uc)
{
if (o->debug & D_EVENTS)
log(L_TRACE "%s: rte_src owner destroy requested, already clean, scheduling stop event", o->name);
RTA_LOCK;
rfree(o->prune);
RTA_UNLOCK;
rt_done_sources(o);
}
else
if (o->debug & D_EVENTS)
log(L_TRACE "%s: rte_src owner destroy requested, remaining %u rte_src's to prune.", o->name, o->uc);
}
/*
* Multipath Next Hop
*/
static int
nexthop_compare_node(const struct nexthop *x, const struct nexthop *y)
{
int r;
/* Should we also compare flags ? */
r = ((int) y->weight) - ((int) x->weight);
if (r)
return r;
r = ipa_compare(x->gw, y->gw);
if (r)
return r;
r = ((int) y->labels) - ((int) x->labels);
if (r)
return r;
for (int i = 0; i < y->labels; i++)
{
r = ((int) y->label[i]) - ((int) x->label[i]);
if (r)
return r;
}
return ((int) x->iface->index) - ((int) y->iface->index);
}
static int
nexthop_compare_qsort(const void *x, const void *y)
{
return nexthop_compare_node( *(const struct nexthop **) x, *(const struct nexthop **) y );
}
/**
* nexthop_merge - merge nexthop lists
* @x: list 1
* @y: list 2
* @max: max number of nexthops
* @lp: linpool for allocating nexthops
*
* The nexthop_merge() function takes two nexthop lists @x and @y and merges them,
* eliminating possible duplicates. The input lists must be sorted and the
* result is sorted too. The number of nexthops in result is limited by @max.
* New nodes are allocated from linpool @lp.
*
* The arguments @rx and @ry specify whether corresponding input lists may be
* consumed by the function (i.e. their nodes reused in the resulting list), in
* that case the caller should not access these lists after that. To eliminate
* issues with deallocation of these lists, the caller should use some form of
* bulk deallocation (e.g. stack or linpool) to free these nodes when the
* resulting list is no longer needed. When reusability is not set, the
* corresponding lists are not modified nor linked from the resulting list.
*/
struct nexthop_adata *
nexthop_merge(struct nexthop_adata *xin, struct nexthop_adata *yin, int max, linpool *lp)
{
uint outlen = ADATA_SIZE(xin->ad.length) + ADATA_SIZE(yin->ad.length);
struct nexthop_adata *out = lp_alloc(lp, outlen);
out->ad.length = outlen - sizeof (struct adata);
struct nexthop *x = &xin->nh, *y = &yin->nh, *cur = &out->nh;
int xvalid, yvalid;
while (max--)
{
xvalid = NEXTHOP_VALID(x, xin);
yvalid = NEXTHOP_VALID(y, yin);
if (!xvalid && !yvalid)
break;
ASSUME(NEXTHOP_VALID(cur, out));
int cmp = !xvalid ? 1 : !yvalid ? -1 : nexthop_compare_node(x, y);
if (cmp < 0)
{
ASSUME(NEXTHOP_VALID(x, xin));
memcpy(cur, x, nexthop_size(x));
x = NEXTHOP_NEXT(x);
}
else if (cmp > 0)
{
ASSUME(NEXTHOP_VALID(y, yin));
memcpy(cur, y, nexthop_size(y));
y = NEXTHOP_NEXT(y);
}
else
{
ASSUME(NEXTHOP_VALID(x, xin));
memcpy(cur, x, nexthop_size(x));
x = NEXTHOP_NEXT(x);
ASSUME(NEXTHOP_VALID(y, yin));
y = NEXTHOP_NEXT(y);
}
cur = NEXTHOP_NEXT(cur);
}
out->ad.length = (void *) cur - (void *) out->ad.data;
return out;
}
struct nexthop_adata *
nexthop_sort(struct nexthop_adata *nhad, linpool *lp)
{
/* Count the nexthops */
uint cnt = 0;
NEXTHOP_WALK(nh, nhad)
cnt++;
if (cnt <= 1)
return nhad;
/* Get pointers to them */
struct nexthop **sptr = tmp_alloc(cnt * sizeof(struct nexthop *));
uint i = 0;
NEXTHOP_WALK(nh, nhad)
sptr[i++] = nh;
/* Sort the pointers */
qsort(sptr, cnt, sizeof(struct nexthop *), nexthop_compare_qsort);
/* Allocate the output */
struct nexthop_adata *out = (struct nexthop_adata *) lp_alloc_adata(lp, nhad->ad.length);
struct nexthop *dest = &out->nh;
/* Deduplicate nexthops while storing them */
for (uint i = 0; i < cnt; i++)
{
if (i && !nexthop_compare_node(sptr[i], sptr[i-1]))
continue;
memcpy(dest, sptr[i], NEXTHOP_SIZE(sptr[i]));
dest = NEXTHOP_NEXT(dest);
}
out->ad.length = (void *) dest - (void *) out->ad.data;
