mirror of
https://gitlab.nic.cz/labs/bird.git
synced 2024-12-22 09:41:54 +00:00
6dd986587a
Trie walk supports adding restriction on walk bounds by supplying option net during walk initialization. Currently, walk initialized this way couldn't escape specified subnet. By additional flag, we add support to drop to subnet's upper bound for subnet started walks. Therefore it is now possible to start a walk in some subnet and continue walking all lexicagraphical successors present in the trie.
1311 lines
37 KiB
C
1311 lines
37 KiB
C
/*
|
|
* Filters: Trie for prefix sets
|
|
*
|
|
* (c) 2009--2021 Ondrej Zajicek <santiago@crfreenet.org>
|
|
* (c) 2009--2021 CZ.NIC z.s.p.o.
|
|
*
|
|
* Can be freely distributed and used under the terms of the GNU GPL.
|
|
*/
|
|
|
|
/**
|
|
* DOC: Trie for prefix sets
|
|
*
|
|
* We use a (compressed) trie to represent prefix sets. Every node in the trie
|
|
* represents one prefix (&addr/&plen) and &plen also indicates the index of
|
|
* bits in the address that are used to branch at the node. Note that such
|
|
* prefix is not necessary a member of the prefix set, it is just a canonical
|
|
* prefix associated with a node. Prefix lengths of nodes are aligned to
|
|
* multiples of &TRIE_STEP (4) and there is 16-way branching in each
|
|
* node. Therefore, we say that a node is associated with a range of prefix
|
|
* lengths (&plen .. &plen + TRIE_STEP - 1).
|
|
*
|
|
* The prefix set is not just a set of prefixes, it is defined by a set of
|
|
* prefix patterns. Each prefix pattern consists of &ppaddr/&pplen and two
|
|
* integers: &low and &high. The tested prefix &paddr/&plen matches that pattern
|
|
* if the first MIN(&plen, &pplen) bits of &paddr and &ppaddr are the same and
|
|
* &low <= &plen <= &high.
|
|
*
|
|
* There are two ways to represent accepted prefixes for a node. First, there is
|
|
* a bitmask &local, which represents independently all 15 prefixes that extend
|
|
* the canonical prefix of the node and are within a range of prefix lengths
|
|
* associated with the node. E.g., for node 10.0.0.0/8 they are 10.0.0.0/8,
|
|
* 10.0.0.0/9, 10.128.0.0/9, .. 10.224.0.0/11. This order (first by length, then
|
|
* lexicographically) is used for indexing the bitmask &local, starting at
|
|
* position 1. I.e., index is 2^(plen - base) + offset within the same length,
|
|
* see function trie_local_mask6() for details.
|
|
*
|
|
* Second, we use a bitmask &accept to represent accepted prefix lengths at a
|
|
* node. The bit is set means that all prefixes of given length that are either
|
|
* subprefixes or superprefixes of the canonical prefix are accepted. As there
|
|
* are 33 prefix lengths (0..32 for IPv4), but there is just one prefix of zero
|
|
* length in the whole trie so we have &zero flag in &f_trie (indicating whether
|
|
* the trie accepts prefix 0.0.0.0/0) as a special case, and &accept bitmask
|
|
* represents accepted prefix lengths from 1 to 32.
|
|
*
|
|
* One complication is handling of prefix patterns with unaligned prefix length.
|
|
* When such pattern is to be added, we add a primary node above (with rounded
|
|
* down prefix length &nlen) and a set of secondary nodes below (with rounded up
|
|
* prefix lengths &slen). Accepted prefix lengths of the original prefix pattern
|
|
* are then represented in different places based on their lengths. For prefixes
|
|
* shorter than &nlen, it is &accept bitmask of the primary node, for prefixes
|
|
* between &nlen and &slen - 1 it is &local bitmask of the primary node, and for
|
|
* prefixes longer of equal &slen it is &accept bitmasks of secondary nodes.
|
|
*
|
|
* There are two cases in prefix matching - a match when the length of the
|
|
* prefix is smaller that the length of the prefix pattern, (&plen < &pplen) and
|
|
* otherwise. The second case is simple - we just walk through the trie and look
|
|
* at every visited node whether that prefix accepts our prefix length (&plen).
|
|
* The first case is tricky - we do not want to examine every descendant of a
|
|
* final node, so (when we create the trie) we have to propagate that
|
|
* information from nodes to their ascendants.
|
|
*
|
|
* There are two kinds of propagations - propagation from child's &accept
|
|
* bitmask to parent's &accept bitmask, and propagation from child's &accept
|
|
* bitmask to parent's &local bitmask. The first kind is simple - as all
|
|
* superprefixes of a parent are also all superprefixes of appropriate length of
|
|
* a child, then we can just add (by bitwise or) a child &accept mask masked by
|
|
* parent prefix length mask to the parent &accept mask. This handles prefixes
|
|
* shorter than node &plen.
|
|
*
|
|
* The second kind of propagation is necessary to handle superprefixes of a
|
|
* child that are represented by parent &local mask - that are in the range of
|
|
* prefix lengths associated with the parent. For each accepted (by child
|
|
* &accept mask) prefix length from that range, we need to set appropriate bit
|
|
* in &local mask. See function trie_amask_to_local() for details.
|
|
*
|
|
* There are four cases when we walk through a trie:
|
|
*
|
|
* - we are in NULL
|
|
* - we are out of path (prefixes are inconsistent)
|
|
* - we are in the wanted (final) node (node length == &plen)
|
|
* - we are beyond the end of path (node length > &plen)
|
|
* - we are still on path and keep walking (node length < &plen)
|
|
*
|
|
* The walking code in trie_match_net() is structured according to these cases.
|
|
*
|
|
* Iteration over prefixes in a trie can be done using TRIE_WALK() macro, or
|
|
* directly using trie_walk_init() and trie_walk_next() functions. The second
|
|
* approach allows suspending the iteration and continuing in it later.
|
|
* Prefixes are enumerated in the usual lexicographic order and may be
|
|
* restricted to a subset of the trie (all subnets of a specified prefix).
|
|
*
|
|
* Note that the trie walk does not reliably enumerate `implicit' prefixes
|
|
* defined by &low and &high fields in prefix patterns, it is supposed to be
|
|
* used on tries constructed from `explicit' prefixes (&low == &plen == &high
|
|
* in call to trie_add_prefix()).
|
|
*
|
|
* The trie walk has three basic state variables stored in the struct
|
|
* &f_trie_walk_state -- the current node in &stack[stack_pos], &accept_length
|
|
* for iteration over inter-node prefixes (non-branching prefixes on compressed
|
|
* path between the current node and its parent node, stored in the bitmap
|
|
* &accept of the current node) and &local_pos for iteration over intra-node
|
|
* prefixes (stored in the bitmap &local).
