/* * BIRD -- Routing Tables * * (c) 1998--2000 Martin Mares * * Can be freely distributed and used under the terms of the GNU GPL. */ /** * DOC: Routing tables * * Routing tables are probably the most important structures BIRD uses. They * hold all the information about known networks, the associated routes and * their attributes. * * There are multiple routing tables (a primary one together with any * number of secondary ones if requested by the configuration). Each table * is basically a FIB containing entries describing the individual * destination networks. For each network (represented by structure &net), * there is a one-way linked list of route entries (&rte), the first entry * on the list being the best one (i.e., the one we currently use * for routing), the order of the other ones is undetermined. * * The &rte contains information specific to the route (preference, protocol * metrics, time of last modification etc.) and a pointer to a &rta structure * (see the route attribute module for a precise explanation) holding the * remaining route attributes which are expected to be shared by multiple * routes in order to conserve memory. */ #undef LOCAL_DEBUG #include "nest/bird.h" #include "nest/route.h" #include "nest/protocol.h" #include "nest/cli.h" #include "nest/iface.h" #include "lib/resource.h" #include "lib/event.h" #include "lib/string.h" #include "conf/conf.h" #include "filter/filter.h" #include "lib/string.h" #include "lib/alloca.h" pool *rt_table_pool; static slab *rte_slab; static linpool *rte_update_pool; static list routing_tables; static void rt_format_via(rte *e, byte *via); static void rt_free_hostcache(rtable *tab); static void rt_notify_hostcache(rtable *tab, net *net); static void rt_update_hostcache(rtable *tab); static void rt_next_hop_update(rtable *tab); static inline int rt_prune_table(rtable *tab); static inline void rt_schedule_gc(rtable *tab); static inline void rt_schedule_prune(rtable *tab); static inline struct ea_list * make_tmp_attrs(struct rte *rt, struct linpool *pool) { struct ea_list *(*mta)(struct rte *rt, struct linpool *pool); mta = rt->attrs->src->proto->make_tmp_attrs; return mta ? mta(rt, rte_update_pool) : NULL; } /* Like fib_route(), but skips empty net entries */ static net * net_route(rtable *tab, ip_addr a, int len) { ip_addr a0; net *n; if (tab->fib.addr_type != RT_IP) return NULL; while (len >= 0) { a0 = ipa_and(a, ipa_mkmask(len)); n = fib_find(&tab->fib, &a0, len); if (n && rte_is_valid(n->routes)) return n; len--; } return NULL; } static void rte_init(struct fib_node *N) { net *n = (net *) N; N->flags = 0; n->routes = NULL; } /** * rte_find - find a route * @net: network node * @src: route source * * The rte_find() function returns a route for destination @net * which is from route source @src. */ rte * rte_find(net *net, struct rte_src *src) { rte *e = net->routes; while (e && e->attrs->src != src) e = e->next; return e; } /** * rte_get_temp - get a temporary &rte * @a: attributes to assign to the new route (a &rta; in case it's * un-cached, rte_update() will create a cached copy automatically) * * Create a temporary &rte and bind it with the attributes @a. * Also set route preference to the default preference set for * the protocol. */ rte * rte_get_temp(rta *a) { rte *e = sl_alloc(rte_slab); e->attrs = a; e->flags = 0; e->pref = a->src->proto->preference; return e; } rte * rte_do_cow(rte *r) { rte *e = sl_alloc(rte_slab); memcpy(e, r, sizeof(rte)); e->attrs = rta_clone(r->attrs); e->flags = 0; return e; } static int /* Actually better or at least as good as */ rte_better(rte *new, rte *old) { int (*better)(rte *, rte *); if (!rte_is_valid(old)) return 1; if (!rte_is_valid(new)) return 0; if (new->pref > old->pref) return 1; if (new->pref < old->pref) return 0; if (new->attrs->src->proto->proto != old->attrs->src->proto->proto) { /* * If the user has configured protocol preferences, so that two different protocols * have the same preference, try to break the tie by comparing addresses. Not too * useful, but keeps the ordering of routes unambiguous. */ return new->attrs->src->proto->proto > old->attrs->src->proto->proto; } if (better = new->attrs->src->proto->rte_better) return better(new, old); return 0; } static void rte_trace(struct proto *p, rte *e, int dir, char *msg) { byte via[STD_ADDRESS_P_LENGTH+32]; rt_format_via(e, via); log(L_TRACE "%s %c %s %F %s", p->name, dir, msg, &e->net->n, via); } static inline void rte_trace_in(unsigned int flag, struct proto *p, rte *e, char *msg) { if (p->debug & flag) rte_trace(p, e, '>', msg); } static inline void rte_trace_out(unsigned int flag, struct proto *p, rte *e, char *msg) { if (p->debug & flag) rte_trace(p, e, '<', msg); } static rte * export_filter(struct announce_hook *ah, rte *rt0, rte **rt_free, ea_list **tmpa, int silent) { struct proto *p = ah->proto; struct filter *filter = ah->out_filter; struct proto_stats *stats = ah->stats; ea_list *tmpb = NULL; rte *rt; int v; rt = rt0; *rt_free = NULL; /* If called does not care for eattrs, we prepare one internally */ if (!tmpa) { tmpb = make_tmp_attrs(rt, rte_update_pool); tmpa = &tmpb; } v = p->import_control ? p->import_control(p, &rt, tmpa, rte_update_pool) : 0; if (v < 0) { if (silent) goto reject; stats->exp_updates_rejected++; if (v == RIC_REJECT) rte_trace_out(D_FILTERS, p, rt, "rejected by protocol"); goto reject; } if (v > 0) { if (!silent) rte_trace_out(D_FILTERS, p, rt, "forced accept by protocol"); goto accept; } v = filter && ((filter == FILTER_REJECT) || (f_run(filter, &rt, tmpa, rte_update_pool, FF_FORCE_TMPATTR) > F_ACCEPT)); if (v) { if (silent) goto reject; stats->exp_updates_filtered++; rte_trace_out(D_FILTERS, p, rt, "filtered out"); goto reject; } accept: if (rt != rt0) *rt_free = rt; return rt; reject: /* Discard temporary rte */ if (rt != rt0) rte_free(rt); return NULL; } static void do_rt_notify(struct announce_hook *ah, net *net, rte *new, rte *old, ea_list *tmpa, int refeed) { struct proto *p = ah->proto; struct proto_stats *stats = ah->stats; /* * First, apply export limit. * * Export route limits has several problems. Because exp_routes * counter is reset before refeed, we don't really know whether * limit is breached and whether the update is new or not. Therefore * the number of really exported routes may exceed the limit * temporarily (routes exported before and new routes in refeed). * * Minor advantage is that if the limit is decreased and refeed is * requested, the number of exported routes really decrease. * * Second problem is that with export limits, we don't know whether * old was really exported (it might be blocked by limit). When a * withdraw is exported, we announce it even when the previous * update was blocked. This is not a big issue, but the same problem * is in updating exp_routes counter. Therefore, to be consistent in * increases and decreases of exp_routes, we count exported routes * regardless of blocking by limits. * * Similar problem is in handling updates - when a new route is * received and blocking is active, the route would be blocked, but * when an update for the route will be received later, the