0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2025-01-18 15:01:53 +00:00
bird/nest/cli.c
Maria Matejka 5cbebfc940 Real almost-lockless feeds and more pull-like exports
Introducing a new omnipotent internal API to just pass route updates
from whatever point wherever we want.

From now on, all the exports should be processed by RT_WALK_EXPORTS
macro, and you can also issue a separate feed-only request to just get a
feed and finish.

The exporters can now also stop and the readers must expect that to
happen and recover. Main tables don't stop, though.
2024-06-24 09:42:03 +02:00

324 lines
8.1 KiB
C

/*
* BIRD Internet Routing Daemon -- Command-Line Interface
*
* (c) 1999--2000 Martin Mares <mj@ucw.cz>
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
/**
* DOC: Command line interface
*
* This module takes care of the BIRD's command-line interface (CLI).
* The CLI exists to provide a way to control BIRD remotely and to inspect
* its status. It uses a very simple textual protocol over a stream
* connection provided by the platform dependent code (on UNIX systems,
* it's a UNIX domain socket).
*
* Each session of the CLI consists of a sequence of request and replies,
* slightly resembling the FTP and SMTP protocols.
* Requests are commands encoded as a single line of text, replies are
* sequences of lines starting with a four-digit code followed by either
* a space (if it's the last line of the reply) or a minus sign (when the
* reply is going to continue with the next line), the rest of the line
* contains a textual message semantics of which depends on the numeric
* code. If a reply line has the same code as the previous one and it's
* a continuation line, the whole prefix can be replaced by a single
* white space character.
*
* Reply codes starting with 0 stand for `action successfully completed' messages,
* 1 means `table entry', 8 `runtime error' and 9 `syntax error'.
*
* Each CLI session is internally represented by a &cli structure and a
* resource pool containing all resources associated with the connection,
* so that it can be easily freed whenever the connection gets closed, not depending
* on the current state of command processing.
*
* The CLI commands are declared as a part of the configuration grammar
* by using the |CF_CLI| macro. When a command is received, it is processed
* by the same lexical analyzer and parser as used for the configuration, but
* it's switched to a special mode by prepending a fake token to the text,
* so that it uses only the CLI command rules. Then the parser invokes
* an execution routine corresponding to the command, which either constructs
* the whole reply and returns it back or (in case it expects the reply will be long)
* it prints a partial reply and asks the CLI module (using the @cont hook)
* to call it again when the output is transferred to the user.
*
* The @this_cli variable points to a &cli structure of the session being
* currently parsed, but it's of course available only in command handlers
* not entered using the @cont hook.
*
* TX buffer management works as follows: At cli.tx_buf there is a
* list of TX buffers (struct cli_out), cli.tx_write is the buffer
* currently used by the producer (cli_printf(), cli_alloc_out()) and
* cli.tx_pos is the buffer currently used by the consumer
* (cli_write(), in system dependent code). The producer uses
* cli_out.wpos ptr as the current write position and the consumer
* uses cli_out.outpos ptr as the current read position. When the
* producer produces something, it calls cli_write_trigger(). If there
* is not enough space in the current buffer, the producer allocates
* the new one. When the consumer processes everything in the buffer
* queue, it calls cli_written(), tha frees all buffers (except the
* first one) and schedules cli.event .
*
*/
#include "nest/bird.h"
#include "nest/cli.h"
#include "conf/conf.h"
#include "lib/string.h"
pool *cli_pool;
static byte *
cli_alloc_out(cli *c, int size)
{
struct cli_out *o;
if (!(o = c->tx_write) || o->wpos + size > o->end)
{
if (!o && c->tx_buf)
o = c->tx_buf;
else
{
o = mb_alloc(c->pool, sizeof(struct cli_out) + CLI_TX_BUF_SIZE);
if (c->tx_write)
c->tx_write->next = o;