|
|
*
|
|
* The trie also supports longest-prefix-match query by trie_match_longest_ip4()
|
|
* and it can be extended to iteration over all covering prefixes for a given
|
|
* prefix (from longest to shortest) using TRIE_WALK_TO_ROOT_IP4() macro. There
|
|
* are also IPv6 versions (for practical reasons, these functions and macros are
|
|
* separate for IPv4 and IPv6). There is the same limitation to enumeration of
|
|
* `implicit' prefixes like with the previous TRIE_WALK() macro.
|
|
*/
|
|
|
|
#include "nest/bird.h"
|
|
#include "lib/string.h"
|
|
#include "conf/conf.h"
|
|
#include "filter/filter.h"
|
|
#include "filter/data.h"
|
|
|
|
|
|
/*
|
|
* In the trie_add_prefix(), we use ip_addr (assuming that it is the same as
|
|
* ip6_addr) to handle both IPv4 and IPv6 prefixes. In contrast to rest of the
|
|
* BIRD, IPv4 addresses are just zero-padded from right. That is why we have
|
|
* ipt_from_ip4() and ipt_to_ip4() macros below.
|
|
*/
|
|
|
|
#define ipa_mkmask(x) ip6_mkmask(x)
|
|
#define ipa_masklen(x) ip6_masklen(&x)
|
|
#define ipa_pxlen(x,y) ip6_pxlen(x,y)
|
|
#define ipa_getbit(a,p) ip6_getbit(a,p)
|
|
#define ipa_getbits(a,p,n) ip6_getbits(a,p,n)
|
|
#define ipa_setbits(a,p,n) ip6_setbits(a,p,n)
|
|
#define trie_local_mask(a,b,c) trie_local_mask6(a,b,c)
|
|
|
|
#define ipt_from_ip4(x) _MI6(_I(x), 0, 0, 0)
|
|
#define ipt_to_ip4(x) _MI4(_I0(x))
|
|
|
|
|
|
/**
|
|
* f_new_trie - allocates and returns a new empty trie
|
|
* @lp: linear pool to allocate items from
|
|
* @data_size: user data attached to node
|
|
*/
|
|
struct f_trie *
|
|
f_new_trie(linpool *lp, uint data_size)
|
|
{
|
|
struct f_trie * ret;
|
|
ret = lp_allocz(lp, sizeof(struct f_trie) + data_size);
|
|
ret->lp = lp;
|
|
ret->ipv4 = -1;
|
|
ret->data_size = data_size;
|
|
return ret;
|
|
}
|
|
|
|
static inline struct f_trie_node4 *
|
|
new_node4(struct f_trie *t, uint plen, uint local, ip4_addr paddr, ip4_addr pmask, ip4_addr amask)
|
|
{
|
|
struct f_trie_node4 *n = lp_allocz(t->lp, sizeof(struct f_trie_node4) + t->data_size);
|
|
n->plen = plen;
|
|
n->local = local;
|
|
n->addr = paddr;
|
|
n->mask = pmask;
|
|
n->accept = amask;
|
|
return n;
|
|
}
|
|
|
|
static inline struct f_trie_node6 *
|
|
new_node6(struct f_trie *t, uint plen, uint local, ip6_addr paddr, ip6_addr pmask, ip6_addr amask)
|
|
{
|
|
struct f_trie_node6 *n = lp_allocz(t->lp, sizeof(struct f_trie_node6) + t->data_size);
|
|
n->plen = plen;
|
|
n->local = local;
|
|
n->addr = paddr;
|
|
n->mask = pmask;
|
|
n->accept = amask;
|
|
return n;
|
|
}
|
|
|
|
static inline struct f_trie_node *
|
|
new_node(struct f_trie *t, uint plen, uint local, ip_addr paddr, ip_addr pmask, ip_addr amask)
|
|
{
|
|
if (t->ipv4)
|
|
return (struct f_trie_node *) new_node4(t, plen, local, ipt_to_ip4(paddr), ipt_to_ip4(pmask), ipt_to_ip4(amask));
|
|
else
|
|
return (struct f_trie_node *) new_node6(t, plen, local, ipa_to_ip6(paddr), ipa_to_ip6(pmask), ipa_to_ip6(amask));
|
|
}
|
|
|
|
static inline void
|
|
attach_node4(struct f_trie_node4 *parent, struct f_trie_node4 *child)
|
|
{
|
|
parent->c[ip4_getbits(child->addr, parent->plen, TRIE_STEP)] = child;
|
|
}
|
|
|
|
static inline void
|
|
attach_node6(struct f_trie_node6 *parent, struct f_trie_node6 *child)
|
|
{
|
|
parent->c[ip6_getbits(child->addr, parent->plen, TRIE_STEP)] = child;
|
|
}
|
|
|
|
static inline void
|
|
attach_node(struct f_trie_node *parent, struct f_trie_node *child, int v4)
|
|
{
|
|
if (v4)
|
|
attach_node4(&parent->v4, &child->v4);
|
|
else
|
|
attach_node6(&parent->v6, &child->v6);
|
|
}
|
|
|
|
|
|
/*
|
|
* Internal prefixes of a node a represented by the local bitmask, each bit for
|
|
* one prefix. Bit 0 is unused, Bit 1 is for the main prefix of the node,
|
|
* remaining bits correspond to subprefixes by this pattern:
|
|
*
|
|
* 1
|
|
* 2 3
|
|
* 4 5 6 7
|
|
* 8 9 A B C D E F
|
|
*
|
|
* E.g. for 10.0.0.0/8 node, the 10.64.0.0/10 would be position 5.
|
|
*/
|
|
|
|
/*
|
|
* Compute appropriate mask representing prefix px/plen in local bitmask of node
|
|
* with prefix length nlen. Assuming that nlen <= plen < (nlen + TRIE_STEP).
|
|
*/
|
|
static inline uint
|
|
trie_local_mask4(ip4_addr px, uint plen, uint nlen)
|
|
{
|
|
uint step = plen - nlen;
|
|
uint pos = (1u << step) + ip4_getbits(px, nlen, step);
|
|
return 1u << pos;
|
|
}
|
|
|
|
static inline uint
|
|
trie_local_mask6(ip6_addr px, uint plen, uint nlen)
|
|
{
|
|
uint step = plen - nlen;
|
|
uint pos = (1u << step) + ip6_getbits(px, nlen, step);
|
|
return 1u << pos;
|
|
}
|
|
|
|
/*
|
|
* Compute an appropriate local mask (for a node with prefix length nlen)
|
|
* representing prefixes of px that are accepted by amask and fall within the
|
|
* range associated with that node. Used for propagation of child accept mask
|
|
* to parent local mask.
|
|
*/
|
|
static inline uint
|
|
trie_amask_to_local(ip_addr px, ip_addr amask, uint nlen)
|
|
{
|
|
uint local = 0;
|
|
|
|
for (uint plen = MAX(nlen, 1); plen < (nlen + TRIE_STEP); plen++)
|
|
if (ipa_getbit(amask, plen - 1))
|
|
local |= trie_local_mask(px, plen, nlen);
|
|
|
|
return local;
|
|
}
|
|
|
|
/*
|
|
* Compute a bitmask representing a level of subprefixes (of the same length),
|
|
* using specified position as a root. E.g., level 2 from root position 3 would
|
|
* be bit positions C-F, returned as bitmask 0xf000.