update * would be propagated (as old != NULL). Therefore, we have to block * also non-new updates (contrary to import blocking). */ struct proto_limit *l = ah->out_limit; if (l && new) { if ((!old || refeed) && (stats->exp_routes >= l->limit)) proto_notify_limit(ah, l, PLD_OUT, stats->exp_routes); if (l->state == PLS_BLOCKED) { stats->exp_routes++; /* see note above */ stats->exp_updates_rejected++; rte_trace_out(D_FILTERS, p, new, "rejected [limit]"); new = NULL; if (!old) return; } } if (new) stats->exp_updates_accepted++; else stats->exp_withdraws_accepted++; /* Hack: We do not decrease exp_routes during refeed, we instead reset exp_routes at the start of refeed. */ if (new) stats->exp_routes++; if (old && !refeed) stats->exp_routes--; if (p->debug & D_ROUTES) { if (new && old) rte_trace_out(D_ROUTES, p, new, "replaced"); else if (new) rte_trace_out(D_ROUTES, p, new, "added"); else if (old) rte_trace_out(D_ROUTES, p, old, "removed"); } if (!new) p->rt_notify(p, ah->table, net, NULL, old, NULL); else if (tmpa) { ea_list *t = tmpa; while (t->next) t = t->next; t->next = new->attrs->eattrs; p->rt_notify(p, ah->table, net, new, old, tmpa); t->next = NULL; } else p->rt_notify(p, ah->table, net, new, old, new->attrs->eattrs); } static void rt_notify_basic(struct announce_hook *ah, net *net, rte *new, rte *old, ea_list *tmpa, int refeed) { // struct proto *p = ah->proto; struct proto_stats *stats = ah->stats; rte *new_free = NULL; rte *old_free = NULL; if (new) stats->exp_updates_received++; else stats->exp_withdraws_received++; /* * This is a tricky part - we don't know whether route 'old' was * exported to protocol 'p' or was filtered by the export filter. * We try to run the export filter to know this to have a correct * value in 'old' argument of rte_update (and proper filter value) * * FIXME - this is broken because 'configure soft' may change * filters but keep routes. Refeed is expected to be called after * change of the filters and with old == new, therefore we do not * even try to run the filter on an old route, This may lead to * 'spurious withdraws' but ensure that there are no 'missing * withdraws'. * * This is not completely safe as there is a window between * reconfiguration and the end of refeed - if a newly filtered * route disappears during this period, proper withdraw is not * sent (because old would be also filtered) and the route is * not refeeded (because it disappeared before that). */ if (new) new = export_filter(ah, new, &new_free, &tmpa, 0); if (old && !refeed) old = export_filter(ah, old, &old_free, NULL, 1); /* FIXME - This is broken because of incorrect 'old' value (see above) */ if (!new && !old) return; do_rt_notify(ah, net, new, old, tmpa, refeed); /* Discard temporary rte's */ if (new_free) rte_free(new_free); if (old_free) rte_free(old_free); } static void rt_notify_accepted(struct announce_hook *ah, net *net, rte *new_changed, rte *old_changed, rte *before_old, ea_list *tmpa, int feed) { // struct proto *p = ah->proto; struct proto_stats *stats = ah->stats; rte *new_best = NULL; rte *old_best = NULL; rte *new_free = NULL; rte *old_free = NULL; rte *r; /* Used to track whether we met old_changed position. If before_old is NULL old_changed was the first and we met it implicitly before current best route. */ int old_meet = old_changed && !before_old; /* Note that before_old is either NULL or valid (not rejected) route. If old_changed is valid, before_old have to be too. If old changed route was not valid, caller must use NULL for both old_changed and before_old. */ if (new_changed) stats->exp_updates_received++; else stats->exp_withdraws_received++; /* First, find the new_best route - first accepted by filters */ for (r=net->routes; rte_is_valid(r); r=r->next) { if (new_best = export_filter(ah, r, &new_free, &tmpa, 0)) break; /* Note if we walked around the position of old_changed route */ if (r == before_old) old_meet = 1; } /* * Second, handle the feed case. That means we do not care for * old_best. It is NULL for feed, and the new_best for refeed. * For refeed, there is a hack similar to one in rt_notify_basic() * to ensure withdraws in case of changed filters */ if (feed) { if (feed == 2) /* refeed */ old_best = new_best ? new_best : (rte_is_valid(net->routes) ? net->routes : NULL); else old_best = NULL; if (!new_best && !old_best) return; goto found; } /* * Now, we find the old_best route. Generally, it is the same as the * new_best, unless new_best is the same as new_changed or * old_changed is accepted before new_best. * * There are four cases: * * - We would find and accept old_changed before new_best, therefore * old_changed is old_best. In remaining cases we suppose this * is not true. * * - We found no new_best, therefore there is also no old_best and * we ignore this withdraw. * * - We found new_best different than new_changed, therefore * old_best is the same as new_best and we ignore this update. * * - We found new_best the same as new_changed, therefore it cannot * be old_best and we have to continue search for old_best. */ /* First case */ if (old_meet) if (old_best = export_filter(ah, old_changed, &old_free, NULL, 1)) goto found; /* Second case */ if (!new_best) return; /* Third case, we use r instead of new_best, because export_filter() could change it */ if (r != new_changed) { if (new_free) rte_free(new_free); return; } /* Fourth case */ for (r=r->next; rte_is_valid(r); r=r->next) { if (old_best = export_filter(ah, r, &old_free, NULL, 1)) goto found; if (r == before_old) if (old_best = export_filter(ah, old_changed, &old_free, NULL, 1)) goto found; } /* Implicitly, old_best is NULL and new_best is non-NULL */ found: do_rt_notify(ah, net, new_best, old_best, tmpa, (feed == 2)); /* Discard temporary rte's */ if (new_free) rte_free(new_free); if (old_free) rte_free(old_free); } /** * rte_announce - announce a routing table change * @tab: table the route has been added to * @type: type of route announcement (RA_OPTIMAL or RA_ANY) * @net: network in question * @new: the new route to be announced * @old: the previous route for the same network * @tmpa: a list of temporary attributes belonging to the new route * * This function gets a routing table update and announces it * to all protocols that acccepts given type of route announcement * and are connected to the same table by their announcement hooks. * * Route announcement of type RA_OPTIMAL si generated when optimal * route (in routing table @tab) changes. In that case @old stores the * old optimal route. * * Route announcement of type RA_ANY si generated when any route (in * routing table @tab) changes In that case @old stores the old route * from the same protocol. * * For each appropriate protocol, we first call its import_control() * hook which performs basic checks on the route (each protocol has a * right to veto or force accept of the route before any filter is * asked) and adds default values of attributes specific to the new * protocol (metrics, tags etc.). Then it consults the protocol's * export filter and if it accepts the route, the rt_notify() hook of * the protocol gets called. */ static void rte_announce(rtable *tab, unsigned type, net *net, rte *new, rte *old, rte *before_old, ea_list *tmpa) { if (!rte_is_valid(old)) old = before_old = NULL; if (!rte_is_valid(new)) new = NULL; if (!old && !new) return; if (type == RA_OPTIMAL) { if (new) new->attrs->src->proto->stats.pref_routes++; if (old) old->attrs->src->proto->stats.pref_routes--; if (tab->hostcache) rt_notify_hostcache(tab, net); } struct announce_hook *a; WALK_LIST(a, tab->hooks) { ASSERT(a->proto->export_state != ES_DOWN); if (a->proto->accept_ra_types == type) if (type == RA_ACCEPTED) rt_notify_accepted(a, net, new, old, before_old, tmpa, 0); else rt_notify_basic(a, net, new, old, tmpa, 0); } } static inline int rte_validate(rte *e) { int c; net *n = e->net; // XXXX: Do not bother checking non-IP routes at the moment if (n->n.addr_type != RT_IP) return 1; if ((n->n.pxlen > BITS_PER_IP_ADDRESS) || !ip_is_prefix(*FPREFIX_IP(&n->n),n->n.pxlen)) { log(L_WARN "Ignoring bogus prefix %F received via %s", &n->n, e->sender->proto->name); return 0; } c = ipa_classify_net(*FPREFIX_IP(&n->n)); if ((c < 0) || !(c & IADDR_HOST) || ((c & IADDR_SCOPE_MASK) <= SCOPE_LINK)) { log(L_WARN "Ignoring bogus route %F received via %s", &n->n, e->sender->proto->name); return 0; } return 1; } /** * rte_free - delete a &rte * @e: &rte to be deleted * * rte_free() deletes the given &rte from the routing table it's linked to. */ void rte_free(rte *e) { if (rta_is_cached(e->attrs)) rta_free(e->attrs); sl_free(rte_slab, e); } static inline void rte_free_quick(rte *e) { rta_free(e->attrs); sl_free(rte_slab, e); } static int rte_same(rte *x, rte *y) { return x->attrs == y->attrs && x->flags == y->flags && x->pflags == y->pflags && x->pref == y->pref && (!x->attrs->src->proto->rte_same || x->attrs->src->proto->rte_same(x, y)); } static inline int rte_is_ok(rte *e) { return e && !rte_is_filtered(e); } static void rte_recalculate(struct announce_hook *ah, net *net, rte *new, ea_list *tmpa, struct rte_src *src) { struct proto *p = ah->proto; struct rtable *table = ah->table; struct proto_stats *stats = ah->stats; static struct rate_limit rl_pipe; rte *before_old = NULL; rte *old_best = net->routes; rte *old = NULL; rte **k; k = &net->routes; /* Find and remove original route from the same protocol */ while (old = *k) { if (old->attrs->src == src) { /* If there is the same route in the routing table but from * a different sender, then there are two paths from the * source protocol to this routing table through transparent * pipes, which is not allowed. * * We log that and ignore the route. If it is withdraw, we * ignore it completely (there might be 'spurious withdraws', * see FIXME in do_rte_announce()) */ if (old->sender->proto != p) { if (new) { log_rl(&rl_pipe, L_ERR "Pipe collision detected when sending %F to table %s", &net->n, table->name); rte_free_quick(new); } return; } if (new && rte_same(old, new)) { /* No changes, ignore the new route */ if (!rte_is_filtered(new)) { stats->imp_updates_ignored++; rte_trace_in(D_ROUTES, p, new, "ignored"); } rte_free_quick(new); #ifdef CONFIG_RIP /* lastmod is used internally by RIP as the last time when the route was received. */ if ((src->proto->proto == &proto_rip) || (src->proto->proto == &proto_ripng)) old->lastmod = now; #endif return; } *k = old->next; break; } k = &old->next; before_old = old; } if (!old) before_old = NULL; if (!old && !new) { stats->imp_withdraws_ignored++; return; } int new_ok = rte_is_ok(new); int old_ok = rte_is_ok(old); struct proto_limit *l = ah->rx_limit; if (l && !old && new) { u32 all_routes = stats->imp_routes + stats->filt_routes; if (all_routes >= l->limit) proto_notify_limit(ah, l, PLD_RX, all_routes); if (l->state == PLS_BLOCKED) { /* In receive limit the situation is simple, old is NULL so we just free new and exit like nothing happened */ stats->imp_updates_ignored++; rte_trace_in(D_FILTERS, p, new, "ignored [limit]"); rte_free_quick(new); return; } } l = ah->in_limit; if (l && !old_ok && new_ok) { if (stats->imp_routes >= l->limit) proto_notify_limit(ah, l, PLD_IN, stats->imp_routes); if (l->state == PLS_BLOCKED) { /* In import limit the situation is more complicated. We shouldn't just drop the route, we should handle it like it was filtered. We also have to continue the route processing if old or new is non-NULL, but we should exit if both are NULL as this case is probably assumed to be already handled. */ stats->imp_updates_ignored++; rte_trace_in(D_FILTERS, p, new, "ignored [limit]"); if (ah->in_keep_filtered) new->flags |= REF_FILTERED; else { rte_free_quick(new); new = NULL; } /* Note that old && !new could be possible when ah->in_keep_filtered changed in the recent past. */ if (!old && !new) return; new_ok = 0; goto skip_stats1; } } if (new_ok) stats->imp_updates_accepted++; else if (old_ok) stats->imp_withdraws_accepted++; else stats->imp_withdraws_ignored++; skip_stats1: if (new) rte_is_filtered(new) ? stats->filt_routes++ : stats->imp_routes++; if (old) rte_is_filtered(old) ? stats->filt_routes-- : stats->imp_routes--; if (table->config->sorted) { /* If routes are sorted, just insert new route to appropriate position */ if (new) { if (before_old && !rte_better(new, before_old)) k = &before_old->next; else k = &net->routes; for (; *k; k=&(*k)->next) if (rte_better(new, *k)) break; new->next = *k; *k = new; } } else { /* If routes are not sorted, find the best route and move it on the first position. There are several optimized cases. */ if (src->proto->rte_recalculate && src->proto->rte_recalculate(table, net, new, old, old_best)) goto do_recalculate; if (new && rte_better(new, old_best)) { /* The first case - the new route is cleary optimal, we link it at the first position */ new->next = net->routes; net->routes = new; } else if (old == old_best) { /* The second case - the old best route disappeared, we add the new route (if we have any) to the list (we don't care about position) and then we elect the new optimal route and relink that route at the first position and announce it. New optimal route might be NULL if there is no more routes */ do_recalculate: /* Add the new route to the list */ if (new) { new->next = net->routes; net->routes = new; } /* Find a new optimal route (if there is any) */ if (net->routes) { rte **bp = &net->routes; for (k=&(*bp)->next; *k; k=&(*k)->next) if (rte_better(*k, *bp)) bp = k; /* And relink it */ rte *best = *bp; *bp = best->next; best->next = net->routes; net->routes = best; } } else if (new) { /* The third case - the new route is not better than the old best route (therefore old_best != NULL) and the old best route was not removed (therefore old_best == net->routes). We just link the new route after the old best route. */ ASSERT(net->routes != NULL); new->next = net->routes->next; net->routes->next = new; } /* The fourth (empty) case - suboptimal route was removed, nothing to do */ } if (new) new->lastmod = now; /* Log the route change */ if (p->debug & D_ROUTES) { if (new_ok) rte_trace(p, new, '>', new == net->routes ? "added [best]" : "added"); else if (old_ok) { if (old != old_best) rte_trace(p, old, '>', "removed"); else if (rte_is_ok(net->routes)) rte_trace(p, old, '>', "removed [replaced]"); else rte_trace(p, old, '>', "removed [sole]"); } } /* Propagate the route change */ rte_announce(table, RA_ANY, net, new, old, NULL, tmpa); if (net->routes != old_best) rte_announce(table, RA_OPTIMAL, net, net->routes, old_best, NULL, tmpa); if (table->config->sorted) rte_announce(table, RA_ACCEPTED, net, new, old, before_old, tmpa); if (!net->routes && (table->gc_counter++ >= table->config->gc_max_ops) && (table->gc_time + table->config->gc_min_time <= now)) rt_schedule_gc(table); if (old_ok && p->rte_remove) p->rte_remove(net, old); if (new_ok && p->rte_insert) p->rte_insert(net, new); if (old) rte_free_quick(old); } static int rte_update_nest_cnt; /* Nesting counter to allow recursive updates */ static inline void rte_update_lock(void) { rte_update_nest_cnt++; } static inline void rte_update_unlock(void) { if (!