return out;
}
int
nexthop_is_sorted(struct nexthop_adata *nhad)
{
struct nexthop *prev = NULL;
NEXTHOP_WALK(nh, nhad)
{
if (prev && (nexthop_compare_node(prev, nh) >= 0))
return 0;
prev = nh;
}
return 1;
}
/*
* Extended Attributes
*/
#define EA_CLASS_INITIAL_MAX 128
static struct ea_class **ea_class_global = NULL;
static uint ea_class_max;
static struct idm ea_class_idm;
/* Config parser lex register function */
void ea_lex_register(struct ea_class *def);
static void
ea_class_free(struct ea_class *cl)
{
RTA_LOCK;
/* No more ea class references. Unregister the attribute. */
idm_free(&ea_class_idm, cl->id);
ea_class_global[cl->id] = NULL;
/* When we start supporting full protocol removal, we may need to call
* ea_lex_unregister(cl), see where ea_lex_register() is called. */
RTA_UNLOCK;
}
static void
ea_class_ref_free(resource *r)
{
struct ea_class_ref *ref = SKIP_BACK(struct ea_class_ref, r, r);
if (!--ref->class->uc)
ea_class_free(ref->class);
}
static void
ea_class_ref_dump(resource *r, unsigned indent UNUSED)
{
struct ea_class_ref *ref = SKIP_BACK(struct ea_class_ref, r, r);
debug("name \"%s\", type=%d\n", ref->class->name, ref->class->type);
}
static struct resclass ea_class_ref_class = {
.name = "Attribute class reference",
.size = sizeof(struct ea_class_ref),
.free = ea_class_ref_free,
.dump = ea_class_ref_dump,
.lookup = NULL,
.memsize = NULL,
};
static void
ea_class_init(void)
{
ASSERT_DIE(ea_class_global == NULL);
idm_init(&ea_class_idm, rta_pool, EA_CLASS_INITIAL_MAX);
ea_class_global = mb_allocz(rta_pool,
sizeof(*ea_class_global) * (ea_class_max = EA_CLASS_INITIAL_MAX));
}
struct ea_class_ref *
ea_ref_class(pool *p, struct ea_class *def)
{
def->uc++;
struct ea_class_ref *ref = ralloc(p, &ea_class_ref_class);
ref->class = def;
return ref;
}
static struct ea_class_ref *
ea_register(pool *p, struct ea_class *def)
{
def->id = idm_alloc(&ea_class_idm);
ASSERT_DIE(ea_class_global);
while (def->id >= ea_class_max)
ea_class_global = mb_realloc(ea_class_global, sizeof(*ea_class_global) * (ea_class_max *= 2));
ASSERT_DIE(def->id < ea_class_max);
ea_class_global[def->id] = def;
return ea_ref_class(p, def);
}
struct ea_class_ref *
ea_register_alloc(pool *p, struct ea_class cl)
{
struct ea_class_ref *ref;
RTA_LOCK;
struct ea_class *clp = ea_class_find_by_name(cl.name);
if (clp && clp->type == cl.type)
{
ref = ea_ref_class(p, clp);
RTA_UNLOCK;
return ref;
}
uint namelen = strlen(cl.name) + 1;
struct {
struct ea_class cl;
char name[0];
} *cla = mb_alloc(rta_pool, sizeof(struct ea_class) + namelen);
cla->cl = cl;
memcpy(cla->name, cl.name, namelen);
cla->cl.name = cla->name;
ref = ea_register(p, &cla->cl);
RTA_UNLOCK;
return ref;
}
void
ea_register_init(struct ea_class *clp)
{
RTA_LOCK;
ASSERT_DIE(!ea_class_find_by_name(clp->name));
struct ea_class *def = ea_register(&root_pool, clp)->class;
if (!clp->hidden)
ea_lex_register(def);
RTA_UNLOCK;
}
struct ea_class *
ea_class_find_by_id(uint id)
{
ASSERT_DIE(id < ea_class_max);
ASSERT_DIE(ea_class_global[id]);
return ea_class_global[id];
}
static inline eattr *
ea__find(ea_list *e, unsigned id)
{
eattr *a;
int l, r, m;
while (e)
{
if (e->flags & EALF_BISECT)
{
l = 0;
r = e->count - 1;
while (l <= r)
{
m = (l+r) / 2;
a = &e->attrs[m];
if (a->id == id)
return a;
else if (a->id < id)
l = m+1;
else
r = m-1;
}
}
else
for(m=0; m<e->count; m++)
if (e->attrs[m].id == id)
return &e->attrs[m];
e = e->next;
}
return NULL;
}
/**
* ea_find - find an extended attribute
* @e: attribute list to search in
* @id: attribute ID to search for
*
* Given an extended attribute list, ea_find() searches for a first
* occurrence of an attribute with specified ID, returning either a pointer
* to its &eattr structure or %NULL if no such attribute exists.