|
|
*/
|
|
static inline uint
|
|
trie_level_mask(uint pos, uint level)
|
|
{
|
|
return ((1u << (1u << level)) - 1) << (pos << level);
|
|
}
|
|
|
|
|
|
#define GET_ADDR(N,F,X) ((X) ? ipt_from_ip4((N)->v4.F) : ipa_from_ip6((N)->v6.F))
|
|
#define SET_ADDR(N,F,X,V) ({ if (X) (N)->v4.F =ipt_to_ip4(V); else (N)->v6.F =ipa_to_ip6(V); })
|
|
|
|
#define GET_LOCAL(N,X) ((X) ? (N)->v4.local : (N)->v6.local)
|
|
#define ADD_LOCAL(N,X,V) ({ uint v_ = (V); if (X) (N)->v4.local |= v_; else (N)->v6.local |= v_; })
|
|
|
|
#define GET_CHILD(N,X,I) ((X) ? (struct f_trie_node *) (N)->v4.c[I] : (struct f_trie_node *) (N)->v6.c[I])
|
|
|
|
|
|
static void *
|
|
trie_add_node(struct f_trie *t, uint plen, ip_addr px, uint local, uint l, uint h)
|
|
{
|
|
uint l_ = l ? (l - 1) : 0;
|
|
ip_addr amask = (l_ < h) ? ipa_xor(ipa_mkmask(l_), ipa_mkmask(h)) : IPA_NONE;
|
|
ip_addr pmask = ipa_mkmask(plen);
|
|
ip_addr paddr = ipa_and(px, pmask);
|
|
struct f_trie_node *o = NULL;
|
|
struct f_trie_node *n = &t->root;
|
|
int v4 = t->ipv4;
|
|
|
|
/* Add all bits for each active level (0x0002 0x000c 0x00f0 0xff00) */
|
|
for (uint i = 0; i < TRIE_STEP; i++)
|
|
if ((l <= (plen + i)) && ((plen + i) <= h))
|
|
local |= trie_level_mask(1, i);
|
|
|
|
DBG("Insert node %I/%u (%I %x)\n", paddr, plen, amask, local);
|
|
while (n)
|
|
{
|
|
ip_addr naddr = GET_ADDR(n, addr, v4);
|
|
ip_addr nmask = GET_ADDR(n, mask, v4);
|
|
ip_addr accept = GET_ADDR(n, accept, v4);
|
|
ip_addr cmask = ipa_and(nmask, pmask);
|
|
uint nlen = v4 ? n->v4.plen : n->v6.plen;
|
|
|
|
DBG("Found node %I/%u (%I %x)\n",
|
|
naddr, nlen, accept, v4 ? n->v4.local : n->v6.local);
|
|
|
|
if (ipa_compare(ipa_and(paddr, cmask), ipa_and(naddr, cmask)))
|
|
{
|
|
/* We are out of path - we have to add branching node 'b'
|
|
between node 'o' and node 'n', and attach new node 'a'
|
|
as the other child of 'b'. */
|
|
int blen = ROUND_DOWN_POW2(ipa_pxlen(paddr, naddr), TRIE_STEP);
|
|
ip_addr bmask = ipa_mkmask(blen);
|
|
ip_addr baddr = ipa_and(px, bmask);
|
|
|
|
/* Merge accept masks from children to get accept mask for node 'b' */
|
|
ip_addr baccm = ipa_and(ipa_or(amask, accept), bmask);
|
|
uint bloc = trie_amask_to_local(naddr, accept, blen) |
|
|
trie_amask_to_local(paddr, amask, blen);
|
|
|
|
struct f_trie_node *a = new_node(t, plen, local, paddr, pmask, amask);
|
|
struct f_trie_node *b = new_node(t, blen, bloc, baddr, bmask, baccm);
|
|
attach_node(o, b, v4);
|
|
attach_node(b, n, v4);
|
|
attach_node(b, a, v4);
|
|
t->prefix_count++;
|
|
|
|
DBG("Case 1\n");
|
|
return a;
|
|
}
|
|
|
|
if (plen < nlen)
|
|
{
|
|
/* We add new node 'a' between node 'o' and node 'n' */
|
|
amask = ipa_or(amask, ipa_and(accept, pmask));
|
|
local |= trie_amask_to_local(naddr, accept, plen);
|
|
struct f_trie_node *a = new_node(t, plen, local, paddr, pmask, amask);
|
|
attach_node(o, a, v4);
|
|
attach_node(a, n, v4);
|
|
t->prefix_count++;
|
|
|
|
DBG("Case 2\n");
|
|
return a;
|
|
}
|
|
|
|
if (plen == nlen)
|
|
{
|
|
/* We already found added node in trie. Just update accept and local mask */
|
|
accept = ipa_or(accept, amask);
|
|
SET_ADDR(n, accept, v4, accept);
|
|
|
|
if ((GET_LOCAL(n, v4) & local) != local)
|
|
t->prefix_count++;
|
|
|
|
ADD_LOCAL(n, v4, local);
|
|
|
|
DBG("Case 3\n");
|
|
return n;
|
|
}
|
|
|
|
/* Update accept mask part M2 and go deeper */
|
|
accept = ipa_or(accept, ipa_and(amask, nmask));
|
|
SET_ADDR(n, accept, v4, accept);
|
|
ADD_LOCAL(n, v4, trie_amask_to_local(paddr, amask, nlen));
|
|
|
|
DBG("Step %u\n", ipa_getbits(paddr, nlen));
|
|
|
|
/* n->plen < plen and plen <= 32 (128) */
|
|
o = n;
|
|
n = GET_CHILD(n, v4, ipa_getbits(paddr, nlen, TRIE_STEP));
|
|
}
|
|
|
|
/* We add new tail node 'a' after node 'o' */
|
|
struct f_trie_node *a = new_node(t, plen, local, paddr, pmask, amask);
|
|
attach_node(o, a, v4);
|
|
t->prefix_count++;
|
|
|
|
DBG("Case 4\n");
|
|
return a;
|
|
}
|
|
|
|
/**
|
|
* trie_add_prefix
|
|
* @t: trie to add to
|
|
* @net: IP network prefix
|
|
* @l: prefix lower bound
|
|
* @h: prefix upper bound
|
|
*
|
|
* Adds prefix (prefix pattern) @n to trie @t. @l and @h are lower
|
|
* and upper bounds on accepted prefix lengths, both inclusive.
|
|
* 0 <= l, h <= 32 (128 for IPv6).