else
c->tx_buf = o;
o->wpos = o->outpos = o->buf;
o->end = o->buf + CLI_TX_BUF_SIZE;
}
c->tx_write = o;
if (!c->tx_pos)
c->tx_pos = o;
o->next = NULL;
}
o->wpos += size;
return o->wpos - size;
}
/**
* cli_printf - send reply to a CLI connection
* @c: CLI connection
* @code: numeric code of the reply, negative for continuation lines
* @msg: a printf()-like formatting string.
*
* This function send a single line of reply to a given CLI connection.
* In works in all aspects like bsprintf() except that it automatically
* prepends the reply line prefix.
*
* Please note that if the connection can be already busy sending some
* data in which case cli_printf() stores the output to a temporary buffer,
* so please avoid sending a large batch of replies without waiting
* for the buffers to be flushed.
*
* If you want to write to the current CLI output, you can use the cli_msg()
* macro instead.
*/
void
cli_printf(cli *c, int code, char *msg, ...)
{
va_list args;
byte buf[CLI_LINE_SIZE];
int cd = code;
int errcode;
int size, cnt;
if (cd < 0)
{
cd = -cd;
if (cd == c->last_reply)
size = bsprintf(buf, " ");
else
size = bsprintf(buf, "%04d-", cd);
errcode = -8000;
}
else if (cd == CLI_ASYNC_CODE)
{
size = 1; buf[0] = '+';
errcode = cd;
}
else
{
size = bsprintf(buf, "%04d ", cd);
errcode = 8000;
cd = 0; /* Final message - no more continuation lines */
}
c->last_reply = cd;
va_start(args, msg);
cnt = bvsnprintf(buf+size, sizeof(buf)-size-1, msg, args);
va_end(args);
if (cnt < 0)
{
cli_printf(c, errcode, "<line overflow>");
return;
}
size += cnt;
buf[size++] = '\n';
memcpy(cli_alloc_out(c, size), buf, size);
}
static void
cli_hello(cli *c)
{
cli_printf(c, 1, "BIRD " BIRD_VERSION " ready.");
c->cont = NULL;
}
static void
cli_free_out(cli *c)
{
struct cli_out *o, *p;
if (o = c->tx_buf)
{
o->wpos = o->outpos = o->buf;
while (p = o->next)
{
o->next = p->next;
mb_free(p);
}
}
c->tx_write = c->tx_pos = NULL;
c->async_msg_size = 0;
}
void
cli_written(cli *c)
{
cli_free_out(c);
ev_schedule(c->event);
}
static byte *cli_rh_pos;
static uint cli_rh_len;
static int cli_rh_trick_flag;
struct cli *this_cli;
static int
cli_cmd_read_hook(byte *buf, uint max, UNUSED int fd)
{
if (!cli_rh_trick_flag)
{
cli_rh_trick_flag = 1;
buf[0] = '!';
return 1;
}
if (max > cli_rh_len)
max = cli_rh_len;
memcpy(buf, cli_rh_pos, max);
cli_rh_pos += max;
cli_rh_len -= max;
return max;
}
static void
cli_command(struct cli *c)
{
struct config f;
int res;
if (config->cli_debug > 1)
log(L_TRACE "CLI: %s", c->rx_buf);
bzero(&f, sizeof(f));
f.mem = c->parser_pool;
f.pool = rp_new(c->pool, the_bird_domain.the_bird, "Config");
init_list(&f.symbols);
cf_read_hook = cli_cmd_read_hook;
cli_rh_pos = c->rx_buf;
cli_rh_len = strlen(c->rx_buf);
cli_rh_trick_flag = 0;
this_cli = c;
lp_flush(c->parser_pool);
res = cli_parse(&f);
if (!res)
cli_printf(c, 9001, f.err_msg);
config_free(&f);
}
static void
cli_event(void *data)
{
cli *c = data;
int err;
if (c->tx_pos)
;
else if (c->cont)
c->cont(c);
else
{
err = cli_get_command(c);
if (!err)
return;
if (err < 0)
cli_printf(c, 9000, "Command too long");
else
cli_command(c);
}
if (c->tx_pos)
cli_write_trigger(c);
}
cli *
cli_new(struct birdsock *sock)
{
pool *p = rp_new(cli_pool, the_bird_domain.the_bird, "CLI");
cli *c = mb_alloc(p, sizeof(cli));
bzero(c, sizeof(cli));
c->pool = p;
c->sock = sock;
c->event = ev_new(p);
c->event->hook = cli_event;
c->event->data = c;
c->cont = cli_hello;
c->parser_pool = lp_new_default(c->pool);
c->rx_buf = mb_alloc(c->pool, CLI_RX_BUF_SIZE);
ev_schedule(c->event);
return c;
}
void
cli_kick(cli *c)
{
if (!c->cont && !c->tx_pos)
ev_schedule(c->event);
}
static list cli_log_hooks;
static int cli_log_inited;
/* Hack for scheduled undo notification */
extern cli *cmd_reconfig_stored_cli;
void
cli_free(cli *c)
{
CALL(c->cleanup, c);
if (c == cmd_reconfig_stored_cli)
cmd_reconfig_stored_cli = NULL;
rp_free(c->pool);
}
/**
* cli_init - initialize the CLI module
*
* This function is called during BIRD startup to initialize
* the internal data structures of the CLI module.
*/
void
cli_init(void)
{
cli_pool = rp_new(&root_pool, the_bird_domain.the_bird, "CLI");
init_list(&cli_log_hooks);
cli_log_inited = 1;
}