*/
eattr *
ea_find_by_id(ea_list *e, unsigned id)
{
eattr *a = ea__find(e, id & EA_CODE_MASK);
if (a && a->undef && !(id & EA_ALLOW_UNDEF))
return NULL;
return a;
}
/**
* ea_walk - walk through extended attributes
* @s: walk state structure
* @id: start of attribute ID interval
* @max: length of attribute ID interval
*
* Given an extended attribute list, ea_walk() walks through the list looking
* for first occurrences of attributes with ID in specified interval from @id to
* (@id + @max - 1), returning pointers to found &eattr structures, storing its
* walk state in @s for subsequent calls.
*
* The function ea_walk() is supposed to be called in a loop, with initially
* zeroed walk state structure @s with filled the initial extended attribute
* list, returning one found attribute in each call or %NULL when no other
* attribute exists. The extended attribute list or the arguments should not be
* modified between calls. The maximum value of @max is 128.
*/
eattr *
ea_walk(struct ea_walk_state *s, uint id, uint max)
{
ea_list *e = s->eattrs;
eattr *a = s->ea;
eattr *a_max;
max = id + max;
if (a)
goto step;
for (; e; e = e->next)
{
if (e->flags & EALF_BISECT)
{
int l, r, m;
l = 0;
r = e->count - 1;
while (l < r)
{
m = (l+r) / 2;
if (e->attrs[m].id < id)
l = m + 1;
else
r = m;
}
a = e->attrs + l;
}
else
a = e->attrs;
step:
a_max = e->attrs + e->count;
for (; a < a_max; a++)
if ((a->id >= id) && (a->id < max))
{
int n = a->id - id;
if (BIT32_TEST(s->visited, n))
continue;
BIT32_SET(s->visited, n);
if (a->undef)
continue;
s->eattrs = e;
s->ea = a;
return a;
}
else if (e->flags & EALF_BISECT)
break;
}
return NULL;
}
static inline void
ea_do_sort(ea_list *e)
{
unsigned n = e->count;
eattr *a = e->attrs;
eattr *b = alloca(n * sizeof(eattr));
unsigned s, ss;
/* We need to use a stable sorting algorithm, hence mergesort */
do
{
s = ss = 0;
while (s < n)
{
eattr *p, *q, *lo, *hi;
p = b;
ss = s;
*p++ = a[s++];
while (s < n && p[-1].id <= a[s].id)
*p++ = a[s++];
if (s < n)
{
q = p;
*p++ = a[s++];
while (s < n && p[-1].id <= a[s].id)
*p++ = a[s++];
lo = b;
hi = q;
s = ss;
while (lo < q && hi < p)
if (lo->id <= hi->id)
a[s++] = *lo++;
else
a[s++] = *hi++;
while (lo < q)
a[s++] = *lo++;
while (hi < p)
a[s++] = *hi++;
}
}
}
while (ss);
}
static _Bool eattr_same_value(const eattr *a, const eattr *b);
/**
* In place discard duplicates and undefs in sorted ea_list. We use stable sort
* for this reason.