|
|
*
|
|
* Returns a pointer to the allocated node. The function can return a pointer to
|
|
* an existing node if @px and @plen are the same. If px/plen == 0/0 (or ::/0),
|
|
* a pointer to the root node is returned. Returns NULL when called with
|
|
* mismatched IPv4/IPv6 net type.
|
|
*/
|
|
void *
|
|
trie_add_prefix(struct f_trie *t, const net_addr *net, uint l, uint h)
|
|
{
|
|
uint plen = net_pxlen(net);
|
|
ip_addr px;
|
|
int v4;
|
|
|
|
switch (net->type)
|
|
{
|
|
case NET_IP4:
|
|
case NET_VPN4:
|
|
case NET_ROA4:
|
|
px = ipt_from_ip4(net4_prefix(net));
|
|
v4 = 1;
|
|
break;
|
|
|
|
case NET_IP6:
|
|
case NET_VPN6:
|
|
case NET_ROA6:
|
|
case NET_IP6_SADR:
|
|
px = ipa_from_ip6(net6_prefix(net));
|
|
v4 = 0;
|
|
break;
|
|
|
|
default:
|
|
bug("invalid type");
|
|
}
|
|
|
|
if (t->ipv4 != v4)
|
|
{
|
|
if (t->ipv4 < 0)
|
|
t->ipv4 = v4;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
DBG("\nInsert net %N (%u-%u)\n", net, l, h);
|
|
|
|
if (l == 0)
|
|
t->zero = 1;
|
|
|
|
if (h < plen)
|
|
plen = h;
|
|
|
|
/* Primary node length, plen rounded down */
|
|
uint nlen = ROUND_DOWN_POW2(plen, TRIE_STEP);
|
|
|
|
if (plen == nlen)
|
|
return trie_add_node(t, nlen, px, 0, l, h);
|
|
|
|
/* Secondary node length, plen rouned up */
|
|
uint slen = nlen + TRIE_STEP;
|
|
void *node = NULL;
|
|
|
|
/*
|
|
* For unaligned prefix lengths it is more complicated. We need to encode
|
|
* matching prefixes of lengths from l to h. There are three cases of lengths:
|
|
*
|
|
* 1) 0..nlen are encoded by the accept mask of the primary node
|
|
* 2) nlen..(slen-1) are encoded by the local mask of the primary node
|
|
* 3) slen..max are encoded in secondary nodes
|
|
*/
|
|
|
|
if (l < slen)
|
|
{
|
|
uint local = 0;
|
|
|
|
/* Compute local bits for accepted nlen..(slen-1) prefixes */
|
|
for (uint i = 0; i < TRIE_STEP; i++)
|
|
if ((l <= (nlen + i)) && ((nlen + i) <= h))
|
|
{
|
|
uint pos = (1u << i) + ipa_getbits(px, nlen, i);
|
|
uint len = ((nlen + i) <= plen) ? 1 : (1u << (nlen + i - plen));
|
|
|
|
/* We need to fill 'len' bits starting at 'pos' position */
|
|
local |= ((1u << len) - 1) << pos;
|
|
}
|
|
|
|
/* Add the primary node */
|
|
node = trie_add_node(t, nlen, px, local, l, nlen);
|
|
}
|
|
|
|
if (slen <= h)
|
|
{
|
|
uint l2 = MAX(l, slen);
|
|
uint max = (1u << (slen - plen));
|
|
|
|
/* Add secondary nodes */
|
|
for (uint i = 0; i < max; i++)
|
|
node = trie_add_node(t, slen, ipa_setbits(px, slen - 1, i), 0, l2, h);
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
|
|
static int
|
|
trie_match_net4(const struct f_trie *t, ip4_addr px, uint plen)
|
|
{
|
|
if (plen == 0)
|
|
return t->zero;
|
|
|
|
int plentest = plen - 1;
|
|
uint nlen = ROUND_DOWN_POW2(plen, TRIE_STEP);
|
|
uint local = trie_local_mask4(px, plen, nlen);
|
|
const struct f_trie_node4 *n = &t->root.v4;
|
|
|
|
while (n)
|
|
{
|
|
/* We are out of path */
|
|
if (!ip4_prefix_equal(px, n->addr, MIN(plen, n->plen)))
|
|
return 0;
|
|
|
|
/* Check local mask */
|
|
if ((n->plen == nlen) && (n->local & local))
|
|
return 1;
|
|
|
|
/* Check accept mask */
|
|
if (ip4_getbit(n->accept, plentest))
|
|
return 1;
|
|
|
|
/* We finished trie walk and still no match */
|
|
if (nlen <= n->plen)
|
|
return 0;
|
|
|
|
/* Choose children */
|
|
n = n->c[ip4_getbits(px, n->plen, TRIE_STEP)];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
trie_match_net6(const struct f_trie *t, ip6_addr px, uint plen)
|
|
{
|
|
if (plen == 0)
|
|
return t->zero;
|
|
|
|
int plentest = plen - 1;
|
|
uint nlen = ROUND_DOWN_POW2(plen, TRIE_STEP);
|
|
uint local = trie_local_mask6(px, plen, nlen);
|
|
const struct f_trie_node6 *n = &t->root.v6;
|
|
|
|
while (n)
|
|
{
|
|
/* We are out of path */
|
|
if (!ip6_prefix_equal(px, n->addr, MIN(plen, n->plen)))
|
|
return 0;
|
|
|
|
/* Check local mask */
|
|
if ((n->plen == nlen) && (n->local & local))
|
|
return 1;
|
|
|
|
/* Check accept mask */
|
|
if (ip6_getbit(n->accept, plentest))
|
|
return 1;
|
|
|
|
/* We finished trie walk and still no match */
|
|
if (nlen <= n->plen)
|
|
return 0;
|
|
|
|
/* Choose children */
|
|
n = n->c[ip6_getbits(px, n->plen, TRIE_STEP)];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* trie_match_net
|
|
* @t: trie
|
|
* @n: net address
|
|
*
|
|
* Tries to find a matching net in the trie such that
|
|
* prefix @n matches that prefix pattern. Returns 1 if there
|
|
* is such prefix pattern in the trie.
|
|
*/
|
|
int
|
|
trie_match_net(const struct f_trie *t, const net_addr *n)
|
|
{
|
|
switch (n->type)
|
|
{
|
|
case NET_IP4:
|
|
case NET_VPN4:
|
|
case NET_ROA4:
|
|
return t->ipv4 ? trie_match_net4(t, net4_prefix(n), net_pxlen(n)) : 0;
|
|
|
|
case NET_IP6:
|
|
case NET_VPN6:
|
|
case NET_ROA6:
|
|
return !t->ipv4 ? trie_match_net6(t, net6_prefix(n), net_pxlen(n)) : 0;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* trie_match_longest_ip4
|
|
* @t: trie
|
|
* @net: net address
|
|
* @dst: return value
|
|
* @found0: optional returned bitmask of found nodes
|
|
*
|
|
* Perform longest prefix match for the address @net and return the resulting
|
|
* prefix in the buffer @dst. The bitmask @found0 is used to report lengths of
|
|
* prefixes on the path from the root to the resulting prefix. E.g., if there is
|
|
* also a /20 shorter matching prefix, then 20-th bit is set in @found0. This
|
|
* can be used to enumerate all matching prefixes for the network @net using
|
|
* function trie_match_next_longest_ip4() or macro TRIE_WALK_TO_ROOT_IP4().
