0
0
mirror of https://gitlab.nic.cz/labs/bird.git synced 2025-01-03 07:31:54 +00:00
bird/proto/perf/perf.c
Maria Matejka ddf698ec99 Renamed nest/rt.h back to nest/route.h
Some [redacted] (yes, myself) had a really bad idea
to rename nest/route.h to nest/rt.h while refactoring
some data structures out of it.

This led to unnecessarily complex problems with
merging updates from v2. Reverting this change
to make my life a bit easier.

At least it needed only one find-sed command:

    find -name '*.[chlY]' -type f -exec sed -i 's#nest/rt.h#nest/route.h#' '{}' +
2023-10-29 16:29:26 +01:00

329 lines
7.2 KiB
C

/*
* BIRD -- Table-to-Table Routing Protocol a.k.a Pipe
*
* (c) 1999--2000 Martin Mares <mj@ucw.cz>
*
* Can be freely distributed and used under the terms of the GNU GPL.
*/
/**
* DOC: Perf
*
* Run this protocol to measure route import and export times.
* Generates a load of dummy routes and measures time to import.
*/
#undef LOCAL_DEBUG
#include "nest/bird.h"
#include "nest/iface.h"
#include "nest/protocol.h"
#include "nest/route.h"
#include "nest/cli.h"
#include "conf/conf.h"
#include "filter/filter.h"
#include "lib/string.h"
#include "perf.h"
#include <stdlib.h>
#include <time.h>
#define PLOG(msg, ...) log(L_INFO "Perf %s %s " msg, BIRD_VERSION, p->p.name, ##__VA_ARGS__)
static inline void
random_data(void *p, uint len)
{
uint ints = (len + sizeof(int) - 1) / sizeof(int);
int *d = alloca(sizeof(uint) * ints);
for (uint i=0; i<ints; i++)
d[i] = random();
memcpy(p, d, len);
}
static ip_addr
random_gw(net_addr *prefix)
{
ASSERT(net_is_ip(prefix));
ip_addr px = net_prefix(prefix);
ip_addr mask = net_pxmask(prefix);
ip_addr out;
random_data(&out, sizeof(ip_addr));
if (ipa_is_ip4(px))
out = ipa_and(out, ipa_from_ip4(ip4_mkmask(32)));
return ipa_or(ipa_and(px, mask), ipa_and(out, ipa_not(mask)));
}
static net_addr_ip4
random_net_ip4(void)
{
u32 x; random_data(&x, sizeof(u32));
x &= ((1 << 20) - 1);
uint pxlen = u32_log2(x) + 5;
ip4_addr px; random_data(&px, sizeof(ip4_addr));
net_addr_ip4 out = {
.type = NET_IP4,
.pxlen = pxlen,
.length = sizeof(net_addr_ip4),
.prefix = ip4_and(ip4_mkmask(pxlen), px),
};
if (!net_validate((net_addr *) &out))
return random_net_ip4();
int c = net_classify((net_addr *) &out);
if ((c < 0) || !(c & IADDR_HOST) || ((c & IADDR_SCOPE_MASK) <= SCOPE_LINK))
return random_net_ip4();
return out;
}
struct perf_random_routes {
ea_list *a;
net_addr net;
};
//static const uint perf_random_routes_size = sizeof(struct perf_random_routes) + (RTA_MAX_SIZE - sizeof(struct rta));
static inline s64 timediff(struct timespec *begin, struct timespec *end)
{ return (end->tv_sec - begin->tv_sec) * (s64) 1000000000 + end->tv_nsec - begin->tv_nsec; }
static void
perf_ifa_notify(struct proto *P, uint flags, struct ifa *ad)
{
struct perf_proto *p = (struct perf_proto *) P;
if (ad->flags & IA_SECONDARY)
return;
if (p->ifa && p->ifa == ad && (flags & IF_CHANGE_DOWN)) {
p->ifa = NULL;
if (ev_active(p->loop))
ev_postpone(p->loop);
return;
}
if (!p->ifa && (flags & IF_CHANGE_UP)) {
p->ifa = ad;
ev_schedule(p->loop);
PLOG("starting");
return;
}
}
static void
perf_loop(void *data)
{
struct proto *P = data;
struct perf_proto *p = data;
const uint N = 1U << p->exp;
if (!p->run) {
ASSERT(p->data == NULL);
p->data = xmalloc(sizeof(struct perf_random_routes) * N);
p->stop = 1;
}
ip_addr gw = random_gw(&p->ifa->prefix);
struct timespec ts_begin, ts_generated, ts_update, ts_withdraw;
clock_gettime(CLOCK_MONOTONIC, &ts_begin);
for (uint i=0; i<N; i++) {
*((net_addr_ip4 *) &(p->data[i].net)) = random_net_ip4();
if (!p->attrs_per_rte || !(i % p->attrs_per_rte)) {
ea_list *ea = NULL;
ea_set_attr_u32(&ea, &ea_gen_preference, 0, p->p.main_channel->preference);