**/
static inline void
ea_do_prune(ea_list *e)
{
eattr *s, *d, *l, *s0;
int i = 0;
#if 0
debug("[[prune]] ");
ea_dump(e);
debug(" ----> ");
#endif
/* Prepare underlay stepper */
uint ulc = 0;
for (ea_list *u = e->next; u; u = u->next)
ulc++;
struct { eattr *cur, *end; } uls[ulc];
{
ea_list *u = e->next;
for (uint i = 0; i < ulc; i++)
{
ASSERT_DIE(u->flags & EALF_SORTED);
uls[i].cur = u->attrs;
uls[i].end = u->attrs + u->count;
u = u->next;
/* debug(" [[prev %d: %p to %p]] ", i, uls[i].cur, uls[i].end); */
}
}
s = d = e->attrs; /* Beginning of the list. @s is source, @d is destination. */
l = e->attrs + e->count; /* End of the list */
/* Walk from begin to end. */
while (s < l)
{
s0 = s++;
/* Find a consecutive block of the same attribute */
while (s < l && s->id == s[-1].id)
s++;
/* Now s0 is the most recent version, s[-1] the oldest one */
/* Find the attribute's underlay version */
eattr *prev = NULL;
for (uint i = 0; i < ulc; i++)
{
while ((uls[i].cur < uls[i].end) && (uls[i].cur->id < s0->id))
{
uls[i].cur++;
/* debug(" [[prev %d: %p (%s/%d)]] ", i, uls[i].cur, ea_class_global[uls[i].cur->id]->name, uls[i].cur->id); */
}
if ((uls[i].cur >= uls[i].end) || (uls[i].cur->id > s0->id))
continue;
prev = uls[i].cur;
break;
}
/* Drop identicals */
if (prev && eattr_same_value(s0, prev))
{
/* debug(" [[drop identical %s]] ", ea_class_global[s0->id]->name); */
continue;
}
/* Drop undefs (identical undefs already dropped before) */
if (!prev && s0->undef)
{
/* debug(" [[drop undef %s]] ", ea_class_global[s0->id]->name); */
continue;
}
/* Copy the newest version to destination */
*d = *s0;
/* Preserve info whether it originated locally */
d->originated = s[-1].originated;
/* Not fresh any more, we prefer surstroemming */
d->fresh = 0;
/* Next destination */
d++;
i++;
}
e->count = i;
}
/**
* ea_sort - sort an attribute list
* @e: list to be sorted
*
* This function takes a &ea_list chain and sorts the attributes
* within each of its entries.
*
* If an attribute occurs multiple times in a single &ea_list,
* ea_sort() leaves only the first (the only significant) occurrence.
*/
static void
ea_sort(ea_list *e)
{
if (!(e->flags & EALF_SORTED))
{
ea_do_sort(e);
ea_do_prune(e);
e->flags |= EALF_SORTED;
}
if (e->count > 5)
e->flags |= EALF_BISECT;
}
/**
* ea_scan - estimate attribute list size
* @e: attribute list
*
* This function calculates an upper bound of the size of
* a given &ea_list after merging with ea_merge().
*/
static unsigned
ea_scan(const ea_list *e, int overlay)
{
unsigned cnt = 0;
while (e)
{
cnt += e->count;
e = e->next;
if (e && overlay && ea_is_cached(e))
break;
}
return sizeof(ea_list) + sizeof(eattr)*cnt;
}
/**
* ea_merge - merge segments of an attribute list
* @e: attribute list
* @t: buffer to store the result to
*
* This function takes a possibly multi-segment attribute list
* and merges all of its segments to one.
*
* The primary use of this function is for &ea_list normalization:
* first call ea_scan() to determine how much memory will the result
* take, then allocate a buffer (usually using alloca()), merge the
* segments with ea_merge() and finally sort and prune the result
* by calling ea_sort().
*/
static void
ea_merge(ea_list *e, ea_list *t, int overlay)
{
eattr *d = t->attrs;
t->flags = 0;
t->count = 0;
while (e)
{
memcpy(d, e->attrs, sizeof(eattr)*e->count);
t->count += e->count;
d += e->count;
e = e->next;
if (e && overlay && ea_is_cached(e))
break;
}
t->next = e;
}
ea_list *
ea_normalize(ea_list *e, int overlay)
{
#if 0
debug("(normalize)");
ea_dump(e);
debug(" ----> ");
#endif
ea_list *t = tmp_alloc(ea_scan(e, overlay));
ea_merge(e, t, overlay);
ea_sort(t);
#if 0
ea_dump(t);
debug("\n");
#endif
return t->count ? t : t->next;
}
static _Bool
eattr_same_value(const eattr *a, const eattr *b)
{
if (
a->id != b->id ||
a->flags != b->flags ||
a->type != b->type ||
a->undef != b->undef
)
return 0;
if (a->undef)
return 1;
if (a->type & EAF_EMBEDDED)
return a->u.data == b->u.data;
else
return adata_same(a->u.ptr, b->u.ptr);
}
static _Bool
eattr_same(const eattr *a, const eattr *b)
{
return
eattr_same_value(a, b) &&
a->originated == b->originated &&
a->fresh == b->fresh;
}
/**
* ea_same - compare two &ea_list's
* @x: attribute list
* @y: attribute list
*
* ea_same() compares two normalized attribute lists @x and @y and returns
* 1 if they contain the same attributes, 0 otherwise.