|
|
*
|
|
* This function assumes IPv4 trie, there is also an IPv6 variant. The @net
|
|
* argument is typed as net_addr_ip4, but would accept any IPv4-based net_addr,
|
|
* like net4_prefix(). Anyway, returned @dst is always net_addr_ip4.
|
|
*
|
|
* Result: 1 if a matching prefix was found, 0 if not.
|
|
*/
|
|
int
|
|
trie_match_longest_ip4(const struct f_trie *t, const net_addr_ip4 *net, net_addr_ip4 *dst, ip4_addr *found0)
|
|
{
|
|
ASSERT(t->ipv4);
|
|
|
|
const ip4_addr prefix = net->prefix;
|
|
const int pxlen = net->pxlen;
|
|
|
|
const struct f_trie_node4 *n = &t->root.v4;
|
|
int len = 0;
|
|
|
|
ip4_addr found = IP4_NONE;
|
|
int last = -1;
|
|
|
|
while (n)
|
|
{
|
|
/* We are out of path */
|
|
if (!ip4_prefix_equal(prefix, n->addr, MIN(pxlen, n->plen)))
|
|
goto done;
|
|
|
|
/* Check accept mask */
|
|
for (; len < n->plen; len++)
|
|
{
|
|
if (len > pxlen)
|
|
goto done;
|
|
|
|
if (ip4_getbit(n->accept, len - 1))
|
|
{
|
|
/* len is always < 32 due to len < n->plen */
|
|
ip4_setbit(&found, len);
|
|
last = len;
|
|
}
|
|
}
|
|
|
|
/* Special case for max length, there is only one valid local position */
|
|
if (len == IP4_MAX_PREFIX_LENGTH)
|
|
{
|
|
if (n->local & (1u << 1))
|
|
last = len;
|
|
|
|
goto done;
|
|
}
|
|
|
|
/* Check local mask */
|
|
for (int pos = 1; pos < (1 << TRIE_STEP); pos = 2 * pos + ip4_getbit(prefix, len), len++)
|
|
{
|
|
if (len > pxlen)
|
|
goto done;
|
|
|
|
if (n->local & (1u << pos))
|
|
{
|
|
/* len is always < 32 due to special case above */
|
|
ip4_setbit(&found, len);
|
|
last = len;
|
|
}
|
|
}
|
|
|
|
/* Choose child */
|
|
n = n->c[ip4_getbits(prefix, n->plen, TRIE_STEP)];
|
|
}
|
|
|
|
done:
|
|
if (last < 0)
|
|
return 0;
|
|
|
|
*dst = NET_ADDR_IP4(ip4_and(prefix, ip4_mkmask(last)), last);
|
|
|
|
if (found0)
|
|
*found0 = found;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/**
|
|
* trie_match_longest_ip6
|
|
* @t: trie
|
|
* @net: net address
|
|
* @dst: return value
|
|
* @found0: optional returned bitmask of found nodes
|
|
*
|
|
* Perform longest prefix match for the address @net and return the resulting
|
|
* prefix in the buffer @dst. The bitmask @found0 is used to report lengths of
|
|
* prefixes on the path from the root to the resulting prefix. E.g., if there is
|
|
* also a /20 shorter matching prefix, then 20-th bit is set in @found0. This
|
|
* can be used to enumerate all matching prefixes for the network @net using
|
|
* function trie_match_next_longest_ip6() or macro TRIE_WALK_TO_ROOT_IP6().
|
|
*
|
|
* This function assumes IPv6 trie, there is also an IPv4 variant. The @net
|
|
* argument is typed as net_addr_ip6, but would accept any IPv6-based net_addr,
|
|
* like net6_prefix(). Anyway, returned @dst is always net_addr_ip6.
|
|
*
|
|
* Result: 1 if a matching prefix was found, 0 if not.
|
|
*/
|
|
int
|
|
trie_match_longest_ip6(const struct f_trie *t, const net_addr_ip6 *net, net_addr_ip6 *dst, ip6_addr *found0)
|
|
{
|
|
ASSERT(!t->ipv4);
|
|
|
|
const ip6_addr prefix = net->prefix;
|
|
const int pxlen = net->pxlen;
|
|
|
|
const struct f_trie_node6 *n = &t->root.v6;
|
|
int len = 0;
|
|
|
|
ip6_addr found = IP6_NONE;
|
|
int last = -1;
|
|
|
|
while (n)
|
|
{
|
|
/* We are out of path */
|
|
if (!ip6_prefix_equal(prefix, n->addr, MIN(pxlen, n->plen)))
|
|
goto done;
|
|
|
|
/* Check accept mask */
|
|
for (; len < n->plen; len++)
|
|
{
|
|
if (len > pxlen)
|
|
goto done;
|
|
|
|
if (ip6_getbit(n->accept, len - 1))
|
|
{
|
|
/* len is always < 128 due to len < n->plen */
|
|
ip6_setbit(&found, len);
|
|
last = len;
|
|
}
|
|
}
|
|
|
|
/* Special case for max length, there is only one valid local position */
|
|
if (len == IP6_MAX_PREFIX_LENGTH)
|
|
{
|
|
if (n->local & (1u << 1))
|
|
last = len;
|
|
|
|
goto done;
|
|
}
|
|
|
|
/* Check local mask */
|
|
for (int pos = 1; pos < (1 << TRIE_STEP); pos = 2 * pos + ip6_getbit(prefix, len), len++)
|
|
{
|
|
if (len > pxlen)
|
|
goto done;
|
|
|
|
if (n->local & (1u << pos))
|
|
{
|
|
/* len is always < 128 due to special case above */
|
|
ip6_setbit(&found, len);
|
|
last = len;
|
|
}
|
|
}
|
|
|
|
/* Choose child */
|
|
n = n->c[ip6_getbits(prefix, n->plen, TRIE_STEP)];
|
|
}
|
|
|
|
done:
|
|
if (last < 0)
|
|
return 0;
|
|
|
|
*dst = NET_ADDR_IP6(ip6_and(prefix, ip6_mkmask(last)), last);
|
|
|
|
if (found0)
|
|
*found0 = found;
|
|
|
|
return 1;
|
|
}
|
|
|
|
#define SAME_PREFIX(A,B,X,L) ((X) ? ip4_prefix_equal((A)->v4.addr, net4_prefix(B), (L)) : ip6_prefix_equal((A)->v6.addr, net6_prefix(B), (L)))
|
|
#define GET_NET_BITS(N,X,A,B) ((X) ? ip4_getbits(net4_prefix(N), (A), (B)) : ip6_getbits(net6_prefix(N), (A), (B)))
|
|
#define GET_NODE_BITS(N,X,A,B) ((X) ? ip4_getbits((N)->v4.addr, (A), (B)) : ip6_getbits((N)->v6.addr, (A), (B)))
|
|
#define NEXT_PREFIX(A,B,X) ((X) ? ip4_compare((A)->v4.addr, net4_prefix(B)) < 0 : ip6_compare((A)->v6.addr, net6_prefix(B)) < 0)
|
|
#define CHECK_LOCAL_MASK(A,B,L,X) \
|
|
((X) ? (A)->v4.local >= trie_local_mask4(net4_prefix(B), (B)->pxlen, (L)) : (A)->v6.local >= trie_local_mask6(net6_prefix(B), (B)->pxlen, (L)))
|
|
#define SELECT_CHILD(pos,step) ((1u << (step)) + (pos))
|
|
#define MATCH_LOCAL_MASK(A,B,L,X) \
|
|
(!!((X) ? (A)->v4.local & trie_local_mask4(net4_prefix(B), (B)->pxlen, (L)) : (A)->v6.local & trie_local_mask6(net6_prefix(B), (B)->pxlen, (L))))
|
|
/*
|
|
* We want to select a specific subtrie base on it's index in child array c.
