0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2024-11-15 07:38:43 +00:00
bird/lib/sha256.c
Ondrej Zajicek (work) de2a27e255 Add generic message authentication interface
Add generic interface for generating and verifying MACs (message
authentication codes). Replace multiple HMAC implementation with
a generic one.
2016-11-02 16:23:53 +01:00

328 lines
7.3 KiB
C

/*
* BIRD Library -- SHA-256 and SHA-224 Hash Functions
*
* (c) 2015 CZ.NIC z.s.p.o.
*
* Based on the code from libgcrypt-1.6.0, which is
* (c) 2003, 2006, 2008, 2009 Free Software Foundation, Inc.
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
#include "lib/sha256.h"
#include "lib/unaligned.h"
// #define SHA256_UNROLLED
void
sha256_init(struct hash_context *CTX)
{
struct sha256_context *ctx = (void *) CTX;
ctx->h0 = 0x6a09e667;
ctx->h1 = 0xbb67ae85;
ctx->h2 = 0x3c6ef372;
ctx->h3 = 0xa54ff53a;
ctx->h4 = 0x510e527f;
ctx->h5 = 0x9b05688c;
ctx->h6 = 0x1f83d9ab;
ctx->h7 = 0x5be0cd19;
ctx->nblocks = 0;
ctx->count = 0;
}
void
sha224_init(struct hash_context *CTX)
{
struct sha224_context *ctx = (void *) CTX;
ctx->h0 = 0xc1059ed8;
ctx->h1 = 0x367cd507;
ctx->h2 = 0x3070dd17;
ctx->h3 = 0xf70e5939;
ctx->h4 = 0xffc00b31;
ctx->h5 = 0x68581511;
ctx->h6 = 0x64f98fa7;
ctx->h7 = 0xbefa4fa4;
ctx->nblocks = 0;
ctx->count = 0;
}
/* (4.2) same as SHA-1's F1. */
static inline u32
f1(u32 x, u32 y, u32 z)
{
return (z ^ (x & (y ^ z)));
}
/* (4.3) same as SHA-1's F3 */
static inline u32
f3(u32 x, u32 y, u32 z)
{
return ((x & y) | (z & (x|y)));
}
/* Bitwise rotation of an uint to the right */
static inline u32 ror(u32 x, int n)
{
return ((x >> (n&(32-1))) | (x << ((32-n)&(32-1))));
}
/* (4.4) */
static inline u32
sum0(u32 x)
{
return (ror(x, 2) ^ ror(x, 13) ^ ror(x, 22));
}
/* (4.5) */
static inline u32
sum1(u32 x)
{
return (ror(x, 6) ^ ror(x, 11) ^ ror(x, 25));
}
/*
Transform the message X which consists of 16 32-bit-words. See FIPS
180-2 for details. */
#define S0(x) (ror((x), 7) ^ ror((x), 18) ^ ((x) >> 3)) /* (4.6) */
#define S1(x) (ror((x), 17) ^ ror((x), 19) ^ ((x) >> 10)) /* (4.7) */
#define R(a,b,c,d,e,f,g,h,k,w) \
do \
{ \
t1 = (h) + sum1((e)) + f1((e),(f),(g)) + (k) + (w); \
t2 = sum0((a)) + f3((a),(b),(c)); \
h = g; \
g = f; \
f = e; \
e = d + t1; \
d = c; \
c = b; \
b = a; \
a = t1 + t2; \
} while (0)
/*
The SHA-256 core: Transform the message X which consists of 16
32-bit-words. See FIPS 180-2 for details.