--rte_update_nest_cnt) lp_flush(rte_update_pool); } static inline void rte_hide_dummy_routes(net *net, rte **dummy) { if (net->routes && net->routes->attrs->source == RTS_DUMMY) { *dummy = net->routes; net->routes = (*dummy)->next; } } static inline void rte_unhide_dummy_routes(net *net, rte **dummy) { if (*dummy) { (*dummy)->next = net->routes; net->routes = *dummy; } } /** * rte_update - enter a new update to a routing table * @table: table to be updated * @ah: pointer to table announce hook * @net: network node * @p: protocol submitting the update * @src: protocol originating the update * @new: a &rte representing the new route or %NULL for route removal. * * This function is called by the routing protocols whenever they discover * a new route or wish to update/remove an existing route. The right announcement * sequence is to build route attributes first (either un-cached with @aflags set * to zero or a cached one using rta_lookup(); in this case please note that * you need to increase the use count of the attributes yourself by calling * rta_clone()), call rte_get_temp() to obtain a temporary &rte, fill in all * the appropriate data and finally submit the new &rte by calling rte_update(). * * @src specifies the protocol that originally created the route and the meaning * of protocol-dependent data of @new. If @new is not %NULL, @src have to be the * same value as @new->attrs->proto. @p specifies the protocol that called * rte_update(). In most cases it is the same protocol as @src. rte_update() * stores @p in @new->sender; * * When rte_update() gets any route, it automatically validates it (checks, * whether the network and next hop address are valid IP addresses and also * whether a normal routing protocol doesn't try to smuggle a host or link * scope route to the table), converts all protocol dependent attributes stored * in the &rte to temporary extended attributes, consults import filters of the * protocol to see if the route should be accepted and/or its attributes modified, * stores the temporary attributes back to the &rte. * * Now, having a "public" version of the route, we * automatically find any old route defined by the protocol @src * for network @n, replace it by the new one (or removing it if @new is %NULL), * recalculate the optimal route for this destination and finally broadcast * the change (if any) to all routing protocols by calling rte_announce(). * * All memory used for attribute lists and other temporary allocations is taken * from a special linear pool @rte_update_pool and freed when rte_update() * finishes. */ void rte_update2(struct announce_hook *ah, net *net, rte *new, struct rte_src *src) { struct proto *p = ah->proto; struct proto_stats *stats = ah->stats; struct filter *filter = ah->in_filter; ea_list *tmpa = NULL; rte *dummy = NULL; rte_update_lock(); if (new) { new->sender = ah; stats->imp_updates_received++; if (!rte_validate(new)) { rte_trace_in(D_FILTERS, p, new, "invalid"); stats->imp_updates_invalid++; goto drop; } if (filter == FILTER_REJECT) { stats->imp_updates_filtered++; rte_trace_in(D_FILTERS, p, new, "filtered out"); if (! ah->in_keep_filtered) goto drop; /* new is a private copy, i could modify it */ new->flags |= REF_FILTERED; } else { tmpa = make_tmp_attrs(new, rte_update_pool); if (filter && (filter != FILTER_REJECT)) { ea_list *old_tmpa = tmpa; int fr = f_run(filter, &new, &tmpa, rte_update_pool, 0); if (fr > F_ACCEPT) { stats->imp_updates_filtered++; rte_trace_in(D_FILTERS, p, new, "filtered out"); if (! ah->in_keep_filtered) goto drop; new->flags |= REF_FILTERED; } if (tmpa != old_tmpa && src->proto->store_tmp_attrs) src->proto->store_tmp_attrs(new, tmpa); } } if (!rta_is_cached(new->attrs)) /* Need to copy attributes */ new->attrs = rta_lookup(new->attrs); new->flags |= REF_COW; } else { stats->imp_withdraws_received++; if (!net || !src) { stats->imp_withdraws_ignored++; rte_update_unlock(); return; } } recalc: rte_hide_dummy_routes(net, &dummy); rte_recalculate(ah, net, new, tmpa, src); rte_unhide_dummy_routes(net, &dummy); rte_update_unlock(); return; drop: rte_free(new); new = NULL; tmpa = NULL; goto recalc; } /* Independent call to rte_announce(), used from next hop recalculation, outside of rte_update(). new must be non-NULL */ static inline void rte_announce_i(rtable *tab, unsigned type, net *n, rte *new, rte *old) { ea_list *tmpa; rte_update_lock(); tmpa = make_tmp_attrs(new, rte_update_pool); rte_announce(tab, type, n, new, old, NULL, tmpa); rte_update_unlock(); } void rte_discard(rtable *t, rte *old) /* Non-filtered route deletion, used during garbage collection */ { rte_update_lock(); rte_recalculate(old->sender, old->net, NULL, NULL, old->attrs->src); rte_update_unlock(); } /* Check rtable for best route to given net whether it would be exported do p */ int rt_examine(rtable *t, ip_addr prefix, int pxlen, struct proto *p, struct filter *filter) { net *n = net_find(t, prefix, pxlen); rte *rt = n ? n->routes : NULL; if (!rte_is_valid(rt)) return 0; rte_update_lock(); /* Rest is stripped down export_filter() */ ea_list *tmpa = make_tmp_attrs(rt, rte_update_pool); int v = p->import_control ? p->import_control(p, &rt, &tmpa, rte_update_pool) : 0; if (v == RIC_PROCESS) v = (f_run(filter, &rt, &tmpa, rte_update_pool, FF_FORCE_TMPATTR) <= F_ACCEPT); /* Discard temporary rte */ if (rt != n->routes) rte_free(rt); rte_update_unlock(); return v > 0; } /** * rt_refresh_begin - start a refresh cycle * @t: related routing table * @ah: related announce hook * * This function starts a refresh cycle for given routing table and announce * hook. The refresh cycle is a sequence where the protocol sends all its valid * routes to the routing table (by rte_update()). After that, all protocol * routes (more precisely routes with @ah as @sender) not sent during the * refresh cycle but still in the table from the past are pruned. This is * implemented by marking all related routes as stale by REF_STALE flag in * rt_refresh_begin(), then marking all related stale routes with REF_DISCARD * flag in rt_refresh_end() and then removing such routes in the prune loop. */ void rt_refresh_begin(rtable *t, struct announce_hook *ah) { net *n; rte *e; FIB_WALK(&t->fib, fn) { n = (net *) fn; for (e = n->routes; e; e = e->next) if (e->sender == ah) e->flags |= REF_STALE; } FIB_WALK_END; } /** * rt_refresh_end - end a refresh cycle * @t: related routing table * @ah: related announce hook * * This function starts a refresh cycle for given routing table and announce * hook. See rt_refresh_begin() for description of refresh cycles. */ void rt_refresh_end(rtable *t, struct announce_hook *ah) { int prune = 0; net *n; rte *e; FIB_WALK(&t->fib, fn) { n = (net *) fn; for (e = n->routes; e; e = e->next) if ((e->sender == ah) && (e->flags & REF_STALE)) { e->flags |= REF_DISCARD; prune = 1; } } FIB_WALK_END; if (prune) rt_schedule_prune(t); } /** * rte_dump - dump a route * @e: &rte to be dumped * * This functions dumps contents of a &rte to debug output. */ void rte_dump(rte *e) { net *n = e->net; debug("%-1I/%2d ", n->n.prefix, n->n.pxlen); debug("KF=%02x PF=%02x pref=%d lm=%d ", n->n.flags, e->pflags, e->pref, now-e->lastmod); rta_dump(e->attrs); if (e->attrs->src->proto->proto->dump_attrs) e->attrs->src->proto->proto->dump_attrs(e); debug("\n"); } /** * rt_dump - dump a routing table * @t: routing table to be dumped * * This function dumps contents of a given routing table to debug output. */ void rt_dump(rtable *t) { rte *e; net *n; struct announce_hook *a; debug("Dump of routing table <%s>:%d\n", t->name, t->fib.addr_type); #ifdef DEBUGGING fib_check(&t->fib); #endif FIB_WALK(&t->fib, fn) { n = (net *) fn; for(e=n->routes; e; e=e->next) rte_dump(e); } FIB_WALK_END; WALK_LIST(a, t->hooks) debug("\tAnnounces routes to protocol %s\n", a->proto->name); debug("\n"); } /** * rt_dump_all - dump all routing tables * * This function dumps contents of all routing tables to debug output. */ void rt_dump_all(void) { rtable *t; WALK_LIST(t, routing_tables) rt_dump(t); } static inline void rt_schedule_prune(rtable *tab) { rt_mark_for_prune(tab); ev_schedule(tab->rt_event); } static inline void rt_schedule_gc(rtable *tab) { if (tab->gc_scheduled) return; tab->gc_scheduled = 1; ev_schedule(tab->rt_event); } static inline void rt_schedule_hcu(rtable *tab) { if (tab->hcu_scheduled) return; tab->hcu_scheduled = 1; ev_schedule(tab->rt_event); } static inline void rt_schedule_nhu(rtable *tab) { if (tab->nhu_state == 0) ev_schedule(tab->rt_event); /* state change 0->1, 2->3 */ tab->nhu_state |= 1; } static void rt_prune_nets(rtable *tab) { struct fib_iterator fit; int ncnt = 0, ndel = 0; #ifdef DEBUGGING fib_check(&tab->fib); #endif FIB_ITERATE_INIT(&fit, &tab->fib); again: FIB_ITERATE_START(&tab->fib, &fit, f) { net *n = (net *) f; ncnt++; if (!n->routes) /* Orphaned FIB entry */ { FIB_ITERATE_PUT(&fit, f); fib_delete(&tab->fib, f); ndel++; goto again; } } FIB_ITERATE_END(f); DBG("Pruned %d of %d networks\n", ndel, ncnt); tab->gc_counter = 0; tab->gc_time = now; tab->gc_scheduled = 0; } static void rt_event(void *ptr) { rtable *tab = ptr; if (tab->hcu_scheduled) rt_update_hostcache(tab); if (tab->nhu_state) rt_next_hop_update(tab); if (tab->prune_state) if (!rt_prune_table(tab)) { /* Table prune unfinished */ ev_schedule(tab->rt_event); return; } if (tab->gc_scheduled) { rt_prune_nets(tab); rt_prune_sources(); // FIXME this should be moved to independent event } } /** * rt_addrsize - returns (host format) size of address of given type * @addr_type: address type * * Returns sizeof() appropriate structure or sizeof(ip_addr) if * address type is unknown * */ int rt_addrsize(int addr_type) { switch (addr_type) { #ifdef MPLS_VPN case RT_VPN4: return sizeof(vpn4_addr); case RT_VPN6: return sizeof(vpn6_addr); #endif case RT_IPV4: // XXXX return sizeof(ip6_addr); case RT_IPV6: return sizeof(ip6_addr); } return sizeof(ip_addr); } /** * rt_setup - initialize routing table * * This function is called to set up rtable (hooks, lists, fib, ..) */ void rt_setup(pool *p, rtable *t, char *name, struct rtable_config *cf) { fib_hash_func f; bzero(t, sizeof(*t)); t->addr_type = cf ? cf->addr_type : RT_IP; /* Select hashing function depending on table type */ switch (t->addr_type) { case RT_IP: f = ip_hash; break; #ifdef XXXX case RT_VPN: f = vpn_hash; break; #endif default: f = ip_hash; break; } fib2_init(&t->fib, p, sizeof(net), t->addr_type, rt_addrsize(t->addr_type), 0, rte_init, f); t->name = name; t->config = cf; init_list(&t->hooks); if (cf) { t->rt_event = ev_new(p); t->rt_event->hook = rt_event; t->rt_event->data = t; t->gc_time = now; } } /** * rt_init - initialize routing tables * * This function is called during BIRD startup. It initializes the * routing table module. */ void rt_init(void) { rta_init(); rt_table_pool = rp_new(&root_pool, "Routing tables"); rte_update_pool = lp_new(rt_table_pool, 4080); rte_slab = sl_new(rt_table_pool, sizeof(rte)); init_list(&routing_tables); } static int rt_prune_step(rtable *tab, int step, int *limit) { static struct rate_limit rl_flush; struct fib_iterator *fit = &tab->prune_fit; DBG("Pruning route table %s\n", tab->name); #ifdef DEBUGGING fib_check(&tab->fib); #endif if (tab->prune_state == RPS_NONE) return 1; if (tab->prune_state == RPS_SCHEDULED) { FIB_ITERATE_INIT(fit, &tab->fib); tab->prune_state = RPS_RUNNING; } again: FIB_ITERATE_START(&tab->fib, fit, fn) { net *n = (net *) fn; rte *e; rescan: for (e=n->routes; e; e=e->next) if (e->sender->proto->flushing || (e->flags & REF_DISCARD) || (step && e->attrs->src->proto->flushing)) { if (*limit <= 0) { FIB_ITERATE_PUT(fit, fn); return 0; } if (step) log_rl(&rl_flush, L_WARN "Route %I/%d from %s still in %s after flush", n->n.prefix, n->n.pxlen, e->attrs->src->proto->name, tab->name); rte_discard(tab, e); (*limit)--; goto rescan; } if (!n->routes) /* Orphaned FIB entry */ { FIB_ITERATE_PUT(fit, fn); fib_delete(&tab->fib, fn); goto again; } } FIB_ITERATE_END(fn); #ifdef DEBUGGING fib_check(&tab->fib); #endif tab->prune_state = RPS_NONE; return 1; } /** * rt_prune_table - prune a routing table * * This function scans the routing table @tab and removes routes belonging to * flushing protocols, discarded routes and also stale network entries, in a * similar fashion like rt_prune_loop(). Returns 1 when all such routes are * pruned. Contrary to rt_prune_loop(), this function is not a part of the * protocol flushing loop, but it is called from rt_event() for just one routing * table. * * Note that rt_prune_table() and rt_prune_loop() share (for each table) the * prune state (@prune_state) and also the pruning iterator (@prune_fit). */ static inline int rt_prune_table(rtable *tab) { int limit = 512; return rt_prune_step(tab, 0, &limit); } /** * rt_prune_loop - prune routing tables * * The prune loop scans routing tables and removes routes belonging to flushing * protocols, discarded routes and also stale network entries. Returns 1 when * all such routes are pruned. It is a part of the protocol flushing loop. * * The prune loop runs in two steps. In the first step it prunes just the routes * with flushing senders (in explicitly marked tables) so the route removal is * propagated as usual. In the second step, all remaining relevant routes are * removed. Ideally, there shouldn't be any, but it happens when pipe filters * are changed. */ int rt_prune_loop(void) { static int step = 0; int limit = 512; rtable *t; again: WALK_LIST(t, routing_tables) if (! rt_prune_step(t, step, &limit)) return 0; if (step == 0) { /* Prepare for the second step */ WALK_LIST(t, routing_tables) t->prune_state = RPS_SCHEDULED; step = 1; goto again; } /* Done */ step = 0; return 1; } void rt_preconfig(struct config *c) { struct symbol *s = cf_find_symbol("master"); init_list(&c->tables); c->master_rtc = rt_new_table(s, RT_IP); } /* * Some functions for handing internal next hop updates * triggered by rt_schedule_nhu(). */ static inline int rta_next_hop_outdated(rta *a) { struct hostentry *he = a->hostentry; if (!he) return 0; if (!he->src) return a->dest != RTD_UNREACHABLE; return (a->iface != he->src->iface) || !ipa_equal(a->gw, he->gw) || (a->dest != he->dest) || (a->igp_metric != he->igp_metric) || !mpnh_same(a->nexthops, he->src->nexthops); } static inline void rta_apply_hostentry(rta *a, struct hostentry *he) { a->hostentry = he; a->iface = he->src ? he->src->iface : NULL; a->gw = he->gw; a->dest = he->dest; a->igp_metric = he->igp_metric; a->nexthops = he->src ? he->src->nexthops : NULL; } static inline rte * rt_next_hop_update_rte(rtable *tab, rte *old) { rta a; memcpy(&a, old->attrs, sizeof(rta)); rta_apply_hostentry(&a, old->attrs->hostentry); a.aflags = 0; rte *e = sl_alloc(rte_slab); memcpy(e, old, sizeof(rte)); e->attrs = rta_lookup(&a); return e; } static inline int rt_next_hop_update_net(rtable *tab, net *n) { rte **k, *e, *new, *old_best, **new_best; int count = 0; int free_old_best = 0; old_best = n->routes; if (!old_best) return 0; for (k = &n->routes; e = *k; k = &e->next) if (rta_next_hop_outdated(e->attrs)) { new = rt_next_hop_update_rte(tab, e); *k = new; rte_announce_i(tab, RA_ANY, n, new, e); rte_trace_in(D_ROUTES, new->sender->proto, new, "updated"); /* Call a pre-comparison hook */ /* Not really an efficient way to compute this */ if (e->attrs->src->proto->rte_recalculate) e->attrs->src->proto->rte_recalculate(tab, n, new, e, NULL); if (e != old_best) rte_free_quick(e); else /* Freeing of the old best rte is postponed */ free_old_best = 1; e = new; count++; } if (!count) return 0; /* Find the new best route */ new_best = NULL; for (k = &n->routes; e = *k; k = &e->next) { if (!new_best || rte_better(e, *new_best)) new_best = k; } /* Relink the new best route to the first position */ new = *new_best; if (new != n->routes) { *new_best = new->next; new->next = n->routes; n->routes = new; } /* Announce the new best route */ if (new != old_best) { rte_announce_i(tab, RA_OPTIMAL, n, new, old_best); rte_trace_in(D_ROUTES, new->sender->proto, new, "updated [best]"); } if (free_old_best) rte_free_quick(old_best); return count; } static void rt_next_hop_update(rtable *tab) { struct fib_iterator *fit = &tab->nhu_fit; int max_feed = 32; if (tab->nhu_state == 0) return; if (tab->nhu_state == 1) { FIB_ITERATE_INIT(fit, &tab->fib); tab->nhu_state = 2; } FIB_ITERATE_START(&tab->fib, fit, fn) { if (max_feed <= 0) { FIB_ITERATE_PUT(fit, fn); ev_schedule(tab->rt_event); return; } max_feed -= rt_next_hop_update_net(tab, (net *) fn); } FIB_ITERATE_END(fn); /* state change 2->0, 3->1 */ tab->nhu_state &= 1; if (tab->nhu_state > 0) ev_schedule(tab->rt_event); } struct rtable_config * rt_new_table(struct symbol *s, int addr_type) { /* Hack that allows to 'redefine' the master table */ if ((s->class == SYM_TABLE) && (s->def == new_config->master_rtc)) return s->def; struct rtable_config *c = cfg_allocz(sizeof(struct rtable_config)); cf_define_symbol(s, SYM_TABLE, c); c->name = s->name; c->addr_type = addr_type; add_tail(&new_config->tables, &c->n); c->gc_max_ops = 1000; c->gc_min_time = 5; return c; } /** * rt_lock_table - lock a routing table * @r: routing table to be locked * * Lock a routing table, because it's in use by a protocol, * preventing it from being freed when it gets undefined in a new * configuration. */ void rt_lock_table(rtable *r) { r->use_count++; } /** * rt_unlock_table - unlock a routing table * @r: routing table to be unlocked * * Unlock a routing table formerly locked by rt_lock_table(), * that is decrease its use count and delete it if it's scheduled * for deletion by configuration changes. */ void rt_unlock_table(rtable *r) { if (!--r->use_count && r->deleted) { struct config *conf = r->deleted; DBG("Deleting routing table %s\n", r->name); if (r->hostcache) rt_free_hostcache(r); rem_node(&r->n); fib_free(&r->fib); rfree(r->rt_event); mb_free(r); config_del_obstacle(conf); } } /** * rt_commit - commit new routing table configuration * @new: new configuration * @old: original configuration or %NULL if it's boot time config * * Scan differences between @old and @new configuration and modify * the routing tables according to these changes. If @new defines a * previously unknown table, create it, if it omits a table existing * in @old, schedule it for deletion (it gets deleted when all protocols * disconnect from it by calling rt_unlock_table()), if it exists * in both configurations, leave it unchanged. */ void rt_commit(struct config *new, struct config *old) { struct rtable_config *o, *r; DBG("rt_commit:\n"); if (old) { WALK_LIST(o, old->tables) { rtable *ot = o->table; if (!ot->deleted) { struct symbol *sym = cf_find_symbol(o->name); if (sym && sym->class == SYM_TABLE && !new->shutdown) { DBG("\t%s: same\n", o->name); r = sym->def; r->table = ot; ot->name = r->name; ot->config = r; if (o->sorted != r->sorted) log(L_WARN "Reconfiguration of rtable sorted flag not implemented"); } else { DBG("\t%s: deleted\n", o->name); ot->deleted = old; config_add_obstacle(old); rt_lock_table(ot); rt_unlock_table(ot); } } } } WALK_LIST(r, new->tables) if (!r->table) { rtable *t = mb_alloc(rt_table_pool, sizeof(struct rtable)); DBG("\t%s: created\n", r->name); rt_setup(rt_table_pool, t, r->name, r); add_tail(&routing_tables, &t->n); r->table = t; } DBG("\tdone\n"); } static inline void do_feed_baby(struct proto *p, int type, struct announce_hook *h, net *n, rte *e) { ea_list *tmpa; rte_update_lock(); tmpa = make_tmp_attrs(e, rte_update_pool); if (type == RA_ACCEPTED) rt_notify_accepted(h, n, e, NULL, NULL, tmpa, p->refeeding ? 