|
|
*
|
|
* 1
|
|
* 2 3
|
|
* 4 5 6 7
|
|
* 8 9 A B C D E F
|
|
* -----------------------------------------------------
|
|
* 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
|
|
*
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
* trie_walk_init
|
|
* @s: walk state
|
|
* @t: trie
|
|
* @net: optional subnet for walk
|
|
* @include_successors: optional flag for continue walking beyond subnet @net
|
|
*
|
|
* Initialize walk state for subsequent walk through nodes of the trie @t by
|
|
* trie_walk_next(). The argument @net allows to restrict walk to given subnet,
|
|
* otherwise full walk over all nodes is used. This is done by finding node at
|
|
* or below @net and starting position in it. The argument @include_successors,
|
|
* which requeries specifing the @net argument, removes the restriction for all
|
|
* nets lexicographically succeeding the @net. This is done by storing the walken
|
|
* nodes on the state's stack.
|
|
*
|
|
* For set @include_successors the return value is 1 if the @net is present in
|
|
* the trie @t, in all other cases 0.
|
|
*/
|
|
int
|
|
trie_walk_init(struct f_trie_walk_state *s, const struct f_trie *t, const net_addr *net, u8 include_successors)
|
|
{
|
|
*s = (struct f_trie_walk_state) {
|
|
.ipv4 = t->ipv4,
|
|
.accept_length = 0,
|
|
.start_pos = 1,
|
|
.local_pos = 1,
|
|
.stack_pos = 0,
|
|
.stack[0] = &t->root
|
|
};
|
|
|
|
if (!net)
|
|
return 0;
|
|
|
|
/* We want to find node of level at least plen */
|
|
int plen = ROUND_DOWN_POW2(net->pxlen, TRIE_STEP);
|
|
const struct f_trie_node *n = &t->root;
|
|
const int v4 = t->ipv4;
|
|
|
|
while (n)
|
|
{
|
|
int nlen = v4 ? n->v4.plen : n->v6.plen;
|
|
|
|
/* We are out of path */
|
|
if (!SAME_PREFIX(n, net, v4, MIN(net->pxlen, nlen)))
|
|
break;
|
|
|
|
/* We found final node */
|
|
if (nlen >= plen)
|
|
{
|
|
if (!include_successors)
|
|
s->stack[0] = n;
|
|
else
|
|
s->stack[s->stack_pos] = n;
|
|
|
|
if (nlen == plen)
|
|
{
|
|
/* Find proper local_pos, while accept_length is not used */
|
|
int step = net->pxlen - plen;
|
|
s->local_pos = (1u << step) + GET_NET_BITS(net, v4, plen, step);
|
|
s->accept_length = plen;
|
|
|
|
if (!include_successors)
|
|
{
|
|
s->start_pos = s->local_pos;
|
|
return MATCH_LOCAL_MASK(n, net, nlen, v4);
|
|
}
|
|
|
|
if (GET_LOCAL(n, v4) != 0 && !CHECK_LOCAL_MASK(n, net, nlen, v4))
|
|
{
|
|
s->local_pos = (1u << TRIE_STEP) + GET_NET_BITS(net, v4, nlen, TRIE_STEP);
|
|
return 0;
|
|
}
|
|
|
|
int pos = 1;
|
|
int bits = GET_NET_BITS(net, v4, nlen, TRIE_STEP);
|
|
for (int i = 0; i < net->pxlen - plen; i++)
|
|
{
|
|
if (bits & (1u << (TRIE_STEP - i - 1)))
|
|
pos = 2 * pos + 1;
|
|
else
|
|
pos = 2 * pos;
|
|
}
|
|
|
|
s->local_pos = pos;
|
|
return MATCH_LOCAL_MASK(n, net, nlen, v4);
|
|
}
|
|
else
|
|
{
|
|
/* Start from pos 1 in current node, but first try accept mask */
|
|
s->accept_length = net->pxlen;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* We store node in stack before moving on */
|
|
if (include_successors)
|
|
s->stack[s->stack_pos++] = n;
|
|
|
|
/* Choose child */
|
|
n = GET_CHILD(n, v4, GET_NET_BITS(net, v4, nlen, TRIE_STEP));
|
|
}
|
|
|
|
/* We do not override the trie root in case of inclusive search */
|
|
if (!include_successors)
|
|
{
|
|
s->stack[0] = NULL;
|
|
return 0;
|
|
}
|
|
|
|
/* We are out of path, find nearest successor */
|
|
if (s->stack_pos == 0)
|
|
return 0;
|
|
|
|
/*
|
|
* If we end up on node that has compressed path, we need to step up node
|
|
* for better decision making
|
|
*/
|
|
s->stack_pos--;
|
|
n = s->stack[s->stack_pos];
|
|
ASSERT(n != NULL);
|
|
int nlen = v4 ? n->v4.plen : n->v6.plen;
|
|
|
|
struct net_addr_ip4 *net4 = NULL;
|
|
struct net_addr_ip6 *net6 = NULL;
|
|
|
|
if (v4) net4 = (net_addr_ip4 *) net;
|
|
else net6 = (net_addr_ip6 *) net;
|
|
|
|
/* We known for sure that the searched prefix is not in the trie */
|
|
int cmp;
|
|
int bits = GET_NET_BITS(net, v4, nlen, TRIE_STEP);
|
|
const struct f_trie_node *child = GET_CHILD(n, v4, bits);
|
|
while (child)
|
|
{
|
|
cmp = v4 ? ip4_compare(child->v4.addr, net4->prefix)
|
|
: ip6_compare(child->v6.addr, net6->prefix);
|
|
|
|
if (cmp == 0)
|
|
{
|
|