*/
int
ea_same(ea_list *x, ea_list *y)
{
int c;
if (!x || !y)
return x == y;
if (x->next != y->next)
return 0;
if (x->count != y->count)
return 0;
for(c=0; c<x->count; c++)
if (!eattr_same(&x->attrs[c], &y->attrs[c]))
return 0;
return 1;
}
uint
ea_list_size(ea_list *o)
{
unsigned i, elen;
ASSERT_DIE(o);
elen = BIRD_CPU_ALIGN(sizeof(ea_list) + sizeof(eattr) * o->count);
for(i=0; i<o->count; i++)
{
eattr *a = &o->attrs[i];
if (!a->undef && !(a->type & EAF_EMBEDDED))
elen += ADATA_SIZE(a->u.ptr->length);
}
return elen;
}
void
ea_list_copy(ea_list *n, ea_list *o, uint elen)
{
uint adpos = sizeof(ea_list) + sizeof(eattr) * o->count;
memcpy(n, o, adpos);
adpos = BIRD_CPU_ALIGN(adpos);
for(uint i=0; i<o->count; i++)
{
eattr *a = &n->attrs[i];
if (!a->undef && !(a->type & EAF_EMBEDDED))
{
unsigned size = ADATA_SIZE(a->u.ptr->length);
ASSERT_DIE(adpos + size <= elen);
struct adata *d = ((void *) n) + adpos;
memcpy(d, a->u.ptr, size);
a->u.ptr = d;
adpos += size;
}
}
ASSERT_DIE(adpos == elen);
}
static void
ea_list_ref(ea_list *l)
{
for(uint i=0; i<l->count; i++)
{
eattr *a = &l->attrs[i];
ASSERT_DIE(a->id < ea_class_max);
if (a->undef)
continue;
struct ea_class *cl = ea_class_global[a->id];
ASSERT_DIE(cl && cl->uc);
CALL(cl->stored, a);
cl->uc++;
}
if (l->next)
{
ASSERT_DIE(ea_is_cached(l->next));
ea_clone(l->next);
}
}
static void ea_free_nested(ea_list *l);
static void
ea_list_unref(ea_list *l)
{
for(uint i=0; i<l->count; i++)
{
eattr *a = &l->attrs[i];
ASSERT_DIE(a->id < ea_class_max);
if (a->undef)
continue;
struct ea_class *cl = ea_class_global[a->id];
ASSERT_DIE(cl && cl->uc);
CALL(cl->freed, a);
if (!--cl->uc)
ea_class_free(cl);
}
if (l->next)
ea_free_nested(l->next);
}
void
ea_format_bitfield(const struct eattr *a, byte *buf, int bufsize, const char **names, int min, int max)
{
byte *bound = buf + bufsize - 32;
u32 data = a->u.data;
int i;
for (i = min; i < max; i++)
if ((data & (1u << i)) && names[i])
{
if (buf > bound)
{
strcpy(buf, " ...");
return;
}
buf += bsprintf(buf, " %s", names[i]);
data &= ~(1u << i);
}
if (data)
bsprintf(buf, " %08x", data);
return;
}
static inline void
opaque_format(const struct adata *ad, byte *buf, uint size)
{
byte *bound = buf + size - 10;
uint i;
for(i = 0; i < ad->length; i++)
{
if (buf > bound)
{
strcpy(buf, " ...");
return;
}
if (i)
*buf++ = ' ';
buf += bsprintf(buf, "%02x", ad->data[i]);
}
*buf = 0;
return;
}
static inline void
ea_show_int_set(struct cli *c, const char *name, const struct adata *ad, int way, byte *buf)
{
int nlen = strlen(name);
int i = int_set_format(ad, way, 0, buf, CLI_MSG_SIZE - nlen - 3);
cli_printf(c, -1012, "\t%s: %s", name, buf);
while (i)
{
i = int_set_format(ad, way, i, buf, CLI_MSG_SIZE - 1);
cli_printf(c, -1012, "\t\t%s", buf);
}
}
static inline void
ea_show_ec_set(struct cli *c, const char *name, const struct adata *ad, byte *buf)
{
int nlen = strlen(name);
int i = ec_set_format(ad, 0, buf, CLI_MSG_SIZE - nlen - 3);
cli_printf(c, -1012, "\t%s: %s", name, buf);
while (i)
{
i = ec_set_format(ad, i, buf, CLI_MSG_SIZE - 1);
cli_printf(c, -1012, "\t\t%s", buf);
}
}
static inline void
ea_show_lc_set(struct cli *c, const char *name, const struct adata *ad, byte *buf)
{
int nlen = strlen(name);
int i = lc_set_format(ad, 0, buf, CLI_MSG_SIZE - nlen - 3);
cli_printf(c, -1012, "\t%s: %s", name, buf);
while (i)
{
i = lc_set_format(ad, i, buf, CLI_MSG_SIZE - 1);
