/* * BIRD Library -- Generic Hash Table * * (c) 2013 Ondrej Zajicek * (c) 2024 Maria Matejka * (c) 2013--2024 CZ.NIC z.s.p.o. * * Can be freely distributed and used under the terms of the GNU GPL. */ #ifndef _BIRD_HASH_H_ #define _BIRD_HASH_H_ /* * Regular hash table */ #define HASH(type) struct { type **data; uint count; u8 order; } #define HASH_TYPE(v) typeof(** (v).data) #define HASH_SIZE(v) (1U << (v).order) #define HASH_EQ(v,id,k1,k2...) (id##_EQ(k1, k2)) #define HASH_FN(v,id,key...) ((u32) (id##_FN(key)) >> (32 - (v).order)) #define HASH_FNO(id,key...) id##_FN(key) #define HASH_INIT(v,pool,init_order) \ ({ \ (v).count = 0; \ (v).order = (init_order); \ (v).data = mb_allocz(pool, HASH_SIZE(v) * sizeof(* (v).data)); \ }) #define HASH_FREE(v) \ ({ \ mb_free((v).data); \ (v) = (typeof(v)){ }; \ }) #define HASH_FIND_CHAIN(v,id,key...) \ ({ \ u32 _h = HASH_FN(v, id, key); \ (v).data[_h]; \ }) #define HASH_FIND(v,id,key...) \ ({ \ HASH_TYPE(v) *_n = HASH_FIND_CHAIN(v, id, key); \ while (_n && !HASH_EQ(v, id, id##_KEY(_n), key)) \ _n = id##_NEXT(_n); \ _n; \ }) #define HASH_INSERT(v,id,node) \ ({ \ u32 _h = HASH_FN(v, id, id##_KEY((node))); \ HASH_TYPE(v) **_nn = (v).data + _h; \ id##_NEXT(node) = *_nn; \ *_nn = node; \ (v).count++; \ }) #define HASH_DO_REMOVE(v,id,_nn) \ ({ \ *_nn = id##_NEXT((*_nn)); \ (v).count--; \ }) #define HASH_DELETE(v,id,key...) \ ({ \ u32 _h = HASH_FN(v, id, key); \ HASH_TYPE(v) *_n, **_nn = (v).data + _h; \ \ while ((*_nn) && !HASH_EQ(v, id, id##_KEY((*_nn)), key)) \ _nn = &(id##_NEXT((*_nn))); \ \ if (_n = *_nn) \ HASH_DO_REMOVE(v,id,_nn); \ _n; \ }) #define HASH_REMOVE(v,id,node) \ ({ \ u32 _h = HASH_FN(v, id, id##_KEY((node))); \ HASH_TYPE(v) *_n, **_nn = (v).data + _h; \ \ while ((*_nn) && (*_nn != (node))) \ _nn = &(id##_NEXT((*_nn))); \ \ if (_n = *_nn) \ HASH_DO_REMOVE(v,id,_nn); \ _n; \ }) #define HASH_REHASH(v,id,pool,step) \ ({ \ HASH_TYPE(v) *_n, *_n2, **_od; \ uint _i, _os; \ \ _os = HASH_SIZE(v); \ _od = (v).data; \ (v).count = 0; \ (v).order += (step); \ (v).data = mb_allocz(pool, HASH_SIZE(v) * sizeof(* (v).data)); \ \ for (_i = 0; _i < _os; _i++) \ for (_n = _od[_i]; _n && (_n2 = id##_NEXT(_n), 1); _n = _n2) \ HASH_INSERT(v, id, _n); \ \ mb_free(_od); \ }) #define REHASH_LO_MARK(a,b,c,d,e,f) a #define REHASH_HI_MARK(a,b,c,d,e,f) b #define REHASH_LO_STEP(a,b,c,d,e,f) c #define REHASH_HI_STEP(a,b,c,d,e,f) d #define REHASH_LO_BOUND(a,b,c,d,e,f) e #define REHASH_HI_BOUND(a,b,c,d,e,f) f #define HASH_DEFINE_REHASH_FN(id,type) \ static void id##_REHASH(void *v, pool *p, int step) \ { HASH_REHASH(* (HASH(type) *) v, id, p, step); } #define HASH_MAY_STEP_UP(v,id,pool) HASH_MAY_STEP_UP_(v,pool, id##_REHASH, id##_PARAMS) #define