0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2024-12-23 18:21:54 +00:00
bird/lib/mac.c
Ondrej Zajicek (work) de2a27e255 Add generic message authentication interface
Add generic interface for generating and verifying MACs (message
authentication codes). Replace multiple HMAC implementation with
a generic one.
2016-11-02 16:23:53 +01:00

290 lines
8.0 KiB
C

/*
* BIRD Library -- Message Authentication Codes
*
* (c) 2016 Ondrej Zajicek <santiago@crfreenet.org>
* (c) 2016 CZ.NIC z.s.p.o.
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
/**
* DOC: Message authentication codes
*
* MAC algorithms are simple cryptographic tools for message authentication.
* They use shared a secret key a and message text to generate authentication
* code, which is then passed with the message to the other side, where the code
* is verified. There are multiple families of MAC algorithms based on different
* cryptographic primitives, BIRD implements two MAC families which use hash
* functions.
*
* The first family is simply a cryptographic hash camouflaged as MAC algorithm.
* Originally supposed to be (m|k)-hash (message is concatenated with key, and
* that is hashed), but later it turned out that a raw hash is more practical.
* This is used for cryptographic authentication in OSPFv2, RIP and BFD.
*
* The second family is the standard HMAC (RFC 2104), using inner and outer hash
* to process key and message. HMAC (with SHA) is used in advanced OSPF and RIP
* authentication (RFC 5709, RFC 4822).
*/
#include "lib/mac.h"
#include "lib/md5.h"
#include "lib/sha1.h"
#include "lib/sha256.h"
#include "lib/sha512.h"
/*
* Internal hash calls
*/
static inline void
hash_init(struct mac_context *mctx, struct hash_context *hctx)
{ mctx->type->hash_init(hctx); }
static inline void
hash_update(struct mac_context *mctx, struct hash_context *hctx, const byte *buf, uint len)
{ mctx->type->hash_update(hctx, buf, len); }
static inline byte *
hash_final(struct mac_context *mctx, struct hash_context *hctx)
{ return mctx->type->hash_final(hctx); }
static inline void
hash_buffer(struct mac_context *mctx, byte *outbuf, const byte *buffer, uint length)
{
struct hash_context hctx;
hash_init(mctx, &hctx);
hash_update(mctx, &hctx, buffer, length);
memcpy(outbuf, hash_final(mctx, &hctx), mctx->type->hash_size);
}
/*
* (not-really-MAC) Hash
*/
static void
nrmh_init(struct mac_context *ctx, const byte *key UNUSED, uint keylen UNUSED)
{
struct nrmh_context *ct = (void *) ctx;
hash_init(ctx, &ct->ictx);
}
static void
nrmh_update(struct mac_context *ctx, const byte *data, uint datalen)
{
struct nrmh_context *ct = (void *) ctx;
hash_update(ctx, &ct->ictx, data, datalen);
}
static byte *
nrmh_final(struct mac_context *ctx)
{
struct nrmh_context *ct = (void *) ctx;
return hash_final(ctx, &ct->ictx);
}
/*
* HMAC
*/
static void
hmac_init(struct mac_context *ctx, const byte *key, uint keylen)
{
struct hmac_context *ct = (void *) ctx;
uint block_size = ctx->type->block_size;
uint hash_size = ctx->type->hash_size;
byte *keybuf = alloca(block_size);
byte *buf = alloca(block_size);
uint i;
/* Hash the key if necessary */
if (keylen <= block_size)
{
memcpy(keybuf, key, keylen);
memset(keybuf + keylen, 0, block_size - keylen);
}
else
{
hash_buffer(ctx, keybuf, key, keylen);
memset(keybuf + hash_size, 0, block_size - hash_size);
}
/* Initialize the inner digest */
hash_init(ctx, &ct->ictx);
for (i = 0; i < block_size; i++)
buf[i] = keybuf[i] ^ 0x36;
hash_update(ctx, &ct->ictx, buf, block_size);
/* Initialize the outer digest */
hash_init(ctx, &ct->octx);
for (i = 0; i < block_size; i++)
buf[i] = keybuf[i] ^ 0x5c;
hash_update(ctx, &ct->octx, buf, block_size);
}
static void
hmac_update(struct mac_context *ctx, const byte *data, uint datalen)
{
struct hmac_context *ct = (void *) ctx;
/* Just update the inner digest */
hash_update(ctx, &ct->ictx, data, datalen);
}
static byte *
hmac_final(struct mac_context *ctx)
{
struct hmac_context *ct = (void *) ctx;
/* Finish the inner digest */
byte *isha = hash_final(ctx, &ct->ictx);
/* Finish the outer digest */
hash_update(ctx, &ct->octx, isha, ctx->type->hash_size);
