/* * BIRD Library -- SHA-256 and SHA-224 Hash Functions, * HMAC-SHA-256 and HMAC-SHA-224 Functions * * (c) 2015 CZ.NIC z.s.p.o. * * Based on the code from libgcrypt-1.6.0, which is * (c) 2003, 2006, 2008, 2009 Free Software Foundation, Inc. * * Can be freely distributed and used under the terms of the GNU GPL. */ #include #include #include #include #include "lib/sha256.h" #include "lib/unaligned.h" static uint sha256_transform(void *ctx, const byte *data, size_t nblks); void sha256_init(struct sha256_context *ctx) { ctx->h0 = 0x6a09e667; ctx->h1 = 0xbb67ae85; ctx->h2 = 0x3c6ef372; ctx->h3 = 0xa54ff53a; ctx->h4 = 0x510e527f; ctx->h5 = 0x9b05688c; ctx->h6 = 0x1f83d9ab; ctx->h7 = 0x5be0cd19; ctx->nblocks = 0; ctx->nblocks_high = 0; ctx->count = 0; ctx->blocksize = 64; ctx->transform = sha256_transform; } void sha224_init(struct sha224_context *ctx) { ctx->h0 = 0xc1059ed8; ctx->h1 = 0x367cd507; ctx->h2 = 0x3070dd17; ctx->h3 = 0xf70e5939; ctx->h4 = 0xffc00b31; ctx->h5 = 0x68581511; ctx->h6 = 0x64f98fa7; ctx->h7 = 0xbefa4fa4; ctx->nblocks = 0; ctx->nblocks_high = 0; ctx->count = 0; ctx->blocksize = 64; ctx->transform = sha256_transform; } /* (4.2) same as SHA-1's F1. */ static inline u32 f1(u32 x, u32 y, u32 z) { return (z ^ (x & (y ^ z))); } /* (4.3) same as SHA-1's F3 */ static inline u32 f3(u32 x, u32 y, u32 z) { return ((x & y) | (z & (x|y))); } /* Bitwise rotation of an uint to the right */ static inline u32 ror(u32 x, int n) { return ( (x >> (n&(32-1))) | (x << ((32-n)&(32-1))) ); } /* (4.4) */ static inline u32 sum0(u32 x) { return (ror(x, 2) ^ ror(x, 13) ^ ror(x, 22)); } /* (4.5) */ static inline u32 sum1(u32 x) { return (ror(x, 6) ^ ror(x, 11) ^ ror(x, 25)); } /* Transform the message X which consists of 16 32-bit-words. See FIPS 180-2 for details. */ #define S0(x) (ror((x), 7) ^ ror((x), 18) ^ ((x) >> 3)) /* (4.6) */ #define S1(x) (ror((x), 17) ^ ror((x), 19) ^ ((x) >> 10)) /* (4.7) */ #define R(a,b,c,d,e,f,g,h,k,w) \ do \ { \ t1 = (h) + sum1((e)) + f1((e),(f),(g)) + (k) + (w); \ t2 = sum0((a)) + f3((a),(b),(c)); \ h = g; \ g = f; \ f = e; \ e = d + t1; \ d = c; \ c = b; \ b = a; \ a = t1 + t2; \ } while (0) /* The SHA-256 core: Transform the message X which consists of 16 32-bit-words. See FIPS 180-2 for details. */ static uint sha256_transform_block(struct sha256_context *ctx, const byte *data) { static const u32 K[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; u32 a,b,c,d,e,f,g,h,t1,t2; u32 w[64]; int i; a = ctx->h0; b = ctx->h1; c = ctx->h2; d = ctx->h3; e = ctx->h4; f = ctx->h5; g = ctx->h6; h = ctx->h7; for (i = 0; i < 16; i++) w[i] = get_u32(data + i * 4); for (; i < 64; i++) w[i] = S1(w[i-2]) + w[i-7] + S0(w[i-15]) + w[i-16]; for (i = 0; i < 64;) { t1 = h + sum1(e) + f1(e, f, g) + K[i] + w[i]; t2 = sum0 (a) + f3(a, b, c); d += t1; h = t1 + t2; t1 = g + sum1(d) + f1(d, e, f) + K[i+1] + w[i+1]; t2 = sum0 (h) + f3(h, a, b); c += t1; g = t1 + t2; t1 = f + sum1(c) + f1(c, d, e) + K[i+2] + w[i+2]; t2 = sum0 (g) + f3(g, h, a); b += t1; f = t1 + t2; t1 = e + sum1(b) + f1(b, c, d) + K[i+3] + w[i+3]; t2 = sum0 (f) + f3(f, g, h); a += t1; e = t1 + t2; t1 = d + sum1(a) + f1(a, b, c) + K[i+4] + w[i+4]; t2 = sum0 (e) + f3(e, f, g); h += t1; d = t1 + t2; t1 = c + sum1(h) + f1(h, a, b) + K[i+5] + w[i+5]; t2 = sum0 (d) + f3(d, e, f); g += t1; c = t1 + t2; t1 = b + sum1(g) + f1(g, h, a) + K[i+6] + w[i+6]; t2 = sum0 (c) + f3(c, d, e); f += t1; b = t1 + t2; t1 = a + sum1(f) + f1(f, g, h) + K[i+7] + w[i+7]; t2 = sum0 (b) + f3(b, c, d); e += t1; a = t1 + t2; i += 8; } ctx->h0 += a; ctx->h1 += b; ctx->h2 += c; ctx->h3 += d; ctx->h4 += e; ctx->h5 += f; ctx->h6 += g; ctx->h7 += h; return /*burn_stack*/ 74*4+32; } #undef S0 #undef S1 #undef R static uint sha256_transform(void *ctx, const byte *data, size_t nblks) { struct sha256_context *hd = ctx; uint burn; do { burn = sha256_transform_block(hd, data); data += 64; } while (--nblks); return burn; } /* Common function to write a chunk of data to the transform function of a hash algorithm. Note that the use of the term "block" does not imply a fixed size block. Note that we explicitly allow to use this function after the context has been finalized; the result does not have any meaning but writing after finalize is sometimes helpful to mitigate timing attacks. */ void sha256_update(struct sha256_context *ctx, const byte *in_buf, size_t in_len) { const uint blocksize = ctx->blocksize; size_t inblocks; if (sizeof(ctx->buf) < blocksize) debug("BUG: in file %s at line %d", __FILE__ , __LINE__); if (ctx->count == blocksize) /* Flush the buffer. */ { ctx->transform(ctx, ctx->buf, 1); ctx->count = 0; if (!++ctx->nblocks) ctx->nblocks_high++; } if (!in_buf) return; if (ctx->count) { for (; in_len && ctx->count < blocksize; in_len--) ctx->buf[ctx->count++] = *in_buf++; sha256_update(ctx, NULL, 0); if (!in_len) return; } if (in_len >= blocksize) { inblocks = in_len / blocksize; ctx->transform(ctx, in_buf, inblocks); ctx->count = 0; ctx->nblocks_high += (ctx->nblocks + inblocks < inblocks); ctx->nblocks += inblocks; in_len -= inblocks * blocksize; in_buf += inblocks * blocksize; } for (; in_len && ctx->count < blocksize; in_len--) ctx->buf[ctx->count++] = *in_buf++; } /* The routine finally terminates the computation and returns the digest. The handle is prepared for a new cycle, but adding bytes to the handle will the destroy the returned buffer. Returns: 32 bytes with the message the digest. */ byte* sha256_final(struct sha256_context *ctx) { u32 t, th, msb, lsb; byte *p; sha256_update(ctx, NULL, 0); /* flush */; t = ctx->nblocks; if (sizeof t == sizeof ctx->nblocks) th = ctx->nblocks_high; else th = ctx->nblocks >> 32; /* multiply by 64 to make a byte count */ lsb = t << 6; msb = (th << 6) | (t >> 26); /* add the count */ t = lsb; if ((lsb += ctx->count) < t) msb++; /* multiply by 8 to make a bit count */ t = lsb; lsb <<= 3; msb <<= 3; msb |= t >> 29; if (ctx->count < 56) { /* enough room */ ctx->buf[ctx->count++] = 0x80; /* pad */ while (ctx->count < 56) ctx->buf[ctx->count++] = 0; /* pad */ } else { /* need one extra block */ ctx->buf[ctx->count++] = 0x80; /* pad character */ while (ctx->count < 64) ctx->buf[ctx->count++] = 0; sha256_update(ctx, NULL, 0); /* flush */; memset (ctx->buf, 0, 56 ); /* fill next block with