/* * BIRD Internet Routing Daemon -- Filter instructions * * (c) 1999 Pavel Machek * (c) 2018--2019 Maria Matejka * * Can be freely distributed and used under the terms of the GNU GPL. * * Filter interpreter data structures and internal API. * See filter/f-inst.c for documentation. */ #ifndef _BIRD_F_INST_H_ #define _BIRD_F_INST_H_ #include "nest/bird.h" #include "conf/conf.h" #include "filter/filter.h" #include "filter/data.h" #include "lib/buffer.h" #include "lib/flowspec.h" #include "lib/string.h" /* Flags for instructions */ enum f_instruction_flags { FIF_RECURSIVE = 1, /* FI_CALL: function is directly recursive */ } PACKED; /* Include generated filter instruction declarations */ #include "filter/inst-gen.h" #define f_new_inst(...) MACRO_CONCAT_AFTER(f_new_inst_, MACRO_FIRST(__VA_ARGS__))(__VA_ARGS__) /* Convert the instruction back to the enum name */ const char *f_instruction_name_(enum f_instruction_code fi); static inline const char *f_instruction_name(enum f_instruction_code fi) { return f_instruction_name_(fi) + 3; } struct f_arg { struct symbol *arg; struct f_arg *next; }; /* Filter structures for execution */ /* Line of instructions to be unconditionally executed one after another */ struct f_line { uint len; /* Line length */ u8 args; /* Function: Args required */ u8 vars; u8 results; /* Results left on stack: cmd -> 0, term -> 1 */ struct f_arg *arg_list; struct f_line_item items[0]; /* The items themselves */ }; /* Convert the f_inst infix tree to the f_line structures */ struct f_line *f_linearize_concat(const struct f_inst * const inst[], uint count, uint results); static inline struct f_line *f_linearize(const struct f_inst *root, uint results) { return f_linearize_concat(&root, 1, results); } void f_dump_line(const struct f_line *, uint indent); /* Recursive iteration over filter instructions */ struct filter_iterator { BUFFER_(const struct f_line *) lines; }; void f_add_lines(const struct f_line_item *what, struct filter_iterator *fit); #define FILTER_ITERATE_INIT(fit, filter, pool) \ ({ \ BUFFER_INIT((fit)->lines, (pool), 32); \ BUFFER_PUSH((fit)->lines) = (filter)->root; \ }) #define FILTER_ITERATE(fit, fi) ({ \ const struct f_line *fl_; \ while (!BUFFER_EMPTY((fit)->lines)) \ { \ BUFFER_POP((fit)->lines); \ fl_ = (fit)->lines.data[(fit)->lines.used]; \ for (uint i_ = 0; i_ < fl_->len; i_++) \ { \ const struct f_line_item *fi = &fl_->items[i_]; \ f_add_lines(fi, (fit)); #define FILTER_ITERATE_END } } }) #define FILTER_ITERATE_CLEANUP(fit) \ ({ \ mb_free((fit)->lines.data); \ memset((fit), 0, sizeof(struct filter_iterator)); \ }) struct filter *f_new_where(struct f_inst *); static inline struct f_dynamic_attr f_new_dynamic_attr(u8 type, enum f_type f_type, uint code) /* Type as core knows it, type as filters know it, and code of dynamic attribute */ { return (struct f_dynamic_attr) { .type = type, .f_type = f_type, .ea_code = code }; } /* f_type currently unused; will be handy for static type checking */ static inline struct f_dynamic_attr f_new_dynamic_attr_bit(u8 bit, enum f_type f_type, uint code) /* Type as core knows it, type as filters know it, and code of dynamic attribute */ { return (struct f_dynamic_attr) { .type = EAF_TYPE_BITFIELD, .bit = bit, .f_type = f_type, .ea_code = code }; } /* f_type currently unused; will be handy for static type checking */ static inline struct f_static_attr f_new_static_attr(int f_type, int code, int readonly) { return (struct f_static_attr) { .f_type = f_type, .sa_code = code, .readonly = readonly }; } /* Hook for call bt_assert() function in configuration */ extern void (*bt_assert_hook)(int result, const struct f_line_item *assert); /* Bird Tests */ struct f_bt_test_suite { node n; /* Node in config->tests */ const struct f_line *fn; /* Root of function */ const struct f_line *cmp; /* Compare to this function */ const char *fn_name; /* Name of test */ const char *dsc; /* Description */ int result; /* Desired result */ }; #endif