/* * BIRD -- Neighbor Cache * * (c) 1998--2000 Martin Mares * (c) 2008--2018 Ondrej Zajicek * (c) 2008--2018 CZ.NIC z.s.p.o. * * Can be freely distributed and used under the terms of the GNU GPL. */ /** * DOC: Neighbor cache * * Most routing protocols need to associate their internal state data with * neighboring routers, check whether an address given as the next hop attribute * of a route is really an address of a directly connected host and which * interface is it connected through. Also, they often need to be notified when * a neighbor ceases to exist or when their long awaited neighbor becomes * connected. The neighbor cache is there to solve all these problems. * * The neighbor cache maintains a collection of neighbor entries. Each entry * represents one IP address corresponding to either our directly connected * neighbor or our own end of the link (when the scope of the address is set to * %SCOPE_HOST) together with per-neighbor data belonging to a single protocol. * A neighbor entry may be bound to a specific interface, which is required for * link-local IP addresses and optional for global IP addresses. * * Neighbor cache entries are stored in a hash table, which is indexed by triple * (protocol, IP, requested-iface), so if both regular and iface-bound neighbors * are requested, they are represented by two neighbor cache entries. Active * entries are also linked in per-interface list (allowing quick processing of * interface change events). Inactive entries exist only when the protocol has * explicitly requested it via the %NEF_STICKY flag because it wishes to be * notified when the node will again become a neighbor. Such entries are instead * linked in a special list, which is walked whenever an interface changes its * state to up. Neighbor entry VRF association is implied by respective * protocol. * * Besides the already mentioned %NEF_STICKY flag, there is also %NEF_ONLINK, * which specifies that neighbor should be considered reachable on given iface * regardless of associated address ranges, and %NEF_IFACE, which represents * pseudo-neighbor entry for whole interface (and uses %IPA_NONE IP address). * * When a neighbor event occurs (a neighbor gets disconnected or a sticky * inactive neighbor becomes connected), the protocol hook neigh_notify() is * called to advertise the change. */ #undef LOCAL_DEBUG #include "nest/bird.h" #include "nest/iface.h" #include "nest/protocol.h" #include "lib/hash.h" #include "lib/resource.h" #define NEIGH_HASH_SIZE 256 #define NEIGH_HASH_OFFSET 24 static slab *neigh_slab; static list neigh_hash_table[NEIGH_HASH_SIZE], sticky_neigh_list; void if_link(struct iface *); void if_unlink(struct iface *); void ifa_link(struct ifa *); void ifa_unlink(struct ifa *); extern list global_iface_list; extern DOMAIN(attrs) iface_domain; #define IFACE_LOCK LOCK_DOMAIN(attrs, iface_domain) #define IFACE_UNLOCK UNLOCK_DOMAIN(attrs, iface_domain) #define IFACE_ASSERT_LOCKED ASSERT_DIE(DOMAIN_IS_LOCKED(attrs, iface_domain)) static inline uint neigh_hash(struct proto *p, ip_addr a, struct iface *i) { return (p->hash_key ^ ipa_hash(a) ^ ptr_hash(i)) >> NEIGH_HASH_OFFSET; } static inline int ifa_better(struct ifa *a, struct ifa *b) { return a && (!b || (a->prefix.pxlen > b->prefix.pxlen)); } static inline int scope_better(int sa, int sb) { /* Order per preference: -1 unknown, 0 for remote, 1 for local */ sa = (sa < 0) ? sa : !sa; sb = (sb < 0) ? sb : !sb; return sa > sb; } static inline int scope_remote(int sa, int sb) { return (sa > SCOPE_HOST) && (sb > SCOPE_HOST); } static int if_connected(ip_addr a, struct iface *i, struct ifa **ap, uint flags) { struct ifa *b, *addr = NULL; /* Handle iface pseudo-neighbors */ if (flags & NEF_IFACE) return *ap = NULL, (i->flags & IF_UP) ? SCOPE_HOST : -1; /* Host addresses match even if iface is down */ WALK_LIST(b, i->addrs) if (ipa_equal(a, b->ip)) return *ap = b, SCOPE_HOST; /* Rest do not match if iface is down */ if (!