cli_printf(c, -1012, "\t\t%s", buf);
}
}
void
ea_show_nexthop_list(struct cli *c, struct nexthop_adata *nhad)
{
if (!NEXTHOP_IS_REACHABLE(nhad))
return;
NEXTHOP_WALK(nh, nhad)
{
char mpls[MPLS_MAX_LABEL_STACK*12 + 5], *lsp = mpls;
char *onlink = (nh->flags & RNF_ONLINK) ? " onlink" : "";
char weight[16] = "";
if (nh->labels)
{
lsp += bsprintf(lsp, " mpls %d", nh->label[0]);
for (int i=1;i<nh->labels; i++)
lsp += bsprintf(lsp, "/%d", nh->label[i]);
}
*lsp = '\0';
if (!NEXTHOP_ONE(nhad))
bsprintf(weight, " weight %d", nh->weight + 1);
if (ipa_nonzero(nh->gw))
if (nh->iface)
cli_printf(c, -1007, "\tvia %I on %s%s%s%s",
nh->gw, nh->iface->name, mpls, onlink, weight);
else
cli_printf(c, -1007, "\tvia %I", nh->gw);
else
cli_printf(c, -1007, "\tdev %s%s%s",
nh->iface->name, mpls, onlink, weight);
}
}
void
ea_show_hostentry(const struct adata *ad, byte *buf, uint size)
{
const struct hostentry_adata *had = (const struct hostentry_adata *) ad;
if (ipa_nonzero(had->he->link) && !ipa_equal(had->he->link, had->he->addr))
bsnprintf(buf, size, "via %I %I table %s", had->he->addr, had->he->link, had->he->tab->name);
else
bsnprintf(buf, size, "via %I table %s", had->he->addr, had->he->tab->name);
}
/**
* ea_show - print an &eattr to CLI
* @c: destination CLI
* @e: attribute to be printed
*
* This function takes an extended attribute represented by its &eattr
* structure and prints it to the CLI according to the type information.
*
* If the protocol defining the attribute provides its own
* get_attr() hook, it's consulted first.
*/
static void
ea_show(struct cli *c, const eattr *e)
{
const struct adata *ad = (e->type & EAF_EMBEDDED) ? NULL : e->u.ptr;
byte buf[CLI_MSG_SIZE];
byte *pos = buf, *end = buf + sizeof(buf);
ASSERT_DIE(e->id < ea_class_max);
struct ea_class *cls = ea_class_global[e->id];
ASSERT_DIE(cls);
if (e->undef || cls->hidden)
return;
else if (cls->format)
cls->format(e, buf, end - buf);
else
switch (e->type)
{
case T_INT:
if ((cls == &ea_gen_igp_metric) && e->u.data >= IGP_METRIC_UNKNOWN)
return;
bsprintf(pos, "%u", e->u.data);
break;
case T_OPAQUE:
opaque_format(ad, pos, end - pos);
break;
case T_IP:
bsprintf(pos, "%I", *(ip_addr *) ad->data);
break;
case T_QUAD:
bsprintf(pos, "%R", e->u.data);
break;
case T_PATH:
as_path_format(ad, pos, end - pos);
break;
case T_CLIST:
ea_show_int_set(c, cls->name, ad, 1, buf);
return;
case T_ECLIST:
ea_show_ec_set(c, cls->name, ad, buf);
return;
case T_LCLIST:
ea_show_lc_set(c, cls->name, ad, buf);
return;
case T_NEXTHOP_LIST:
ea_show_nexthop_list(c, (struct nexthop_adata *) e->u.ptr);
return;
case T_HOSTENTRY:
ea_show_hostentry(ad, pos, end - pos);
break;
default:
bsprintf(pos, "<type %02x>", e->type);
}
cli_printf(c, -1012, "\t%s: %s", cls->name, buf);
}
static void
nexthop_dump(const struct adata *ad)
{
struct nexthop_adata *nhad = (struct nexthop_adata *) ad;
debug(":");
if (!NEXTHOP_IS_REACHABLE(nhad))
{
const char *name = rta_dest_name(nhad->dest);
if (name)
debug(" %s", name);
else
debug(" D%d", nhad->dest);
}
else NEXTHOP_WALK(nh, nhad)
{
if (ipa_nonzero(nh->gw)) debug(" ->%I", nh->gw);
if (nh->labels) debug(" L %d", nh->label[0]);
for (int i=1; i<nh->labels; i++)
debug("/%d", nh->label[i]);
debug(" [%s]", nh->iface ? nh->iface->name : "???");
}
}
/**
* ea_dump - dump an extended attribute
* @e: attribute to be dumped
*
* ea_dump() dumps contents of the extended attribute given to
* the debug output.