if (v4 ? child->v4.plen <= net4->pxlen : child->v6.plen <= net6->pxlen)
|
|
bits = 0;
|
|
else
|
|
bits = 15;
|
|
}
|
|
else if (cmp < 0)
|
|
{
|
|
for (int i = bits; i < (1 << TRIE_STEP); i++)
|
|
{
|
|
const struct f_trie_node *tmp = GET_CHILD(n, v4, i);
|
|
if (!tmp) continue;
|
|
if (v4 ? ip4_compare(tmp->v4.addr, net4->prefix) > 0
|
|
: ip6_compare(tmp->v6.addr, net6->prefix) > 0)
|
|
break;
|
|
|
|
child = tmp;
|
|
}
|
|
bits = 15;
|
|
}
|
|
else /* cmp > 0 */
|
|
bits = 0;
|
|
|
|
s->stack_pos++;
|
|
s->stack[s->stack_pos] = n = child;
|
|
child = GET_CHILD(child, v4, bits);
|
|
}
|
|
|
|
nlen = (v4) ? n->v4.plen : n->v6.plen;
|
|
cmp = v4 ? ip4_compare(n->v4.addr, net4->prefix)
|
|
: ip6_compare(n->v6.addr, net6->prefix);
|
|
|
|
s->accept_length = nlen;
|
|
if (cmp == 0)
|
|
{
|
|
bits = GET_NET_BITS(net, v4, nlen, TRIE_STEP);
|
|
if (plen - nlen >= TRIE_STEP)
|
|
{
|
|
s->local_pos = SELECT_CHILD(bits, TRIE_STEP);
|
|
return 0;
|
|
}
|
|
|
|
int pos = 1;
|
|
for (int i = 0; i < net->pxlen - plen; i++)
|
|
{
|
|
if (bits & (1u << (TRIE_STEP - i - 1)))
|
|
pos = 2 * pos + 1;
|
|
else
|
|
pos = 2 * pos;
|
|
}
|
|
s->local_pos = pos;
|
|
}
|
|
else if (cmp < 0)
|
|
{
|
|
s->local_pos = SELECT_CHILD(bits, TRIE_STEP);
|
|
}
|
|
else /* cmp > 0 */
|
|
{
|
|
/* Everything already set */
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define GET_ACCEPT_BIT(N,X,B) ((X) ? ip4_getbit((N)->v4.accept, (B)) : ip6_getbit((N)->v6.accept, (B)))
|
|
#define GET_LOCAL_BIT(N,X,B) (((X) ? (N)->v4.local : (N)->v6.local) & (1u << (B)))
|
|
|
|
/**
|
|
* trie_walk_next
|
|
* @s: walk state
|
|
* @net: return value
|
|
*
|
|
* Find the next prefix in the trie walk and return it in the buffer @net.
|
|
* Prefixes are walked in the usual lexicographic order and may be restricted
|
|
* to a subset of the trie during walk setup by trie_walk_init(). Note that the
|
|
* trie walk does not iterate reliably over 'implicit' prefixes defined by &low
|
|
* and &high fields in prefix patterns, it is supposed to be used on tries
|
|
* constructed from 'explicit' prefixes (&low == &plen == &high in call to
|
|
* trie_add_prefix()).
|
|
*
|
|
* Result: 1 if the next prefix was found, 0 for the end of walk.
|
|
*/
|
|
int
|
|
trie_walk_next(struct f_trie_walk_state *s, net_addr *net)
|
|
{
|
|
const struct f_trie_node *n = s->stack[s->stack_pos];
|
|
int len = s->accept_length;
|
|
int pos = s->local_pos;
|
|
int v4 = s->ipv4;
|
|
|
|
/*
|
|
* The walk has three basic state variables -- n, len and pos. In each node n,
|
|
* we first walk superprefixes (by len in &accept bitmask), and then we walk
|
|
* internal positions (by pos in &local bitmask). These positions are:
|
|
*
|
|
* 1
|
|
* 2 3
|
|
* 4 5 6 7
|
|
* 8 9 A B C D E F
|
|
*
|
|
* We walk them depth-first, including virtual positions 10-1F that are
|
|
* equivalent of position 1 in child nodes 0-F.
|
|
*/
|
|
|
|
if (!n)
|
|
{
|
|
memset(net, 0, v4 ? sizeof(net_addr_ip4) : sizeof(net_addr_ip6));
|
|
return 0;
|
|
}
|
|
|
|
next_node:;
|
|
/* Current node prefix length */
|
|
int nlen = v4 ? n->v4.plen : n->v6.plen;
|
|
|
|
/* First, check for accept prefix */
|
|
for (; len < nlen; len++)
|
|
if (GET_ACCEPT_BIT(n, v4, len - 1))
|
|
{
|
|
if (v4)
|
|
net_fill_ip4(net, ip4_and(n->v4.addr, ip4_mkmask(len)), len);
|
|
else
|
|
net_fill_ip6(net, ip6_and(n->v6.addr, ip6_mkmask(len)), len);
|
|
|
|
s->local_pos = pos;
|
|
s->accept_length = len + 1;
|
|
return 1;
|
|
}
|
|
|
|
next_pos:
|
|
/* Bottom of this node */
|
|
if (pos >= (1 << TRIE_STEP))
|
|
{
|
|
const struct f_trie_node *child = GET_CHILD(n, v4, pos - (1 << TRIE_STEP));
|
|
int dir = 0;
|
|
|
|
/* No child node */
|
|
if (!child)
|
|
{
|
|
/* Step up until return from left child (pos is even) */
|
|
do
|
|
{
|
|
/* Step up from start node */
|
|
if ((s->stack_pos == 0) && (pos == s->start_pos))
|
|
{
|
|
s->stack[0] = NULL;
|
|
memset(net, 0, v4 ? sizeof(net_addr_ip4) : sizeof(net_addr_ip6));
|
|
return 0;
|
|
}
|
|
|
|
/* Top of this node */
|
|
if (pos == 1)
|
|
{
|
|
ASSERT(s->stack_pos);
|
|
const struct f_trie_node *old = n;
|
|
|
|
/* Move to parent node */
|
|
s->stack_pos--;
|
|
n = s->stack[s->stack_pos];
|
|
nlen = v4 ? n->v4.plen : n->v6.plen;
|
|
|
|
pos = v4 ?
