/* * BIRD Internet Routing Daemon -- Raw allocation * * (c) 2020 Maria Matejka * * Can be freely distributed and used under the terms of the GNU GPL. */ #include "nest/bird.h" #include "lib/resource.h" #include "lib/lists.h" #include "lib/event.h" #include #include #include #ifdef HAVE_MMAP #include #endif #ifdef CONFIG_DISABLE_THP #include #ifndef PR_SET_THP_DISABLE #define PR_SET_THP_DISABLE 41 #endif #endif long page_size = 0; #ifdef HAVE_MMAP #define KEEP_PAGES_MAIN_MAX 256 #define KEEP_PAGES_MAIN_MIN 8 #define CLEANUP_PAGES_BULK 256 STATIC_ASSERT(KEEP_PAGES_MAIN_MIN * 4 < KEEP_PAGES_MAIN_MAX); static bool use_fake = 0; #if DEBUGGING struct free_page { node unused[42]; node n; }; #else struct free_page { node n; }; #endif #define EP_POS_MAX ((page_size - OFFSETOF(struct empty_pages, pages)) / sizeof (void *)) struct empty_pages { node n; uint pos; void *pages[0]; }; struct free_pages { list pages; /* List of (struct free_page) keeping free pages without releasing them (hot) */ list empty; /* List of (struct empty_pages) keeping invalidated pages mapped for us (cold) */ u16 min, max; /* Minimal and maximal number of free pages kept */ uint cnt; /* Number of free pages in list */ event cleanup; }; static void global_free_pages_cleanup_event(void *); static void *alloc_cold_page(void); static struct free_pages global_free_pages = { .min = KEEP_PAGES_MAIN_MIN, .max = KEEP_PAGES_MAIN_MAX, .cleanup = { .hook = global_free_pages_cleanup_event }, }; uint *pages_kept = &global_free_pages.cnt; static void * alloc_sys_page(void) { void *ptr = mmap(NULL, page_size, PROT_WRITE | PROT_READ, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (ptr == MAP_FAILED) die("mmap(%ld) failed: %m", (s64) page_size); return ptr; } extern int shutting_down; /* Shutdown requested. */ #else // ! HAVE_MMAP #define use_fake 1 #endif void * alloc_page(void) { /* If the system page allocator is goofy, we use posix_memalign to get aligned blocks of memory. */ if (use_fake) { void *ptr = NULL; int err = posix_memalign(&ptr, page_size, page_size); if (err || !ptr) die("posix_memalign(%ld) failed", (s64) page_size); return ptr; } #ifdef HAVE_MMAP struct free_pages *fps = &global_free_pages; /* If there is any free page kept hot, we use it. */ if (fps->cnt) { struct free_page *fp = SKIP_BACK(struct free_page, n, HEAD(fps->pages)); rem_node(&fp->n); /* If the hot-free-page cache is getting short, request the cleanup routine to replenish the cache */ if ((--fps->cnt < fps->min) && !shutting_down) ev_schedule(&fps->cleanup); return fp; } else return alloc_cold_page(); } static void * alloc_cold_page(void) { struct free_pages *fps = &global_free_pages; /* If there is any free page kept cold, we use that. */ if (!EMPTY_LIST(fps->empty)) { struct empty_pages *ep = HEAD(fps->empty); /* Either the keeper page contains at least one cold page pointer, return that */ if (ep->pos) return ep->pages[--ep->pos]; /* Or the keeper page has no more cold page pointer, return the keeper page */ rem_node(&ep->n); return ep; } /* And in the worst case, allocate a new page by mmap() */ return alloc_sys_page(); #endif } void free_page(void *ptr) { /* If the system page allocator is goofy, we just free the block and care no more. */ if (use_fake) { free(ptr); return; } #ifdef HAVE_MMAP struct free_pages *fps = &global_free_pages; struct