*/
void
ea_dump(ea_list *e)
{
int i;
if (!e)
{
debug("NONE");
return;
}
while (e)
{
struct ea_storage *s = ea_is_cached(e) ? ea_get_storage(e) : NULL;
debug("[%c%c%c] uc=%d h=%08x",
(e->flags & EALF_SORTED) ? 'S' : 's',
(e->flags & EALF_BISECT) ? 'B' : 'b',
(e->flags & EALF_CACHED) ? 'C' : 'c',
s ? s->uc : 0, s ? s->hash_key : 0);
for(i=0; i<e->count; i++)
{
eattr *a = &e->attrs[i];
struct ea_class *clp = (a->id < ea_class_max) ? ea_class_global[a->id] : NULL;
if (clp)
debug(" %s", clp->name);
else
debug(" 0x%x", a->id);
debug(".%02x", a->flags);
debug("=%c",
"?iO?IRP???S??pE?"
"??L???N?????????"
"?o???r??????????" [a->type]);
if (a->originated)
debug("o");
if (a->undef)
debug(":undef");
else if (a->type & EAF_EMBEDDED)
debug(":%08x", a->u.data);
else if (a->id == ea_gen_nexthop.id)
nexthop_dump(a->u.ptr);
else
{
int j, len = a->u.ptr->length;
debug("[%d]:", len);
for(j=0; j<len; j++)
debug("%02x", a->u.ptr->data[j]);
}
debug(" ");
}
if (e = e->next)
debug(" | ");
}
}
/**
* ea_hash - calculate an &ea_list hash key
* @e: attribute list
*
* ea_hash() takes an extended attribute list and calculated a hopefully
* uniformly distributed hash value from its contents.
*/
inline uint
ea_hash(ea_list *e)
{
const u64 mul = 0x68576150f3d6847;
u64 h = 0xafcef24eda8b29;
int i;
if (e) /* Assuming chain of length 1 */
{
h ^= mem_hash(&e->next, sizeof(e->next));
for(i=0; i<e->count; i++)
{
struct eattr *a = &e->attrs[i];
h ^= a->id; h *= mul;
if (a->undef)
continue;
if (a->type & EAF_EMBEDDED)
h ^= a->u.data;
else
{
const struct adata *d = a->u.ptr;
h ^= mem_hash(d->data, d->length);
}
h *= mul;
}
}
return (h >> 32) ^ (h & 0xffffffff);
}
/**
* ea_append - concatenate &ea_list's
* @to: destination list (can be %NULL)
* @what: list to be appended (can be %NULL)
*
* This function appends the &ea_list @what at the end of
* &ea_list @to and returns a pointer to the resulting list.
*/
ea_list *
ea_append(ea_list *to, ea_list *what)
{
ea_list *res;
if (!to)
return what;
res = to;
while (to->next)
to = to->next;
to->next = what;
return res;
}
/*
* rta's
*/
static uint rta_cache_count;
static uint rta_cache_size = 32;
static uint rta_cache_limit;
static uint rta_cache_mask;
static struct ea_storage **rta_hash_table;
static void
rta_alloc_hash(void)
{
rta_hash_table = mb_allocz(rta_pool, sizeof(struct ea_storage *) * rta_cache_size);
if (rta_cache_size < 32768)
rta_cache_limit = rta_cache_size * 2;
else
rta_cache_limit = ~0;
rta_cache_mask = rta_cache_size - 1;
}
static inline void
rta_insert(struct ea_storage *r)
{
uint h = r->hash_key & rta_cache_mask;
r->next_hash = rta_hash_table[h];
if (r->next_hash)
r->next_hash->pprev_hash = &r->next_hash;
r->pprev_hash = &rta_hash_table[h];
rta_hash_table[h] = r;
}
static void
rta_rehash(void)
{
uint ohs = rta_cache_size;
uint h;
struct ea_storage *r, *n;
struct ea_storage **oht = rta_hash_table;
rta_cache_size = 2*rta_cache_size;
DBG("Rehashing rta cache from %d to %d entries.\n", ohs, rta_cache_size);
rta_alloc_hash();
for(h=0; h<ohs; h++)
for(r=oht[h]; r; r=n)
{
n = r->next_hash;
rta_insert(r);
}
mb_free(oht);
}
/**
* rta_lookup - look up a &rta in attribute cache
* @o: a un-cached &rta
*
* rta_lookup() gets an un-cached &rta structure and returns its cached
* counterpart. It starts with examining the attribute cache to see whether
* there exists a matching entry. If such an entry exists, it's returned and
* its use count is incremented, else a new entry is created with use count
* set to 1.
*
* The extended attribute lists attached to the &rta are automatically
* converted to the normalized form.