2 : 1); else rt_notify_basic(h, n, e, p->refeeding ? e : NULL, tmpa, p->refeeding); rte_update_unlock(); } /** * rt_feed_baby - advertise routes to a new protocol * @p: protocol to be fed * * This function performs one pass of advertisement of routes to a newly * initialized protocol. It's called by the protocol code as long as it * has something to do. (We avoid transferring all the routes in single * pass in order not to monopolize CPU time.) */ int rt_feed_baby(struct proto *p) { struct announce_hook *h; struct fib_iterator *fit; int max_feed = 256; if (!p->feed_ahook) /* Need to initialize first */ { if (!p->ahooks) return 1; DBG("Announcing routes to new protocol %s\n", p->name); p->feed_ahook = p->ahooks; fit = p->feed_iterator = mb_alloc(p->pool, sizeof(struct fib_iterator)); goto next_hook; } fit = p->feed_iterator; again: h = p->feed_ahook; FIB_ITERATE_START(&h->table->fib, fit, fn) { net *n = (net *) fn; rte *e = n->routes; if (max_feed <= 0) { FIB_ITERATE_PUT(fit, fn); return 0; } /* XXXX perhaps we should change feed for RA_ACCEPTED to not use 'new' */ if ((p->accept_ra_types == RA_OPTIMAL) || (p->accept_ra_types == RA_ACCEPTED)) if (rte_is_valid(e)) { if (p->export_state != ES_FEEDING) return 1; /* In the meantime, the protocol fell down. */ do_feed_baby(p, p->accept_ra_types, h, n, e); max_feed--; } if (p->accept_ra_types == RA_ANY) for(e = n->routes; rte_is_valid(e); e = e->next) { if (p->export_state != ES_FEEDING) return 1; /* In the meantime, the protocol fell down. */ do_feed_baby(p, RA_ANY, h, n, e); max_feed--; } } FIB_ITERATE_END(fn); p->feed_ahook = h->next; if (!p->feed_ahook) { mb_free(p->feed_iterator); p->feed_iterator = NULL; return 1; } next_hook: h = p->feed_ahook; FIB_ITERATE_INIT(fit, &h->table->fib); goto again; } /** * rt_feed_baby_abort - abort protocol feeding * @p: protocol * * This function is called by the protocol code when the protocol * stops or ceases to exist before the last iteration of rt_feed_baby() * has finished. */ void rt_feed_baby_abort(struct proto *p) { if (p->feed_ahook) { /* Unlink the iterator and exit */ fit_get(&p->feed_ahook->table->fib, p->feed_iterator); p->feed_ahook = NULL; } } static inline unsigned ptr_hash(void *ptr) { uintptr_t p = (uintptr_t) ptr; return p ^ (p << 8) ^ (p >> 16); } static inline unsigned hc_hash(ip_addr a, rtable *dep) { return (ipa_hash(a) ^ ptr_hash(dep)) & 0xffff; } static inline void hc_insert(struct hostcache *hc, struct hostentry *he) { unsigned int k = he->hash_key >> hc->hash_shift; he->next = hc->hash_table[k]; hc->hash_table[k] = he; } static inline void hc_remove(struct hostcache *hc, struct hostentry *he) { struct hostentry **hep; unsigned int k = he->hash_key >> hc->hash_shift; for (hep = &hc->hash_table[k]; *hep != he; hep = &(*hep)->next); *hep = he->next; } #define HC_DEF_ORDER 10 #define HC_HI_MARK *4 #define HC_HI_STEP 2 #define HC_HI_ORDER 16 /* Must be at most 16 */ #define HC_LO_MARK /5 #define HC_LO_STEP 2 #define HC_LO_ORDER 10 static void hc_alloc_table(struct hostcache *hc, unsigned order) { unsigned hsize = 1 << order; hc->hash_order = order; hc->hash_shift = 16 - order; hc->hash_max = (order >= HC_HI_ORDER) ? ~0 : (hsize HC_HI_MARK); hc->hash_min = (order <= HC_LO_ORDER) ? 0 : (hsize HC_LO_MARK); hc->hash_table = mb_allocz(rt_table_pool, hsize * sizeof(struct hostentry *)); } static void hc_resize(struct hostcache *hc, unsigned new_order) { unsigned old_size = 1 << hc->hash_order; struct hostentry **old_table = hc->hash_table; struct hostentry *he, *hen; int i; hc_alloc_table(hc, new_order); for (i = 0; i < old_size; i++) for (he = old_table[i]; he != NULL; he=hen) { hen = he->next; hc_insert(hc, he); } mb_free(old_table); } static struct hostentry * hc_new_hostentry(struct hostcache *hc, ip_addr a, ip_addr ll, rtable *dep, unsigned k) { struct hostentry *he = sl_alloc(hc->slab); he->addr = a; he->link = ll; he->tab = dep; he->hash_key = k; he->uc = 0; he->src = NULL; add_tail(&hc->hostentries, &he->ln); hc_insert(hc, he); hc->hash_items++; if (hc->hash_items > hc->hash_max) hc_resize(hc, hc->hash_order + HC_HI_STEP); return he; } static void hc_delete_hostentry(struct hostcache *hc, struct hostentry *he) { rta_free(he->src); rem_node(&he->ln); hc_remove(hc, he); sl_free(hc->slab, he); hc->hash_items--; if (hc->hash_items < hc->hash_min) hc_resize(hc, hc->hash_order - HC_LO_STEP); } static void rt_init_hostcache(rtable *tab) { struct hostcache *hc = mb_allocz(rt_table_pool, sizeof(struct hostcache)); init_list(&hc->hostentries); hc->hash_items = 0; hc_alloc_table(hc, HC_DEF_ORDER); hc->slab = sl_new(rt_table_pool, sizeof(struct hostentry)); hc->lp = lp_new(rt_table_pool, 1008); hc->trie = f_new_trie(hc->lp); tab->hostcache = hc; } static void rt_free_hostcache(rtable *tab) { struct hostcache *hc = tab->hostcache; node *n; WALK_LIST(n, hc->hostentries) { struct hostentry *he = SKIP_BACK(struct hostentry, ln, n); rta_free(he->src); if (he->uc) log(L_ERR "Hostcache is not empty in table %s", tab->name); } rfree(hc->slab); rfree(hc->lp); mb_free(hc->hash_table); mb_free(hc); } static void rt_notify_hostcache(rtable *tab, net *net) { struct hostcache *hc = tab->hostcache; if (tab->hcu_scheduled) return; if (trie_match_prefix(hc->trie, *FPREFIX_IP(&net->n), net->n.pxlen)) rt_schedule_hcu(tab); } static int if_local_addr(ip_addr a, struct iface *i) { struct ifa *b; WALK_LIST(b, i->addrs) if (ipa_equal(a, b->ip)) return 1; return 0; } static u32 rt_get_igp_metric(rte *rt) { eattr *ea = ea_find(rt->attrs->eattrs, EA_GEN_IGP_METRIC); if (ea) return ea->u.data; rta *a = rt->attrs; #ifdef CONFIG_OSPF if ((a->source == RTS_OSPF) || (a->source == RTS_OSPF_IA) || (a->source == RTS_OSPF_EXT1)) return rt->u.ospf.metric1; #endif #ifdef CONFIG_RIP if (a->source == RTS_RIP) return rt->u.rip.metric; #endif /* Device routes */ if ((a->dest != RTD_ROUTER) && (a->dest != RTD_MULTIPATH)) return 0; return IGP_METRIC_UNKNOWN; } static int rt_update_hostentry(rtable *tab, struct hostentry *he) { rta *old_src = he->src; int pxlen = 0; /* XXXX: check for non-IP address families ? */ /* Reset the hostentry */ he->src = NULL; he->gw = IPA_NONE; he->dest = RTD_UNREACHABLE; he->igp_metric = 0; net *n = net_route(tab, he->addr, MAX_PREFIX_LENGTH); if (n) { rte *e = n->routes; rta *a = e->attrs; pxlen = n->n.pxlen; if (a->hostentry) { /* Recursive route should not depend on another recursive route */ log(L_WARN "Next hop address %I resolvable through recursive route for %F", he->addr, &n->n); goto done; } if (a->dest == RTD_DEVICE) { if (if_local_addr(he->addr, a->iface)) { /* The host address is a local address, this is not valid */ log(L_WARN "Next hop address %I is a local address of iface %s", he->addr, a->iface->name); goto done; } /* The host is directly reachable, use link as a gateway */ he->gw = he->link; he->dest = RTD_ROUTER; } else { /* The host is reachable through some route entry */ he->gw = a->gw; he->dest = a->dest; } he->src = rta_clone(a); he->igp_metric = rt_get_igp_metric(e); } done: /* Add a prefix range to the trie */ trie_add_prefix(tab->hostcache->trie, he->addr, MAX_PREFIX_LENGTH, pxlen, MAX_PREFIX_LENGTH); rta_free(old_src); return old_src != he->src; } static void rt_update_hostcache(rtable *tab) { struct hostcache *hc = tab->hostcache; struct hostentry *he; node *n, *x; /* Reset the trie */ lp_flush(hc->lp); hc->trie = f_new_trie(hc->lp); WALK_LIST_DELSAFE(n, x, hc->hostentries) { he = SKIP_BACK(struct hostentry, ln, n); if (!he->uc) { hc_delete_hostentry(hc, he); continue; } if (rt_update_hostentry(tab, he)) rt_schedule_nhu(he->tab); } tab->hcu_scheduled = 0; } static struct hostentry * rt_get_hostentry(rtable *tab, ip_addr a, ip_addr ll, rtable *dep) { struct hostentry *he; if (!tab->hostcache) rt_init_hostcache(tab); unsigned int k = hc_hash(a, dep); struct hostcache *hc = tab->hostcache; for (he = hc->hash_table[k >> hc->hash_shift]; he != NULL; he = he->next) if (ipa_equal(he->addr, a) && (he->tab == dep)) return he; he = hc_new_hostentry(hc, a, ll, dep, k); rt_update_hostentry(tab, he); return he; } /** * rta_set_recursive_next_hop - notify table about recursive nexthop * @dep: table with non-directly