HASH_MAY_STEP_DOWN(v,id,pool) HASH_MAY_STEP_DOWN_(v,pool, id##_REHASH, id##_PARAMS) #define HASH_MAY_RESIZE_DOWN(v,id,pool) HASH_MAY_RESIZE_DOWN_(v,pool, id##_REHASH, id##_PARAMS) #define HASH_MAY_STEP_UP_(v,pool,rehash_fn,args) \ ({ \ if (((v).count > (HASH_SIZE(v) REHASH_HI_MARK(args))) && \ ((v).order < (REHASH_HI_BOUND(args)))) \ rehash_fn(&(v), pool, REHASH_HI_STEP(args)); \ }) #define HASH_MAY_STEP_DOWN_(v,pool,rehash_fn,args) \ ({ \ if (((v).count < (HASH_SIZE(v) REHASH_LO_MARK(args))) && \ ((v).order > (REHASH_LO_BOUND(args)))) \ rehash_fn(&(v), pool, -(REHASH_LO_STEP(args))); \ }) #define HASH_MAY_RESIZE_DOWN_(v,pool,rehash_fn,args) \ ({ \ { \ uint _o = (v).order; \ while (((v).count < ((1U << _o) REHASH_LO_MARK(args))) && \ (_o > (REHASH_LO_BOUND(args)))) \ _o -= (REHASH_LO_STEP(args)); \ if (_o < (v).order) \ rehash_fn(&(v), pool, _o - (v).order); \ } \ }) #define HASH_INSERT2(v,id,pool,node) \ ({ \ HASH_INSERT(v, id, node); \ HASH_MAY_STEP_UP(v, id, pool); \ }) #define HASH_DELETE2(v,id,pool,key...) \ ({ \ HASH_TYPE(v) *_n = HASH_DELETE(v, id, key); \ if (_n) HASH_MAY_STEP_DOWN(v, id, pool); \ _n; \ }) #define HASH_REMOVE2(v,id,pool,node) \ ({ \ HASH_TYPE(v) *_n = HASH_REMOVE(v, id, node); \ if (_n) HASH_MAY_STEP_DOWN(v, id, pool); \ _n; \ }) #define HASH_WALK(v,next,n) \ do { \ HASH_TYPE(v) *n; \ uint _i; \ uint _s = HASH_SIZE(v); \ for (_i = 0; _i < _s; _i++) \ for (n = (v).data[_i]; n; n = n->next) #define HASH_WALK_END } while (0) #define HASH_WALK_DELSAFE(v,next,n) \ do { \ HASH_TYPE(v) *n, *_next; \ uint _i; \ uint _s = HASH_SIZE(v); \ for (_i = 0; _i < _s; _i++) \ for (n = (v).data[_i]; n && (_next = n->next, 1); n = _next) #define HASH_WALK_DELSAFE_END } while (0) #define HASH_WALK_FILTER(v,next,n,nn) \ do { \ HASH_TYPE(v) *n, **nn; \ uint _i; \ uint _s = HASH_SIZE(v); \ for (_i = 0; _i < _s; _i++) \ for (nn = (v).data + _i; n = *nn; (*nn == n) ? (nn = &n->next) : NULL) #define HASH_WALK_FILTER_END } while (0) /* * Atomic hash table with data-local spinlocks */ #define SPINHASH(type) \ struct { \ _Atomic uint count; \ struct { \ uint order; \ struct { type *data; rw_spinlock lock; } block[0]; \ } * _Atomic cur, * _Atomic new; \ pool *pool; \ event rehash; \ event_list *target; \ } #define SPINHASH_INIT(v,id,_pool,_target) \ ({ \ atomic_store_explicit(&(v).count, 0, memory_order_relaxed); \ typeof(*(v).cur) *cb = mb_allocz(_pool, sizeof *cb + (1U << id##_ORDER) * sizeof *cb->block); \ cb->order = id##_ORDER; \ atomic_store_explicit(&(v).new, NULL, memory_order_relaxed); \ atomic_store_explicit(&(v).cur, cb, memory_order_relaxed); \ (v).pool = _pool; \ (v).rehash = (event) { .hook = id##_REHASH, .data = &(v), }; \ (v).target = _target; \ }) #define SPINHASH_FREE(v) \ ({ \ ev_postpone(&(v).rehash); \ SPINHASH_GETBLOCK((&(v)),_cur,cur); \ atomic_store_explicit(&(v).cur, NULL, memory_order_release); \ mb_free(_cur); \ SPINHASH_GETBLOCK((&(v)),_new,new); \ ASSERT_DIE(_new == NULL); \ (v).pool = NULL; \ (v).target = NULL; \ }) #define SPINHASH_GETBLOCK(v,name,which) \ typeof(*v->which) *name = atomic_load_explicit(&(v)->which, memory_order_relaxed); #define SPINHASH_BEGIN_CHAIN(v,id,rw,n,key...) \ do { \ rcu_read_lock(); \ u32 _hh = id##_FN(key); \ SPINHASH_GETBLOCK((&(v)),_cur,cur); \ SPINHASH_GETBLOCK((&(v)),_new,new); \ SPINHASH_BEGIN_CHAIN_INDEX(v,_hh,rw,n); \ #define SPINHASH_BEGIN_CHAIN_INDEX(v,h,rw,n) \ u32 _ch = (h) >> (32 - _cur->order); \ rw_spinlock *_lock = &_cur->block[_ch].lock; \ rws_##rw##_lock(_lock); \ typeof (&_cur->block[_ch].data) n = &_cur->block[_ch].data; \ if (*n == SPINHASH_REHASH_SENTINEL) { \ rws_##rw##_unlock(_lock); \ u32 _nh = (h) >> (32 - _new->order); \ _lock = &_new->block[_nh].lock; \ rws_##rw##_lock(_lock); \ n = &_new->block[_nh].data; \ ASSERT_DIE(*n != SPINHASH_REHASH_SENTINEL); \ }; #define SPINHASH_END_CHAIN_INDEX(rw) \ rws_##rw##_unlock(_lock); \ #define SPINHASH_END_CHAIN(rw) \ SPINHASH_END_CHAIN_INDEX(rw); \ rcu_read_unlock(); \ } while (0) #define SPINHASH_FIND(v,id,key...) \ ({ \ typeof ((v).cur->block[0].data) _n; \ SPINHASH_BEGIN_CHAIN(v,id,read,_c,key); \ while ((*_c) && !HASH_EQ(v,id,id##_KEY((*_c)), key)) \ _c = &id##_NEXT((*_c)); \ _n = *_c; \ SPINHASH_END_CHAIN(read); \ _n; \ }) #define SPINHASH_INSERT(v,id,n) \ do { \ rcu_read_lock(); \ uint _h = HASH_FNO(id, id##_KEY(n)); \ SPINHASH_GETBLOCK((&(v)),_cur,cur); \ uint _ch = _h >> (32 - _cur->order); \ rws_write_lock(&_cur->block[_ch].lock); \ if (_cur->block[_ch].data == SPINHASH_REHASH_SENTINEL) { \ SPINHASH_GETBLOCK((&(v)),_new,new); \ uint _nh = _h >> (32 - _new->order); \ rws_write_lock(&_new->block[_nh].lock); \ ASSERT_DIE(_new->block[_nh].data != SPINHASH_REHASH_SENTINEL); \ id##_NEXT(n) = _new->block[_nh].data; \ _new->block[_nh].data = n; \ rws_write_unlock(&_new->block[_nh].lock); \ } else { \ id##_NEXT(n) = _cur->block[_ch].data; \ _cur->block[_ch].data = n; \ } \ rws_write_unlock(&_cur->block[_ch].lock); \ uint count = atomic_fetch_add_explicit(&(v).count, 1, memory_order_relaxed);\ SPINHASH_REQUEST_REHASH((&(v)),id,count); \ rcu_read_unlock(); \ } while (0) \ #define SPINHASH_REMOVE(v,id,n) \ do { \ typeof(n) _n = (n); \ SPINHASH_BEGIN_CHAIN(v,id,write,_c,id##_KEY(_n)) \ for (; *_c; _c = &id##_NEXT((*_c))) \ if (_n == *_c) { \ SPINHASH_DO_REMOVE(v,id,_c); \ break; \ } \ SPINHASH_END_CHAIN(write); \ uint count = atomic_load_explicit(&(v).count, memory_order_relaxed);\ SPINHASH_REQUEST_REHASH((&(v)),id,count); \ } while (0) #define SPINHASH_DO_REMOVE(v,id,c) \ atomic_fetch_sub_explicit(&(v).count, 1, memory_order_relaxed); \ *c = id##_NEXT((*c)); \ #define SPINHASH_WALK(v,id,n) \ SPINHASH_WALK_CHAINS(v,id,read,nn) \ for (typeof (*nn) n = *nn; n; n = id##_NEXT(n)) { \ #define SPINHASH_WALK_END \ } \ SPINHASH_WALK_CHAINS_END(read) \ #define SPINHASH_WALK_FILTER(v,id,rw,nn) \ SPINHASH_WALK_CHAINS(v,id,rw,nn) \ for (; nn && *nn; nn = nn ? &id##_NEXT((*nn)) : NULL) #define SPINHASH_WALK_FILTER_END(rw) SPINHASH_WALK_CHAINS_END(rw) #define SPINHASH_WALK_CHAINS(v,id,rw,nn) \ do { \ rcu_read_lock(); \ SPINHASH_GETBLOCK((&(v)),_cur,cur); \ SPINHASH_GETBLOCK((&(v)),_new,new); \ for (uint _h = 0; !(_h >> _cur->order); _h++) { \ SPINHASH_BEGIN_CHAIN_INDEX(v,_h,rw,nn); \ #define SPINHASH_WALK_CHAINS_END(rw) \ SPINHASH_END_CHAIN_INDEX(rw); \ } \ rcu_read_unlock(); \ } while (0) #define SPINHASH_CHECK_REHASH(v,id,count) SPINHASH_CHECK_REHASH_(v,id,count,id##_PARAMS) #define SPINHASH_CHECK_REHASH_(v,id,count,args) \ ({ \ rcu_read_lock(); \ SPINHASH_GETBLOCK(v,_cur,cur); \ SPINHASH_GETBLOCK(v,_new,new); \ uint order = (_new ?: _cur)->order; \ rcu_read_unlock(); \ uint size = 1U << order; \ ((count > size REHASH_HI_MARK(args)) && (order < REHASH_HI_BOUND(args))) ? \ REHASH_HI_STEP(args) : \ ((count < size REHASH_LO_MARK(args)) && (order > REHASH_LO_BOUND(args))) ? \ -REHASH_LO_STEP(args) : \ 0; \ }) #define SPINHASH_REQUEST_REHASH(v,id,count) \ if (SPINHASH_CHECK_REHASH(v,id,count) && (v)->target) \ ev_send((v)->target, &(v)->rehash); #define SPINHASH_DEFINE_REHASH_FN(id,type) \ static void id##_REHASH(void *_v) { \ SPINHASH(type) *v = _v; \ SPINHASH_REHASH_FN_BODY(v,id,type); \ } #define SPINHASH_REHASH_FN_BODY(v,id,type) \ int step; \ SPINHASH_REHASH_PREPARE(v,id,type,step); \ if (step) { \ if (step > 0) SPINHASH_REHASH_UP(id,type,step); \ if (step < 0) SPINHASH_REHASH_DOWN(id,type,-step); \ SPINHASH_REHASH_FINISH(v,id); \ } \ #define SPINHASH_REHASH_PREPARE(v,id,type,step) \ SPINHASH_GETBLOCK((v),_cur,cur); \ typeof (_cur) _nb = NULL; \ uint _cb = atomic_load_explicit(&(v)->count, memory_order_relaxed); \ step = SPINHASH_CHECK_REHASH((v),id,_cb); \ struct domain_generic *_dg = (v)->pool->domain; \ if (step) { \ uint no = _cur->order + step; \ uint nsz = 1U << no; \ if (DG_IS_LOCKED(_dg)) _dg = NULL; \ if (_dg) DG_LOCK(_dg); \ _nb = mb_alloc((v)->pool, sizeof *_cur + nsz * sizeof *_cur->block);\ _nb->order = no; \ for (uint i=0; iblock[i].data = SPINHASH_REHASH_SENTINEL; \ _nb->block[i].lock = (rw_spinlock) {}; \ } \ ASSERT_DIE(atomic_exchange_explicit(&(v)->new, _nb, memory_order_relaxed) == NULL); \ synchronize_rcu(); \ if (_dg) DG_UNLOCK(_dg); \ } \ #define SPINHASH_REHASH_FINISH(v,id) \ ASSERT_DIE(step); \ if (_dg) DG_LOCK(_dg); \ typeof(*(v)->cur) *ob = atomic_exchange_explicit(&(v)->cur, _nb, memory_order_relaxed); \ synchronize_rcu(); \ ASSERT_DIE(atomic_exchange_explicit(&(v)->new, NULL, memory_order_relaxed) == _nb); \ synchronize_rcu(); \ uint _ce = atomic_load_explicit(&(v)->count, memory_order_relaxed); \ SPINHASH_REQUEST_REHASH((v),id,_ce) \ mb_free(ob); \ if (_dg) DG_UNLOCK(_dg); \ #define SPINHASH_REHASH_UP(v,id,type,step) \ for (uint i=0; !(i >> _cur->order); i++) { \ rws_write_lock(&_cur->block[i].lock); \ for (uint p=0; !(p >> step); p++) { \ uint ppos = (i << step) | p; \ rws_write_lock(&_nb->block[ppos].lock); \ ASSERT_DIE(_nb->block[ppos].data == SPINHASH_REHASH_SENTINEL); \ _nb->block[ppos].data = NULL; \ } \ for (type *n; n = _cur->block[i].data; ) { \ _cur->block[i].data = id##_NEXT(n); \ uint _h = HASH_FNO(id, id##_KEY(n)); \ ASSERT_DIE((_h >> (32 - _cur->order)) == i); \ uint _nh = _h >> (32 - _nb->order); \ id##_NEXT(n) = _nb->block[_nh].data; \ _nb->block[_nh].data = n; \ } \ _cur->block[i].data = SPINHASH_REHASH_SENTINEL; \ for (uint p=0; !(p >> step); p++) \ rws_write_unlock(&_nb->block[((i+1) << step) - p - 1].lock); \ rws_write_unlock(&_cur->block[i].lock); \ } \ #define SPINHASH_REHASH_DOWN(v,id,type,step) \ for (uint i=0; !(i >> _cur->order); i++) { \ uint p = i >> step; \ rws_write_lock(&_cur->block[i].lock); \ rws_write_lock(&_nb->block[p].lock); \ if (i == (p << step)) { \ ASSERT_DIE(_nb->block[p].data == SPINHASH_REHASH_SENTINEL); \ _nb->block[p].data = NULL; \ } else \ ASSERT_DIE(_nb->block[p].data != SPINHASH_REHASH_SENTINEL); \ for (type *n; n = _cur->block[i].data; ) { \ _cur->block[i].data = id##_NEXT(n); \ id##_NEXT(n) = _nb->block[p].data; \ _nb->block[p].data = n; \ } \ _cur->block[i].data = SPINHASH_REHASH_SENTINEL; \ rws_write_unlock(&_nb->block[p].lock); \ rws_write_unlock(&_cur->block[i].lock); \ } #define SPINHASH_REHASH_SENTINEL ((void *) 1) /* * Memory hashing functions */ static inline void mem_hash_init(u64 *h) { *h = 0x001047d54778bcafULL; } static inline void mem_hash_mix(u64 *h, const void *p, uint s) { const u64 multiplier = 0xb38bc09a61202731ULL; const char *pp = p; uint i; for (i=0; i> 32) ^ (*h & 0xffffffff)); } static inline uint mem_hash(const void *p, uint s) { static u64 h; mem_hash_init(&h); mem_hash_mix(&h, p, s); return mem_hash_value(&h); } static inline uint ptr_hash(void *ptr) { uintptr_t p = (uintptr_t) ptr; return p ^ (p << 8) ^ (p >> 16); } #endif