ea_set_attr_u32(&ea, &ea_gen_source, 0, RTS_PERF);
struct nexthop_adata nhad = {
.nh.iface = p->ifa->iface,
.nh.gw = gw,
.nh.weight = 1,
};
ea_set_attr_data(&ea, &ea_gen_nexthop, 0,
&nhad.ad.data, sizeof nhad - sizeof nhad.ad);
p->data[i].a = rta_lookup(ea, 0);
}
else
p->data[i].a = rta_clone(p->data[i-1].a);
}
clock_gettime(CLOCK_MONOTONIC, &ts_generated);
for (uint i=0; i<N; i++)
{
rte e0 = { .attrs = p->data[i].a, .src = P->main_source, };
rte_update(P->main_channel, &(p->data[i].net), &e0, P->main_source);
}
clock_gettime(CLOCK_MONOTONIC, &ts_update);
if (!p->keep)
for (uint i=0; i<N; i++)
rte_update(P->main_channel, &(p->data[i].net), NULL, P->main_source);
clock_gettime(CLOCK_MONOTONIC, &ts_withdraw);
s64 gentime = timediff(&ts_begin, &ts_generated);
s64 updatetime = timediff(&ts_generated, &ts_update);
s64 withdrawtime = timediff(&ts_update, &ts_withdraw);
if (updatetime NS >= p->threshold_min)
PLOG("exp=%u times: gen=%ld update=%ld withdraw=%ld",
p->exp, gentime, updatetime, withdrawtime);
if (updatetime NS < p->threshold_max)
p->stop = 0;
if ((updatetime NS < p->threshold_min) || (++p->run == p->repeat)) {
xfree(p->data);
p->data = NULL;
if (p->stop || (p->exp == p->to)) {
PLOG("done with exp=%u", p->exp);
return;
}
p->run = 0;
p->exp++;
}
RT_LOCKED(P->main_channel->table, tab)
rt_schedule_prune(tab);
ev_schedule(p->loop);
}
static void
perf_rt_notify(struct proto *P, struct channel *c UNUSED, const net_addr *net UNUSED, struct rte *new UNUSED, const struct rte *old UNUSED)
{
struct perf_proto *p = (struct perf_proto *) P;
p->exp++;
return;
}
static void
perf_feed_begin(struct channel *c)
{
struct perf_proto *p = (struct perf_proto *) c->proto;
p->run++;
p->feed_begin = xmalloc(sizeof(struct timespec));
p->exp = 0;
clock_gettime(CLOCK_MONOTONIC, p->feed_begin);
}
static void
perf_feed_end(struct channel *c)
{
struct perf_proto *p = (struct perf_proto *) c->proto;
struct timespec ts_end;
clock_gettime(CLOCK_MONOTONIC, &ts_end);
s64 feedtime = timediff(p->feed_begin, &ts_end);
PLOG("feed n=%lu time=%lu", p->exp, feedtime);
xfree(p->feed_begin);
p->feed_begin = NULL;
if (p->run < p->repeat)
channel_request_feeding_dynamic(c, CFRT_DIRECT);
else
PLOG("feed done");
}
static struct proto *
perf_init(struct proto_config *CF)
{
struct proto *P = proto_new(CF);
P->main_channel = proto_add_channel(P, proto_cf_main_channel(CF));
struct perf_proto *p = (struct perf_proto *) P;
p->loop = ev_new_init(P->pool, perf_loop, p);
struct perf_config *cf = (struct perf_config *) CF;
p->threshold_min = cf->threshold_min;
p->threshold_max = cf->threshold_max;
p->from = cf->from;
p->to = cf->to;
p->repeat = cf->repeat;
p->keep = cf->keep;
p->mode = cf->mode;
p->attrs_per_rte = cf->attrs_per_rte;
switch (p->mode) {
case PERF_MODE_IMPORT:
P->iface_sub.ifa_notify = perf_ifa_notify;
break;
case PERF_MODE_EXPORT:
P->rt_notify = perf_rt_notify;
P->feed_begin = perf_feed_begin;
P->feed_end = perf_feed_end;
break;
}
return P;
}
static int
perf_start(struct proto *P)
{
struct perf_proto *p = (struct perf_proto *) P;
p->ifa = NULL;
p->run = 0;
p->exp = p->from;
ASSERT(p->data == NULL);
return PS_UP;
}
static int
perf_reconfigure(struct proto *P UNUSED, struct proto_config *CF UNUSED)
{
return 0;
}
static void
perf_copy_config(struct proto_config *dest UNUSED, struct proto_config *src UNUSED)
{
}
struct protocol proto_perf = {
.name = "Perf",
.template = "perf%d",
.channel_mask = NB_IP,
.proto_size = sizeof(struct perf_proto),
.config_size = sizeof(struct perf_config),
.init = perf_init,
.start = perf_start,
.reconfigure = perf_reconfigure,
.copy_config = perf_copy_config,
};
void
perf_build(void)
{
proto_build(&proto_perf);
}