(i->flags & IF_UP)) return *ap = NULL, -1; /* Regular neighbors */ WALK_LIST(b, i->addrs) { if (b->flags & IA_PEER) { if (ipa_equal(a, b->opposite) && ifa_better(b, addr)) addr = b; } else { if (ipa_in_netX(a, &b->prefix) && ifa_better(b, addr)) { /* Do not allow IPv4 network and broadcast addresses */ if (ipa_is_ip4(a) && (net_pxlen(&b->prefix) < (IP4_MAX_PREFIX_LENGTH - 1)) && (ipa_equal(a, net_prefix(&b->prefix)) || /* Network address */ ipa_equal(a, b->brd))) /* Broadcast */ return *ap = NULL, -1; addr = b; } } } /* Return found address */ if (addr) return *ap = addr, addr->scope; /* Handle ONLINK flag */ if (flags & NEF_ONLINK) return *ap = NULL, ipa_classify(a) & IADDR_SCOPE_MASK; return *ap = NULL, -1; } static inline int if_connected_any(ip_addr a, struct iface *vrf, struct iface **iface, struct ifa **addr, uint flags) { struct iface *i; struct ifa *b; int s, scope = -1; *iface = NULL; *addr = NULL; /* Prefer SCOPE_HOST or longer prefix */ WALK_LIST(i, global_iface_list) if ((!vrf || if_in_vrf(i,vrf)) && ((s = if_connected(a, i, &b, flags)) >= 0)) if (scope_better(s, scope) || (scope_remote(s, scope) && ifa_better(b, *addr))) { *iface = i; *addr = b; scope = s; } return scope; } /* Is ifa @a subnet of any ifa on iface @ib ? */ static inline int ifa_intersect(struct ifa *a, struct iface *ib) { struct ifa *b; WALK_LIST(b, ib->addrs) if (net_in_netX(&a->prefix, &b->prefix)) return 1; return 0; } /* Is any ifa of iface @ia subnet of any ifa on iface @ib ? */ static inline int if_intersect(struct iface *ia, struct iface *ib) { struct ifa *a, *b; WALK_LIST(a, ia->addrs) WALK_LIST(b, ib->addrs) if (net_in_netX(&a->prefix, &b->prefix)) return 1; return 0; } /** * neigh_find - find or create a neighbor entry * @p: protocol which asks for the entry * @a: IP address of the node to be searched for * @iface: optionally bound neighbor to this iface (may be NULL) * @flags: %NEF_STICKY for sticky entry, %NEF_ONLINK for onlink entry * * Search the neighbor cache for a node with given IP address. Iface can be * specified for link-local addresses or for cases, where neighbor is expected * on given interface. If it is found, a pointer to the neighbor entry is * returned. If no such entry exists and the node is directly connected on one * of our active interfaces, a new entry is created and returned to the caller * with protocol-dependent fields initialized to zero. If the node is not * connected directly or *@a is not a valid unicast IP address, neigh_find() * returns %NULL. */ neighbor * neigh_find(struct proto *p, ip_addr a, struct iface *iface, uint flags) { IFACE_LOCK; neighbor *n; int class, scope = -1; uint h = neigh_hash(p, a, iface); struct iface *ifreq = iface; struct ifa *addr = NULL; WALK_LIST(n, neigh_hash_table[h]) /* Search the cache */ if ((n->proto == p) && ipa_equal(n->addr, a) && (n->ifreq == iface)) { IFACE_UNLOCK; return n; } if (flags & NEF_IFACE) { if (ipa_nonzero(a) || !iface) goto bad; } else { class = ipa_classify(a); if (class < 0) /* Invalid address */ goto bad; if (((class & IADDR_SCOPE_MASK) == SCOPE_HOST) || (((class & IADDR_SCOPE_MASK) == SCOPE_LINK) && !iface) || !(class & IADDR_HOST)) goto bad; /* Bad scope or a somecast */ } if ((flags & NEF_ONLINK) && !iface) goto bad; if (iface) { scope = if_connected(a, iface, &addr, flags); iface = (scope < 0) ? NULL : iface; } else scope = if_connected_any(a, p->vrf, &iface, &addr, flags); /* scope < 0 means i don't know neighbor */ /* scope >= 0 <=> iface != NULL */ if ((scope < 0) && !