|
|
ip4_getbits(old->v4.addr, nlen, TRIE_STEP) :
|
|
ip6_getbits(old->v6.addr, nlen, TRIE_STEP);
|
|
pos += (1 << TRIE_STEP);
|
|
len = nlen;
|
|
|
|
ASSERT(GET_CHILD(n, v4, pos - (1 << TRIE_STEP)) == old);
|
|
}
|
|
|
|
/* Step up */
|
|
dir = pos % 2;
|
|
pos = pos / 2;
|
|
}
|
|
while (dir);
|
|
|
|
/* Continue with step down to the right child */
|
|
pos = 2 * pos + 1;
|
|
goto next_pos;
|
|
}
|
|
|
|
/* Move to child node */
|
|
pos = 1;
|
|
len = nlen + TRIE_STEP;
|
|
|
|
s->stack_pos++;
|
|
n = s->stack[s->stack_pos] = child;
|
|
goto next_node;
|
|
}
|
|
|
|
/* Check for local prefix */
|
|
if (GET_LOCAL_BIT(n, v4, pos))
|
|
{
|
|
/* Convert pos to address of local network */
|
|
int x = (pos >= 2) + (pos >= 4) + (pos >= 8);
|
|
int y = pos & ((1u << x) - 1);
|
|
|
|
if (v4)
|
|
net_fill_ip4(net, !x ? n->v4.addr : ip4_setbits(n->v4.addr, nlen + x - 1, y), nlen + x);
|
|
else
|
|
net_fill_ip6(net, !x ? n->v6.addr : ip6_setbits(n->v6.addr, nlen + x - 1, y), nlen + x);
|
|
|
|
s->local_pos = 2 * pos;
|
|
s->accept_length = len;
|
|
return 1;
|
|
}
|
|
|
|
/* Step down */
|
|
pos = 2 * pos;
|
|
goto next_pos;
|
|
}
|
|
|
|
|
|
static int
|
|
trie_node_same4(const struct f_trie_node4 *t1, const struct f_trie_node4 *t2)
|
|
{
|
|
if ((t1 == NULL) && (t2 == NULL))
|
|
return 1;
|
|
|
|
if ((t1 == NULL) || (t2 == NULL))
|
|
return 0;
|
|
|
|
if ((t1->plen != t2->plen) ||
|
|
(! ip4_equal(t1->addr, t2->addr)) ||
|
|
(! ip4_equal(t1->accept, t2->accept)))
|
|
return 0;
|
|
|
|
for (uint i = 0; i < (1 << TRIE_STEP); i++)
|
|
if (! trie_node_same4(t1->c[i], t2->c[i]))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
trie_node_same6(const struct f_trie_node6 *t1, const struct f_trie_node6 *t2)
|
|
{
|
|
if ((t1 == NULL) && (t2 == NULL))
|
|
return 1;
|
|
|
|
if ((t1 == NULL) || (t2 == NULL))
|
|
return 0;
|
|
|
|
if ((t1->plen != t2->plen) ||
|
|
(! ip6_equal(t1->addr, t2->addr)) ||
|
|
(! ip6_equal(t1->accept, t2->accept)))
|
|
return 0;
|
|
|
|
for (uint i = 0; i < (1 << TRIE_STEP); i++)
|
|
if (! trie_node_same6(t1->c[i], t2->c[i]))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* trie_same
|
|
* @t1: first trie to be compared
|
|
* @t2: second one
|
|
*
|
|
* Compares two tries and returns 1 if they are same
|
|
*/
|
|
int
|
|
trie_same(const struct f_trie *t1, const struct f_trie *t2)
|
|
{
|
|
if ((t1->zero != t2->zero) || (t1->ipv4 != t2->ipv4))
|
|
return 0;
|
|
|
|
if (t1->ipv4)
|
|
return trie_node_same4(&t1->root.v4, &t2->root.v4);
|
|
else
|
|
return trie_node_same6(&t1->root.v6, &t2->root.v6);
|
|
}
|
|
|
|
|
|
static const u8 log2[16] = {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3};
|
|
|
|
static void
|
|
trie_node_format(const struct f_trie_node *n, buffer *buf, int v4)
|
|
{
|
|
if (n == NULL)
|
|
return;
|
|
|
|
if (v4)
|
|
{
|
|
if (ip4_nonzero(n->v4.accept))
|
|
buffer_print(buf, "%I4/%d{%I4}, ", n->v4.addr, n->v4.plen, n->v4.accept);
|
|
}
|
|
else
|
|
{
|
|
if (ip6_nonzero(n->v6.accept))
|
|
buffer_print(buf, "%I6/%d{%I6}, ", n->v6.addr, n->v6.plen, n->v6.accept);
|
|
}
|
|
|
|
int nlen = v4 ? n->v4.plen : n->v6.plen;
|
|
uint local = v4 ? n->v4.local : n->v6.local;
|
|
|
|
for (int i = (nlen ? 0 : 1); i < TRIE_STEP; i++)
|
|
if (GET_ACCEPT_BIT(n, v4, nlen + i - 1))
|
|
local &= ~trie_level_mask(1, i);
|
|
|
|
for (int pos = 2; local && (pos < (1 << TRIE_STEP)); pos++)
|
|
if (local & (1u << pos))
|
|
{
|
|
int lvl = log2[pos];
|
|
int plen = nlen + lvl;
|
|
|
|
int i;
|
|
for (i = 0; lvl + i < TRIE_STEP; i++)
|
|
{
|
|
uint lmask = trie_level_mask(pos, i);
|
|
|
|
if ((local & lmask) != lmask)
|
|
break;
|
|
|
|
local &= ~lmask;
|
|
}
|
|
|
|
uint addr_bits = pos & ((1u << lvl) - 1);
|
|
uint accept_bits = (1u << i) - 1;
|
|
int h = plen + i - 1;
|
|
|
|
if (v4)
|
|
{
|
|
ip4_addr addr = ip4_setbits(n->v4.addr, plen - 1, addr_bits);
|
|
ip4_addr mask = ip4_setbits(IP4_NONE, h - 1, accept_bits);
|
|
buffer_print(buf, "%I4/%d{%I4}, ", addr, plen, mask);
|
|
}
|
|
else
|
|
{
|
|
ip6_addr addr = ip6_setbits(n->v6.addr, plen - 1, addr_bits);
|
|
ip6_addr mask = ip6_setbits(IP6_NONE, h - 1, accept_bits);
|
|
buffer_print(buf, "%I6/%d{%I6}, ", addr, plen, mask);
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < (1 << TRIE_STEP); i++)
|
|
trie_node_format(GET_CHILD(n, v4, i), buf, v4);
|
|
}
|
|
|
|
/**
|
|
* trie_format
|
|
* @t: trie to be formatted
|
|
* @buf: destination buffer
|
|
*
|
|
* Prints the trie to the supplied buffer.
|
|
*/
|
|
void
|
|
trie_format(const struct f_trie *t, buffer *buf)
|
|
{
|
|
buffer_puts(buf, "[");
|
|
|
|
if (t->zero)
|
|
buffer_print(buf, "%I/%d, ", t->ipv4 ? IPA_NONE4 : IPA_NONE6, 0);
|
|
|
|
trie_node_format(&t->root, buf, t->ipv4);
|
|
|
|
if (buf->pos == buf->end)
|
|
return;
|
|
|
|
/* Undo last separator */
|
|
if (buf->pos[-1] != '[')
|
|
buf->pos -= 2;
|
|
|
|
buffer_puts(buf, "]");
|
|
}
|