*/
ea_list *
ea_lookup(ea_list *o, int overlay)
{
struct ea_storage *r;
uint h;
ASSERT(!ea_is_cached(o));
o = ea_normalize(o, overlay);
h = ea_hash(o);
RTA_LOCK;
for(r=rta_hash_table[h & rta_cache_mask]; r; r=r->next_hash)
if (r->hash_key == h && ea_same(r->l, o))
{
atomic_fetch_add_explicit(&r->uc, 1, memory_order_acq_rel);
RTA_UNLOCK;
return r->l;
}
uint elen = ea_list_size(o);
uint sz = elen + sizeof(struct ea_storage);
for (uint i=0; i<ARRAY_SIZE(ea_slab_sizes); i++)
if (sz <= ea_slab_sizes[i])
{
r = sl_alloc(ea_slab[i]);
break;
}
int huge = r ? 0 : EALF_HUGE;;
if (huge)
r = mb_alloc(rta_pool, sz);
ea_list_copy(r->l, o, elen);
ea_list_ref(r->l);
r->l->flags |= EALF_CACHED | huge;
r->hash_key = h;
r->uc = 1;
rta_insert(r);
if (++rta_cache_count > rta_cache_limit)
rta_rehash();
RTA_UNLOCK;
return r->l;
}
static void
ea_free_locked(struct ea_storage *a)
{
/* Somebody has cloned this rta inbetween. This sometimes happens. */
if (atomic_load_explicit(&a->uc, memory_order_acquire))
return;
ASSERT(rta_cache_count);
rta_cache_count--;
*a->pprev_hash = a->next_hash;
if (a->next_hash)
a->next_hash->pprev_hash = a->pprev_hash;
ea_list_unref(a->l);
if (a->l->flags & EALF_HUGE)
mb_free(a);
else
sl_free(a);
}
static void
ea_free_nested(struct ea_list *l)
{
struct ea_storage *r = ea_get_storage(l);
if (1 == atomic_fetch_sub_explicit(&r->uc, 1, memory_order_acq_rel))
ea_free_locked(r);
}
void
ea__free(struct ea_storage *a)
{
RTA_LOCK;
ea_free_locked(a);
RTA_UNLOCK;
}
/**
* rta_dump_all - dump attribute cache
*
* This function dumps the whole contents of route attribute cache
* to the debug output.
*/
void
ea_dump_all(void)
{
RTA_LOCK;
debug("Route attribute cache (%d entries, rehash at %d):\n", rta_cache_count, rta_cache_limit);
for (uint h=0; h < rta_cache_size; h++)
for (struct ea_storage *a = rta_hash_table[h]; a; a = a->next_hash)
{
debug("%p ", a);
ea_dump(a->l);
debug("\n");
}
debug("\n");
RTA_UNLOCK;
}
void
ea_show_list(struct cli *c, ea_list *eal)
{
ea_list *n = ea_normalize(eal, 0);
for (int i =0; i < n->count; i++)
ea_show(c, &n->attrs[i]);
}
/**
* rta_init - initialize route attribute cache
*
* This function is called during initialization of the routing
* table module to set up the internals of the attribute cache.
*/
void
rta_init(void)
{
attrs_domain = DOMAIN_NEW(attrs);
RTA_LOCK;
rta_pool = rp_new(&root_pool, attrs_domain.attrs, "Attributes");
for (uint i=0; i<ARRAY_SIZE(ea_slab_sizes); i++)
ea_slab[i] = sl_new(rta_pool, ea_slab_sizes[i]);
rta_alloc_hash();
rte_src_init();
ea_class_init();
RTA_UNLOCK;
/* These attributes are required to be first for nice "show route" output */
ea_register_init(&ea_gen_nexthop);
ea_register_init(&ea_gen_hostentry);
/* Other generic route attributes */
ea_register_init(&ea_gen_preference);
ea_register_init(&ea_gen_igp_metric);
ea_register_init(&ea_gen_from);
ea_register_init(&ea_gen_source);
ea_register_init(&ea_gen_flowspec_valid);
/* MPLS route attributes */
ea_register_init(&ea_gen_mpls_policy);
ea_register_init(&ea_gen_mpls_class);
ea_register_init(&ea_gen_mpls_label);
}
/*
* Documentation for functions declared inline in route.h
*/
#if 0
/**
* rta_clone - clone route attributes
* @r: a &rta to be cloned
*
* rta_clone() takes a cached &rta and returns its identical cached
* copy. Currently it works by just returning the original &rta with
* its use count incremented.
*/
static inline rta *rta_clone(rta *r)
{ DUMMY; }
/**
* rta_free - free route attributes
* @r: a &rta to be freed
*
* If you stop using a &rta (for example when deleting a route which uses
* it), you need to call rta_free() to notify the attribute cache the
* attribute is no longer in use and can be freed if you were the last
* user (which rta_free() tests by inspecting the use count).
*/
static inline void rta_free(rta *r)
{ DUMMY; }
#endif