free_page *fp = ptr; /* Otherwise, we add the free page to the hot-free-page list */ fp->n = (node) {}; add_tail(&fps->pages, &fp->n); /* And if there are too many hot free pages, we ask for page cleanup */ if ((++fps->cnt > fps->max) && !shutting_down) ev_schedule(&fps->cleanup); #endif } #ifdef HAVE_MMAP static void global_free_pages_cleanup_event(void *data UNUSED) { /* Cleanup on shutdown is ignored. All pages may be kept hot, OS will take care. */ if (shutting_down) return; struct free_pages *fps = &global_free_pages; /* Cleanup may get called when hot free page cache is short of pages. Replenishing. */ while (fps->cnt / 2 < fps->min) free_page(alloc_cold_page()); /* Or the hot free page cache is too big. Moving some pages to the cold free page cache. */ for (int limit = CLEANUP_PAGES_BULK; limit && (fps->cnt > fps->max / 2); fps->cnt--, limit--) { struct free_page *fp = SKIP_BACK(struct free_page, n, TAIL(fps->pages)); rem_node(&fp->n); /* Empty pages are stored as pointers. To store them, we need a pointer block. */ struct empty_pages *ep; if (EMPTY_LIST(fps->empty) || ((ep = HEAD(fps->empty))->pos == EP_POS_MAX)) { /* There is either no pointer block or the last block is full. We use this block as a pointer block. */ ep = (struct empty_pages *) fp; *ep = (struct empty_pages) {}; add_head(&fps->empty, &ep->n); } else { /* We store this block as a pointer into the first free place * and tell the OS that the underlying memory is trash. */ ep->pages[ep->pos++] = fp; if (madvise(fp, page_size, #ifdef CONFIG_MADV_DONTNEED_TO_FREE MADV_DONTNEED #else MADV_FREE #endif ) < 0) bug("madvise(%p) failed: %m", fp); } } /* If the hot free page cleanup hit the limit, re-schedule this routine * to allow for other routines to run. */ if (fps->cnt > fps->max) ev_schedule(&fps->cleanup); } #endif void page_dump(struct dump_request *dreq) { #ifdef HAVE_MMAP RDUMP("Hot pages:\n"); node *n; WALK_LIST(n, global_free_pages.pages) RDUMP(" %p\n", n); RDUMP("Cold pages:\n"); WALK_LIST(n, global_free_pages.empty) { struct empty_pages *ep = SKIP_BACK(struct empty_pages, n, n); RDUMP(" %p (index)\n", ep); for (uint i=0; ipos; i++) RDUMP(" %p\n", ep->pages[i]); } #endif } void resource_sys_init(void) { #ifdef CONFIG_DISABLE_THP /* Disable transparent huge pages, they do not work properly with madvice(MADV_DONTNEED) */ if (prctl(PR_SET_THP_DISABLE, (unsigned long) 1, (unsigned long) 0, (unsigned long) 0, (unsigned long) 0) < 0) log(L_WARN "Cannot disable transparent huge pages: prctl(PR_SET_THP_DISABLE) failed: %m"); #endif #ifdef HAVE_MMAP ASSERT_DIE(global_free_pages.cnt == 0); /* Check what page size the system supports */ if (!(page_size = sysconf(_SC_PAGESIZE))) die("System page size must be non-zero"); if ((u64_popcount(page_size) == 1) && (page_size >= (1 << 10)) && (page_size <= (1 << 18))) { /* We assume that page size has only one bit and is between 1K and 256K (incl.). * Otherwise, the assumptions in lib/slab.c (sl_head's num_full range) aren't met. */ struct free_pages *fps = &global_free_pages; init_list(&fps->pages); init_list(&fps->empty); global_free_pages_cleanup_event(NULL); return; } /* Too big or strange page, use the aligned allocator instead */ log(L_WARN "Got strange memory page size (%ld), using the aligned allocator instead", (s64) page_size); use_fake = 1; #endif page_size = 4096; }