(flags & NEF_STICKY)) goto bad; n = sl_allocz(neigh_slab); add_tail(&neigh_hash_table[h], &n->n); add_tail((scope >= 0) ? &iface->neighbors : &sticky_neigh_list, &n->if_n); proto_neigh_add_tail(&p->neighbors, n); n->addr = a; ifa_link(n->ifa = addr); if_link(n->iface = iface); if_link(n->ifreq = ifreq); n->proto = p; n->flags = flags; n->scope = scope; neigh_link_locked(n); neigh_unlink_later(n); IFACE_UNLOCK; return n; bad: IFACE_UNLOCK; return NULL; } /** * neigh_dump - dump specified neighbor entry. * @n: the entry to dump * * This functions dumps the contents of a given neighbor entry to debug output. */ static void neigh_dump(neighbor *n) { debug("%p %I %s %s ", n, n->addr, n->iface ? n->iface->name : "[]", n->ifreq ? n->ifreq->name : "[]"); debug("%s %p %08x scope %s", n->proto->name, n->data, n->aux, ip_scope_text(n->scope)); if (n->flags & NEF_STICKY) debug(" STICKY"); if (n->flags & NEF_ONLINK) debug(" ONLINK"); debug("\n"); } /** * neigh_dump_all - dump all neighbor entries. * * This function dumps the contents of the neighbor cache to debug output. */ void neigh_dump_all(void) { IFACE_LOCK; neighbor *n; int i; debug("Known neighbors:\n"); for(i=0; iproto->iface_sub); } static void neigh_up(neighbor *n, struct iface *i, struct ifa *a, int scope) { DBG("Waking up sticky neighbor %I\n", n->addr); if_link(n->iface = i); ifa_link(n->ifa = a); n->scope = scope; rem_node(&n->if_n); /* HACK: Here the neighbor is always in the sticky list, regardless whether it is sticky or not */ add_tail(&i->neighbors, &n->if_n); neigh_notify(n); } static void neigh_down(neighbor *n) { DBG("Flushing neighbor %I on %s\n", n->addr, n->iface->name); n->scope = -1; rem_node(&n->if_n); add_tail(&sticky_neigh_list, &n->if_n); ifa_unlink(n->ifa); n->ifa = NULL; if_unlink(n->iface); n->iface = NULL; neigh_notify(n); } void neigh_link_locked(neighbor *n) { IFACE_ASSERT_LOCKED; n->uc++; } void neigh_unlink_locked(neighbor *n) { IFACE_ASSERT_LOCKED; if (--n->uc) return; struct proto *p = n->proto; proto_neigh_rem_node(&p->neighbors, n); if ((p->proto_state == PS_DOWN) && EMPTY_TLIST(proto_neigh, &p->neighbors)) proto_send_event(p, p->event); n->proto = NULL; rem_node(&n->n); rem_node(&n->if_n); ifa_unlink(n->ifa); if_unlink(n->iface); if_unlink(n->ifreq); sl_free(n); } void neigh_link(neighbor *n) { IFACE_LOCK; neigh_link_locked(n); IFACE_UNLOCK; } void neigh_unlink(neighbor *n) { IFACE_LOCK; neigh_unlink_locked(n); IFACE_UNLOCK; } void neigh_unlink_deferred(struct deferred_call *dc) { neigh_unlink(SKIP_BACK(struct neigh_unlink_deferred, dc, dc)->n); } /** * neigh_update: update neighbor entry w.r.t. change on specific iface * @n: neighbor to update * @iface: changed iface * * The function recalculates state of the neighbor entry @n assuming that only * the interface @iface may changed its state or addresses. Then, appropriate * actions are executed (the neighbor goes up, down, up-down, or just notified). */ void neigh_update(neighbor *n, struct iface *iface) { IFACE_ASSERT_LOCKED; struct proto *p = n->proto; struct ifa *ifa = NULL; int scope = -1; /* Iface-bound neighbors ignore other ifaces */ if (n->ifreq && (n->ifreq != iface)) return; /* VRF-bound neighbors ignore changes in other VRFs */ if (p->vrf && !if_in_vrf(iface, p->vrf)) return; scope = if_connected(n->addr, iface, &ifa, n->flags); /* Update about already assigned iface, or some other iface */ if (iface == n->iface) { /* When neighbor is going down, try to respawn it on other ifaces */ if ((scope < 0) && (n->scope >= 0) && !n->ifreq && (n->flags & NEF_STICKY)) scope = if_connected_any(n->addr, p->vrf, &iface, &ifa, n->flags); } else { /* Continue only if the new variant is better than the existing one */ if (! (scope_better(scope, n->scope) || (scope_remote(scope, n->scope) && ifa_better(ifa, n->ifa)))) return; } /* No change or minor change - ignore or notify */ if ((scope == n->scope) && (iface == n->iface)) { if (ifa != n->ifa) { ifa_unlink(n->ifa); ifa_link(n->ifa = ifa); neigh_notify(n); } return; } /* Major change - going down and/or going up */ if (n->scope >= 0) neigh_down(n); if ((n->scope < 0) && !(n->flags & NEF_STICKY)) { neigh_unlink_locked(n); return; } if (scope >= 0) neigh_up(n, iface, ifa, scope); } /** * neigh_if_up: notify neighbor cache about interface up event * @i: interface in question * * Tell the neighbor cache that a new interface became up. * * The neighbor cache wakes up all inactive sticky neighbors with * addresses belonging to prefixes of the interface @i. */ void neigh_if_up(struct iface *i) { IFACE_ASSERT_LOCKED; struct iface *ii; neighbor *n; node *x, *y; /* Update neighbors that might be better off with the new iface */ WALK_LIST(ii, global_iface_list) if (!EMPTY_LIST(ii->neighbors) && (ii != i) && if_intersect(i, ii)) WALK_LIST2_DELSAFE(n, x, y, ii->neighbors, if_n) neigh_update(n, i); WALK_LIST2_DELSAFE(n, x, y, sticky_neigh_list, if_n) neigh_update(n, i); } /** * neigh_if_down - notify neighbor cache about interface down event * @i: the interface in question * * Notify the neighbor cache that an interface has ceased to exist. * * It causes all neighbors connected to this interface to be updated or removed. */ void neigh_if_down(struct iface *i) { IFACE_ASSERT_LOCKED; neighbor *n; node *x, *y; WALK_LIST2_DELSAFE(n, x, y, i->neighbors, if_n) neigh_update(n, i); } /** * neigh_if_link - notify neighbor cache about interface link change * @i: the interface in question * * Notify the neighbor cache that an interface changed link state. All owners of * neighbor entries connected to this interface are notified. */ void neigh_if_link(struct iface *i) { IFACE_ASSERT_LOCKED; neighbor *n; node *x, *y; WALK_LIST2_DELSAFE(n, x, y, i->neighbors, if_n) neigh_notify(n); } /** * neigh_ifa_update: notify neighbor cache about interface address add or remove event * @a: interface address in question * * Tell the neighbor cache that an address was added or removed. * * The neighbor cache wakes up all inactive sticky neighbors with * addresses belonging to prefixes of the interface belonging to @ifa * and causes all unreachable neighbors to be flushed. */ void neigh_ifa_up(struct ifa *a) { IFACE_ASSERT_LOCKED; struct iface *i = a->iface, *ii; neighbor *n; node *x, *y; /* Update neighbors that might be better off with the new ifa */ WALK_LIST(ii, global_iface_list) if (!EMPTY_LIST(ii->neighbors) && ifa_intersect(a, ii)) WALK_LIST2_DELSAFE(n, x, y, ii->neighbors, if_n) neigh_update(n, i); /* Wake up all sticky neighbors that are reachable now */ WALK_LIST2_DELSAFE(n, x, y, sticky_neigh_list, if_n) neigh_update(n, i); } void neigh_ifa_down(struct ifa *a) { IFACE_ASSERT_LOCKED; struct iface *i = a->iface; neighbor *n; node *x, *y; /* Update all neighbors whose scope has changed */ WALK_LIST2_DELSAFE(n, x, y, i->neighbors, if_n) if (n->ifa == a) neigh_update(n, i); } /** * neigh_init - initialize the neighbor cache. * @if_pool: resource pool to be used for neighbor entries. * * This function is called during BIRD startup to initialize * the neighbor cache module. */ void neigh_init(pool *if_pool) { neigh_slab = sl_new(if_pool, sizeof(neighbor)); for(int i = 0; i < NEIGH_HASH_SIZE; i++) init_list(&neigh_hash_table[i]); init_list(&sticky_neigh_list); }