reachable route * @a: pointer to route attributes * @tab: table where nexthop should be resolved * @gw: nexthop to resolve * @ll: link-local nexthop address (IPv6 case) * * Search for a FIB node corresponding to the given prefix and * return a pointer to it. If no such node exists, create it. */ void rta_set_recursive_next_hop(rtable *dep, rta *a, rtable *tab, ip_addr *gw, ip_addr *ll) { if (tab->addr_type != RT_IP) return; rta_apply_hostentry(a, rt_get_hostentry(tab, *gw, *ll, dep)); } /* * CLI commands */ static void rt_format_via(rte *e, byte *via) { rta *a = e->attrs; switch (a->dest) { case RTD_ROUTER: bsprintf(via, "via %I on %s", a->gw, a->iface->name); break; case RTD_DEVICE: bsprintf(via, "dev %s", a->iface->name); break; case RTD_BLACKHOLE: bsprintf(via, "blackhole"); break; case RTD_UNREACHABLE: bsprintf(via, "unreachable"); break; case RTD_PROHIBIT: bsprintf(via, "prohibited"); break; case RTD_MULTIPATH: bsprintf(via, "multipath"); break; default: bsprintf(via, "???"); } } static void rt_show_rte(struct cli *c, byte *prefix, rte *e, struct rt_show_data *d, ea_list *tmpa) { byte via[STD_ADDRESS_P_LENGTH+32], from[STD_ADDRESS_P_LENGTH+8]; byte tm[TM_DATETIME_BUFFER_SIZE], info[256]; rta *a = e->attrs; int primary = (e->net->routes == e); int sync_error = (e->net->n.flags & KRF_SYNC_ERROR); void (*get_route_info)(struct rte *, byte *buf, struct ea_list *attrs); struct mpnh *nh; rt_format_via(e, via); tm_format_datetime(tm, &config->tf_route, e->lastmod); if (ipa_nonzero(a->from) && !ipa_equal(a->from, a->gw)) bsprintf(from, " from %I", a->from); else from[0] = 0; get_route_info = a->src->proto->proto->get_route_info; if (get_route_info || d->verbose) { /* Need to normalize the extended attributes */ ea_list *t = tmpa; t = ea_append(t, a->eattrs); tmpa = alloca(ea_scan(t)); ea_merge(t, tmpa); ea_sort(tmpa); } if (get_route_info) get_route_info(e, info, tmpa); else bsprintf(info, " (%d)", e->pref); cli_printf(c, -1007, "%-18s %s [%s %s%s]%s%s", prefix, via, a->src->proto->name, tm, from, primary ? (sync_error ? " !" : " *") : "", info); for (nh = a->nexthops; nh; nh = nh->next) cli_printf(c, -1007, "\tvia %I on %s weight %d", nh->gw, nh->iface->name, nh->weight + 1); if (d->verbose) rta_show(c, a, tmpa); } static void rt_show_net(struct cli *c, net *n, struct rt_show_data *d) { rte *e, *ee; byte prefix[MAX_ADDRESS_P_LENGTH+8]; struct ea_list *tmpa; struct announce_hook *a = NULL; int first = 1; int pass = 0; fn_print(prefix, sizeof(prefix), &n->n); if (d->export_mode) { a = proto_find_announce_hook(d->export_protocol, d->table); if (!a) return; } for (e = n->routes; e; e = e->next) { if (rte_is_filtered(e) != d->filtered) continue; d->rt_counter++; d->net_counter += first; first = 0; if (pass) continue; ee = e; rte_update_lock(); /* We use the update buffer for filtering */ tmpa = make_tmp_attrs(e, rte_update_pool); if (d->export_mode) { struct proto *ep = d->export_protocol; int ic = ep->import_control ? ep->import_control(ep, &e, &tmpa, rte_update_pool) : 0; if (ep->accept_ra_types == RA_OPTIMAL) pass = 1; if (ic < 0) goto skip; if (d->export_mode > 1) { /* * FIXME - This shows what should be exported according to current * filters, but not what was really exported. 'configure soft' * command may change the export filter and do not update routes. */ if (!ic && (f_run(a->out_filter, &e, &tmpa, rte_update_pool, FF_FORCE_TMPATTR) > F_ACCEPT)) goto skip; if (ep->accept_ra_types == RA_ACCEPTED) pass = 1; } } if (d->show_protocol && (d->show_protocol != e->attrs->src->proto)) goto skip; if (f_run(d->filter, &e, &tmpa, rte_update_pool, FF_FORCE_TMPATTR) > F_ACCEPT) goto skip; d->show_counter++; if (d->stats < 2) rt_show_rte(c, prefix, e, d, tmpa); prefix[0] = '\0'; skip: if (e != ee) { rte_free(e); e = ee; } rte_update_unlock(); if (d->primary_only) break; } } static void rt_show_cont(struct cli *c) { struct rt_show_data *d = c->rover; #ifdef DEBUGGING unsigned max = 4; #else unsigned max = 64; #endif struct fib *fib = &d->table->fib; struct fib_iterator *it = &d->fit; FIB_ITERATE_START(fib, it, f) { net *n = (net *) f; if (d->running_on_config && d->running_on_config != config) { cli_printf(c, 8004, "Stopped due to reconfiguration"); goto done; } if (d->export_protocol && (d->export_protocol->export_state == ES_DOWN)) { cli_printf(c, 8005, "Protocol is down"); goto done; } if (!max--) { FIB_ITERATE_PUT(it, f); return; } rt_show_net(c, n, d); } FIB_ITERATE_END(f); if (d->stats) cli_printf(c, 14, "%d of %d routes for %d networks", d->show_counter, d->rt_counter, d->net_counter); else cli_printf(c, 0, ""); done: c->cont = c->cleanup = NULL; } static void rt_show_cleanup(struct cli *c) { struct rt_show_data *d = c->rover; /* Unlink the iterator */ fit_get(&d->table->fib, &d->fit); } void rt_show(struct rt_show_data *d) { net *n; /* Default is either a master table or a table related to a respective protocol */ if (!d->table && d->export_protocol) d->table = d->export_protocol->table; if (!d->table && d->show_protocol) d->table = d->show_protocol->table; if (!d->table) d->table = config->master_rtc->table; /* Filtered routes are neither exported nor have sensible ordering */ if (d->filtered && (d->export_mode || d->primary_only)) cli_msg(0, ""); if (d->pxlen == 256) { FIB_ITERATE_INIT(&d->fit, &d->table->fib); this_cli->cont = rt_show_cont; this_cli->cleanup = rt_show_cleanup; this_cli->rover = d; } else { if (d->show_for) n = net_route(d->table, d->prefix, d->pxlen); else n = net_find(d->table, d->prefix, d->pxlen); if (n) { rt_show_net(this_cli, n, d); cli_msg(0, ""); } else cli_msg(8001, "Network not in table"); } } /* * Documentation for functions declared inline in route.h */ #if 0 /** * net_find - find a network entry * @tab: a routing table * @addr: address of the network * @len: length of the network prefix * * net_find() looks up the given network in routing table @tab and * returns a pointer to its &net entry or %NULL if no such network * exists. */ static inline net *net_find(rtable *tab, ip_addr addr, unsigned len) { DUMMY; } /** * net_get - obtain a network entry * @tab: a routing table * @addr: address of the network * @len: length of the network prefix * * net_get() looks up the given network in routing table @tab and * returns a pointer to its &net entry. If no such entry exists, it's * created. */ static inline net *net_get(rtable *tab, ip_addr addr, unsigned len) { DUMMY; } /** * rte_cow - copy a route for writing * @r: a route entry to be copied * * rte_cow() takes a &rte and prepares it for modification. The exact action * taken depends on the flags of the &rte -- if it's a temporary entry, it's * just returned unchanged, else a new temporary entry with the same contents * is created. * * The primary use of this function is inside the filter machinery -- when * a filter wants to modify &rte contents (to change the preference or to * attach another set of attributes), it must ensure that the &rte is not * shared with anyone else (and especially that it isn't stored in any routing * table). * * Result: a pointer to the new writable &rte. */ static inline rte * rte_cow(rte *r) { DUMMY; } #endif