*/
static uint
sha256_transform(struct sha256_context *ctx, const byte *data)
{
static const u32 K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
u32 a,b,c,d,e,f,g,h,t1,t2;
u32 w[64];
int i;
a = ctx->h0;
b = ctx->h1;
c = ctx->h2;
d = ctx->h3;
e = ctx->h4;
f = ctx->h5;
g = ctx->h6;
h = ctx->h7;
for (i = 0; i < 16; i++)
w[i] = get_u32(data + i * 4);
for (; i < 64; i++)
w[i] = S1(w[i-2]) + w[i-7] + S0(w[i-15]) + w[i-16];
for (i = 0; i < 64;)
{
#ifndef SHA256_UNROLLED
R(a,b,c,d,e,f,g,h,K[i],w[i]);
i++;
#else /* Unrolled */
t1 = h + sum1(e) + f1(e, f, g) + K[i] + w[i];
t2 = sum0(a) + f3(a, b, c);
d += t1;
h = t1 + t2;
t1 = g + sum1(d) + f1(d, e, f) + K[i+1] + w[i+1];
t2 = sum0(h) + f3(h, a, b);
c += t1;
g = t1 + t2;
t1 = f + sum1(c) + f1(c, d, e) + K[i+2] + w[i+2];
t2 = sum0(g) + f3(g, h, a);
b += t1;
f = t1 + t2;
t1 = e + sum1(b) + f1(b, c, d) + K[i+3] + w[i+3];
t2 = sum0(f) + f3(f, g, h);
a += t1;
e = t1 + t2;
t1 = d + sum1(a) + f1(a, b, c) + K[i+4] + w[i+4];
t2 = sum0(e) + f3(e, f, g);
h += t1;
d = t1 + t2;
t1 = c + sum1(h) + f1(h, a, b) + K[i+5] + w[i+5];
t2 = sum0(d) + f3(d, e, f);
g += t1;
c = t1 + t2;
t1 = b + sum1(g) + f1(g, h, a) + K[i+6] + w[i+6];
t2 = sum0(c) + f3(c, d, e);
f += t1;
b = t1 + t2;
t1 = a + sum1(f) + f1(f, g, h) + K[i+7] + w[i+7];
t2 = sum0(b) + f3(b, c, d);
e += t1;
a = t1 + t2;
i += 8;
#endif
}
ctx->h0 += a;
ctx->h1 += b;
ctx->h2 += c;
ctx->h3 += d;
ctx->h4 += e;
ctx->h5 += f;
ctx->h6 += g;
ctx->h7 += h;
return /*burn_stack*/ 74*4+32;
}
#undef S0
#undef S1
#undef R
/* Common function to write a chunk of data to the transform function
of a hash algorithm. Note that the use of the term "block" does
not imply a fixed size block. Note that we explicitly allow to use
this function after the context has been finalized; the result does
not have any meaning but writing after finalize is sometimes
helpful to mitigate timing attacks. */
void
sha256_update(struct hash_context *CTX, const byte *buf, uint len)
{
struct sha256_context *ctx = (void *) CTX;
if (ctx->count)
{
/* Fill rest of internal buffer */
for (; len && ctx->count < SHA256_BLOCK_SIZE; len--)
ctx->buf[ctx->count++] = *buf++;
if (ctx->count < SHA256_BLOCK_SIZE)
return;
/* Process data from internal buffer */
sha256_transform(ctx, ctx->buf);
ctx->nblocks++;
ctx->count = 0;
}
if (!len)
return;
/* Process data from input buffer */
while (len >= SHA256_BLOCK_SIZE)
{
sha256_transform(ctx, buf);
ctx->nblocks++;
buf += SHA256_BLOCK_SIZE;
len -= SHA256_BLOCK_SIZE;
}
/* Copy remaining data to internal buffer */
memcpy(ctx->buf, buf, len);
ctx->count = len;
}
/*
* The routine finally terminates the computation and returns the digest. The
* handle is prepared for a new cycle, but adding bytes to the handle will the
* destroy the returned buffer.
*
* Returns: 32 bytes with the message the digest. 28 bytes for SHA-224.
*/
byte *
sha256_final(struct hash_context *CTX)
{
struct sha256_context *ctx = (void *) CTX;
u32 t, th, msb, lsb;
sha256_update(CTX, NULL, 0); /* flush */
t = ctx->nblocks;
th = 0;
/* multiply by 64 to make a byte count */
lsb = t << 6;
msb = (th << 6) | (t >> 26);
/* add the count */
t = lsb;
if ((lsb += ctx->count) < t)
msb++;
/* multiply by 8 to make a bit count */
t = lsb;
lsb <<= 3;
msb <<= 3;
msb |= t >> 29;
if (ctx->count < 56)
{
/* enough room */
ctx->buf[ctx->count++] = 0x80; /* pad */
while (ctx->count < 56)
ctx->buf[ctx->count++] = 0; /* pad */
}
else
{
/* need one extra block */
ctx->buf[ctx->count++] = 0x80; /* pad character */
while (ctx->count < 64)
ctx->buf[ctx->count++] = 0;
sha256_update(CTX, NULL, 0); /* flush */;
memset(ctx->buf, 0, 56 ); /* fill next block with zeroes */
}
/* append the 64 bit count */
put_u32(ctx->buf + 56, msb);
put_u32(ctx->buf + 60, lsb);
sha256_transform(ctx, ctx->buf);
byte *p = ctx->buf;
#define X(a) do { put_u32(p, ctx->h##a); p += 4; } while(0)
X(0);
X(1);
X(2);
X(3);
X(4);
X(5);
X(6);
X(7);
#undef X
return ctx->buf;
}