return hash_final(ctx, &ct->octx);
}
/*
* Common code
*/
#define HASH_DESC(name, px, PX) \
{ name, PX##_SIZE, sizeof(struct nrmh_context), nrmh_init, nrmh_update, nrmh_final, \
PX##_SIZE, PX##_BLOCK_SIZE, px##_init, px##_update, px##_final }
#define HMAC_DESC(name, px, PX) \
{ name, PX##_SIZE, sizeof(struct hmac_context), hmac_init, hmac_update, hmac_final, \
PX##_SIZE, PX##_BLOCK_SIZE, px##_init, px##_update, px##_final }
const struct mac_desc mac_table[ALG_MAX] = {
[ALG_MD5] = HASH_DESC("Keyed MD5", md5, MD5),
[ALG_SHA1] = HASH_DESC("Keyed SHA-1", sha1, SHA1),
[ALG_SHA224] = HASH_DESC("Keyed SHA-224", sha224, SHA224),
[ALG_SHA256] = HASH_DESC("Keyed SHA-256", sha256, SHA256),
[ALG_SHA384] = HASH_DESC("Keyed SHA-384", sha384, SHA384),
[ALG_SHA512] = HASH_DESC("Keyed SHA-512", sha512, SHA512),
[ALG_HMAC_MD5] = HMAC_DESC("HMAC-MD5", md5, MD5),
[ALG_HMAC_SHA1] = HMAC_DESC("HMAC-SHA-1", sha1, SHA1),
[ALG_HMAC_SHA224] = HMAC_DESC("HMAC-SHA-224", sha224, SHA224),
[ALG_HMAC_SHA256] = HMAC_DESC("HMAC-SHA-256", sha256, SHA256),
[ALG_HMAC_SHA384] = HMAC_DESC("HMAC-SHA-384", sha384, SHA384),
[ALG_HMAC_SHA512] = HMAC_DESC("HMAC-SHA-512", sha512, SHA512),
};
/**
* mac_init - initialize MAC algorithm
* @ctx: context to initialize
* @id: MAC algorithm ID
* @key: MAC key
* @keylen: MAC key length
*
* Initialize MAC context @ctx for algorithm @id (e.g., %ALG_HMAC_SHA1), with
* key @key of length @keylen. After that, message data could be added using
* mac_update() function.
*/
void
mac_init(struct mac_context *ctx, uint id, const byte *key, uint keylen)
{
ctx->type = &mac_table[id];
ctx->type->init(ctx, key, keylen);
}
#if 0
/**
* mac_update - add more data to MAC algorithm
* @ctx: MAC context
* @data: data to add
* @datalen: length of data
*
* Push another @datalen bytes of data pointed to by @data into the MAC
* algorithm currently in @ctx. Can be called multiple times for the same MAC
* context. It has the same effect as concatenating all the data together and
* passing them at once.
*/
void mac_update(struct mac_context *ctx, const byte *data, uint datalen)
{ DUMMY; }
/**
* mac_final - finalize MAC algorithm
* @ctx: MAC context
*
* Finish MAC computation and return a pointer to the result. No more
* @mac_update() calls could be done, but the context may be reinitialized
* later.
*
* Note that the returned pointer points into data in the @ctx context. If it
* ceases to exist, the pointer becomes invalid.
*/
byte *mac_final(struct mac_context *ctx)
{ DUMMY; }
/**
* mac_cleanup - cleanup MAC context
* @ctx: MAC context
*
* Cleanup MAC context after computation (by filling with zeros). Not strictly
* necessary, just to erase sensitive data from stack. This also invalidates the
* pointer returned by @mac_final().
*/
void mac_cleanup(struct mac_context *ctx)
{ DUMMY; }
#endif
/**
* mac_fill - compute and fill MAC
* @id: MAC algorithm ID
* @key: secret key
* @keylen: key length
* @data: message data
* @datalen: message length
* @mac: place to fill MAC
*
* Compute MAC for specified key @key and message @data using algorithm @id and
* copy it to buffer @mac. mac_fill() is a shortcut function doing all usual
* steps for transmitted messages.
*/
void
mac_fill(uint id, const byte *key, uint keylen, const byte *data, uint datalen, byte *mac)
{
struct mac_context ctx;
mac_init(&ctx, id, key, keylen);
mac_update(&ctx, data, datalen);
memcpy(mac, mac_final(&ctx), mac_get_length(&ctx));
mac_cleanup(&ctx);
}
/**
* mac_verify - compute and verify MAC
* @id: MAC algorithm ID
* @key: secret key
* @keylen: key length
* @data: message data
* @datalen: message length
* @mac: received MAC
*
* Compute MAC for specified key @key and message @data using algorithm @id and
* compare it with received @mac, return whether they are the same. mac_verify()
* is a shortcut function doing all usual steps for received messages.
*/
int
mac_verify(uint id, const byte *key, uint keylen, const byte *data, uint datalen, const byte *mac)
{
struct mac_context ctx;
mac_init(&ctx, id, key, keylen);
mac_update(&ctx, data, datalen);
int res = !memcmp(mac, mac_final(&ctx), mac_get_length(&ctx));
mac_cleanup(&ctx);
return res;
}