zeroes */ } /* append the 64 bit count */ put_u32(ctx->buf + 56, msb); put_u32(ctx->buf + 60, lsb); sha256_transform(ctx, ctx->buf, 1); p = ctx->buf; #define X(a) do { put_u32(p, ctx->h##a); p += 4; } while(0) X(0); X(1); X(2); X(3); X(4); X(5); X(6); X(7); #undef X return ctx->buf; } /* * SHA256-HMAC */ static void sha256_hash_buffer(byte *outbuf, const byte *buffer, size_t length) { struct sha256_context hd_tmp; sha256_init(&hd_tmp); sha256_update(&hd_tmp, buffer, length); memcpy(outbuf, sha256_final(&hd_tmp), SHA256_SIZE); } void sha256_hmac_init(struct sha256_hmac_context *ctx, const byte *key, size_t keylen) { byte keybuf[SHA256_BLOCK_SIZE], buf[SHA256_BLOCK_SIZE]; /* Hash the key if necessary */ if (keylen <= SHA256_BLOCK_SIZE) { memcpy(keybuf, key, keylen); bzero(keybuf + keylen, SHA256_BLOCK_SIZE - keylen); } else { sha256_hash_buffer(keybuf, key, keylen); bzero(keybuf + SHA256_SIZE, SHA256_BLOCK_SIZE - SHA256_SIZE); } /* Initialize the inner digest */ sha256_init(&ctx->ictx); int i; for (i = 0; i < SHA256_BLOCK_SIZE; i++) buf[i] = keybuf[i] ^ 0x36; sha256_update(&ctx->ictx, buf, SHA256_BLOCK_SIZE); /* Initialize the outer digest */ sha256_init(&ctx->octx); for (i = 0; i < SHA256_BLOCK_SIZE; i++) buf[i] = keybuf[i] ^ 0x5c; sha256_update(&ctx->octx, buf, SHA256_BLOCK_SIZE); } void sha256_hmac_update(struct sha256_hmac_context *ctx, const byte *buf, size_t buflen) { /* Just update the inner digest */ sha256_update(&ctx->ictx, buf, buflen); } byte *sha256_hmac_final(struct sha256_hmac_context *ctx) { /* Finish the inner digest */ byte *isha = sha256_final(&ctx->ictx); /* Finish the outer digest */ sha256_update(&ctx->octx, isha, SHA256_SIZE); return sha256_final(&ctx->octx); } /* * SHA224-HMAC */ static void sha224_hash_buffer(byte *outbuf, const byte *buffer, size_t length) { struct sha224_context hd_tmp; sha224_init(&hd_tmp); sha224_update(&hd_tmp, buffer, length); memcpy(outbuf, sha224_final(&hd_tmp), SHA224_SIZE); } void sha224_hmac_init(struct sha224_hmac_context *ctx, const byte *key, size_t keylen) { byte keybuf[SHA224_BLOCK_SIZE], buf[SHA224_BLOCK_SIZE]; /* Hash the key if necessary */ if (keylen <= SHA224_BLOCK_SIZE) { memcpy(keybuf, key, keylen); bzero(keybuf + keylen, SHA224_BLOCK_SIZE - keylen); } else { sha224_hash_buffer(keybuf, key, keylen); bzero(keybuf + SHA224_SIZE, SHA224_BLOCK_SIZE - SHA224_SIZE); } /* Initialize the inner digest */ sha224_init(&ctx->ictx); int i; for (i = 0; i < SHA224_BLOCK_SIZE; i++) buf[i] = keybuf[i] ^ 0x36; sha224_update(&ctx->ictx, buf, SHA224_BLOCK_SIZE); /* Initialize the outer digest */ sha224_init(&ctx->octx); for (i = 0; i < SHA224_BLOCK_SIZE; i++) buf[i] = keybuf[i] ^ 0x5c; sha224_update(&ctx->octx, buf, SHA224_BLOCK_SIZE); } void sha224_hmac_update(struct sha224_hmac_context *ctx, const byte *buf, size_t buflen) { /* Just update the inner digest */ sha256_update(&ctx->ictx, buf, buflen); } byte *sha224_hmac_final(struct sha224_hmac_context *ctx) { /* Finish the inner digest */ byte *isha = sha224_final(&ctx->ictx); /* Finish the outer digest */ sha224_update(&ctx->octx, isha, SHA224_SIZE); return sha224_final(&ctx->octx); }