/* * BIRD Internet Routing Daemon -- Unix I/O * * (c) 1998--2004 Martin Mares * (c) 2004 Ondrej Filip * * Can be freely distributed and used under the terms of the GNU GPL. */ /* Unfortunately, some glibc versions hide parts of RFC 3542 API if _GNU_SOURCE is not defined. */ #ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nest/bird.h" #include "lib/lists.h" #include "lib/resource.h" #include "lib/timer.h" #include "lib/socket.h" #include "lib/event.h" #include "lib/string.h" #include "nest/iface.h" #include "lib/unix.h" #include "lib/sysio.h" /* Maximum number of calls of tx handler for one socket in one * select iteration. Should be small enough to not monopolize CPU by * one protocol instance. */ #define MAX_STEPS 4 /* Maximum number of calls of rx handler for all sockets in one select iteration. RX callbacks are often much more costly so we limit this to gen small latencies */ #define MAX_RX_STEPS 4 /* * Tracked Files */ struct rfile { resource r; FILE *f; }; static void rf_free(resource *r) { struct rfile *a = (struct rfile *) r; fclose(a->f); } static void rf_dump(resource *r) { struct rfile *a = (struct rfile *) r; debug("(FILE *%p)\n", a->f); } static struct resclass rf_class = { "FILE", sizeof(struct rfile), rf_free, rf_dump, NULL, NULL }; void * tracked_fopen(pool *p, char *name, char *mode) { FILE *f = fopen(name, mode); if (f) { struct rfile *r = ralloc(p, &rf_class); r->f = f; } return f; } /** * DOC: Timers * * Timers are resources which represent a wish of a module to call * a function at the specified time. The platform dependent code * doesn't guarantee exact timing, only that a timer function * won't be called before the requested time. * * In BIRD, time is represented by values of the &bird_clock_t type * which are integral numbers interpreted as a relative number of seconds since * some fixed time point in past. The current time can be read * from variable @now with reasonable accuracy and is monotonic. There is also * a current 'absolute' time in variable @now_real reported by OS. * * Each timer is described by a &timer structure containing a pointer * to the handler function (@hook), data private to this function (@data), * time the function should be called at (@expires, 0 for inactive timers), * for the other fields see |timer.h|. */ #define NEAR_TIMER_LIMIT 4 static list near_timers, far_timers; static bird_clock_t first_far_timer = TIME_INFINITY; /* now must be different from 0, because 0 is a special value in timer->expires */ bird_clock_t now = 1, now_real, boot_time; static void update_times_plain(void) { bird_clock_t new_time = time(NULL); int delta = new_time - now_real; if ((delta >= 0) && (delta < 60)) now += delta; else if (now_real != 0) log(L_WARN "Time jump, delta %d s", delta); now_real = new_time; } static void update_times_gettime(void) { struct timespec ts; int rv; rv = clock_gettime(CLOCK_MONOTONIC, &ts); if (rv != 0) die("clock_gettime: %m"); if (ts.tv_sec != now) { if (ts.tv_sec < now) log(L_ERR "Monotonic timer is broken"); now = ts.tv_sec; now_real = time(NULL); } } static int clock_monotonic_available; static inline void update_times(void) { if (clock_monotonic_available) update_times_gettime(); else update_times_plain(); } static inline void init_times(void) { struct timespec ts; clock_monotonic_available = (clock_gettime(CLOCK_MONOTONIC, &ts) == 0); if (!clock_monotonic_available) log(L_WARN "Monotonic timer is missing"); } static void tm_free(resource *r) { timer *t = (timer *) r; tm_stop(t); } static void tm_dump(resource *r) { timer *t = (timer *) r; debug("(code %p, data %p, ", t->hook, t->data); if (t->randomize) debug("rand %d, ", t->randomize); if (t->recurrent) debug("recur %d, ", t->recurrent); if (t->expires) debug("expires in %d sec)\n", t->expires - now); else debug("inactive)\n"); } static struct resclass tm_class = { "Timer", sizeof(timer), tm_free, tm_dump, NULL, NULL }; /** * tm_new - create a timer * @p: pool * * This function creates a new timer resource and returns * a pointer to it. To use the timer, you need to fill in * the structure fields and call tm_start() to start timing. */ timer * tm_new(pool *p) { timer *t = ralloc(p, &tm_class); return t; } static inline void tm_insert_near(timer *t) { node *n = HEAD(near_timers); while (n->next && (SKIP_BACK(timer, n, n)->expires < t->expires)) n = n->next; insert_node(&t->n, n->prev); } /** * tm_start - start a timer * @t: timer * @after: number of seconds the timer should be run after * * This function schedules the hook function of the timer to * be called after @after seconds. If the timer has been already * started, it's @expire time is replaced by the new value. * * You can have set the @randomize field of @t, the timeout * will be increased by a random number of seconds chosen * uniformly from range 0 .. @randomize. * * You can call tm_start() from the handler function of the timer * to request another run of the timer. Also, you can set the @recurrent * field to have the timer re-added automatically with the same timeout. */ void tm_start(timer *t, unsigned after) { bird_clock_t when; if (t->randomize) after += random() % (t->randomize + 1); when = now + after; if (t->expires == when) return; if (t->expires) rem_node(&t->n); t->expires = when; if (after <= NEAR_TIMER_LIMIT) tm_insert_near(t); else { if (!first_far_timer || first_far_timer > when) first_far_timer = when; add_tail(&far_timers, &t->n); } } /** * tm_stop - stop a timer * @t: timer * * This function stops a timer. If the timer is already stopped, * nothing happens. */ void tm_stop(timer *t) { if (t->expires) { rem_node(&t->n); t->expires = 0; } } static void tm_dump_them(char *name, list *l) { node *n; timer *t; debug("%s timers:\n", name); WALK_LIST(n, *l) { t = SKIP_BACK(timer, n, n); debug("%p ", t); tm_dump(&t->r); } debug("\n"); } void tm_dump_all(void) { tm_dump_them("Near", &near_timers); tm_dump_them("Far", &far_timers); } static inline time_t tm_first_shot(void) { time_t x = first_far_timer; if (!EMPTY_LIST(near_timers)) { timer *t = SKIP_BACK(timer, n, HEAD(near_timers)); if (t->expires < x) x = t->expires; } return x; } void io_log_event(void *hook, void *data); static void tm_shot(void) { timer *t; node *n, *m; if (first_far_timer <= now) { bird_clock_t limit = now + NEAR_TIMER_LIMIT; first_far_timer = TIME_INFINITY; n = HEAD(far_timers); while (m = n->next) { t = SKIP_BACK(timer, n, n); if (t->expires <= limit) { rem_node(n); tm_insert_near(t); } else if (t->expires < first_far_timer) first_far_timer = t->expires; n = m; } } while ((n = HEAD(near_timers)) -> next) { int delay; t = SKIP_BACK(timer, n, n); if (t->expires > now) break; rem_node(n); delay = t->expires - now; t->expires = 0; if (t->recurrent) { int i = t->recurrent - delay; if (i < 0) i = 0; tm_start(t, i); } io_log_event(t->hook, t->data); t->hook(t); } } /** * tm_parse_datetime - parse a date and time * @x: datetime string * * tm_parse_datetime() takes a textual representation of * a date and time (dd-mm-yyyy hh:mm:ss) * and converts it to the corresponding value of type &bird_clock_t. */ bird_clock_t tm_parse_datetime(char *x) { struct tm tm; int n; time_t t; if (sscanf(x, "%d-%d-%d %d:%d:%d%n", &tm.tm_mday, &tm.tm_mon, &tm.tm_year, &tm.tm_hour, &tm.tm_min, &tm.tm_sec, &n) != 6 || x[n]) return tm_parse_date(x); tm.tm_mon--; tm.tm_year -= 1900; t = mktime(&tm); if (t == (time_t) -1) return 0; return t; } /** * tm_parse_date - parse a date * @x: date string * * tm_parse_date() takes a textual representation of a date (dd-mm-yyyy) * and converts it to the corresponding value of type &bird_clock_t. */ bird_clock_t tm_parse_date(char *x) { struct tm tm; int n; time_t t; if (sscanf(x, "%d-%d-%d%n", &tm.tm_mday, &tm.tm_mon, &tm.tm_year, &n) != 3 || x[n]) return 0; tm.tm_mon--; tm.tm_year -= 1900; tm.tm_hour = tm.tm_min = tm.tm_sec = 0; t = mktime(&tm); if (t == (time_t) -1) return 0; return t; } static void tm_format_reltime(char *x, struct tm *tm, bird_clock_t delta) { static char *month_names[12] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; if (delta < 20*3600) bsprintf(x, "%02d:%02d", tm->tm_hour, tm->tm_min); else if (delta < 360*86400) bsprintf(x, "%s%02d", month_names[tm->tm_mon], tm->tm_mday); else bsprintf(x, "%d", tm->tm_year+1900); } #include "conf/conf.h" /** * tm_format_datetime - convert date and time to textual representation * @x: destination buffer of size %TM_DATETIME_BUFFER_SIZE * @t: time * * This function formats the given relative time value @t to a textual * date/time representation (dd-mm-yyyy hh:mm:ss) in real time. */ void tm_format_datetime(char *x, struct timeformat *fmt_spec, bird_clock_t t) { const char *fmt_used; struct tm *tm; bird_clock_t delta = now - t; t = now_real - delta; tm = localtime(&t); if (fmt_spec->fmt1 == NULL) return tm_format_reltime(x, tm, delta); if ((fmt_spec->limit == 0) || (delta < fmt_spec->limit)) fmt_used = fmt_spec->fmt1; else fmt_used = fmt_spec->fmt2; int rv = strftime(x, TM_DATETIME_BUFFER_SIZE, fmt_used, tm); if (((rv == 0) && fmt_used[0]) || (rv == TM_DATETIME_BUFFER_SIZE)) strcpy(x, ""); } /** * DOC: Sockets * * Socket resources represent network connections. Their data structure (&socket) * contains a lot of fields defining the exact type of the socket, the local and * remote addresses and ports, pointers to socket buffers and finally pointers to * hook functions to be called when new data have arrived to the receive buffer * (@rx_hook), when the contents of the transmit buffer have been transmitted * (@tx_hook) and when an error or connection close occurs (@err_hook). * * Freeing of sockets from inside socket hooks is perfectly safe. */ #ifndef SOL_IP #define SOL_IP IPPROTO_IP #endif #ifndef SOL_IPV6 #define SOL_IPV6 IPPROTO_IPV6 #endif #ifndef SOL_ICMPV6 #define SOL_ICMPV6 IPPROTO_ICMPV6 #endif /* * Sockaddr helper functions */ static inline int sockaddr_length(int af) { return (af == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6); } static inline void sockaddr_fill4(struct sockaddr_in *sa, ip_addr a, struct iface *ifa, uint port) { memset(sa, 0, sizeof(struct sockaddr_in)); #ifdef HAVE_SIN_LEN sa->sin_len = sizeof(struct sockaddr_in); #endif sa->sin_family = AF_INET; sa->sin_port = htons(port); sa->sin_addr = ipa_to_in4(a); } static inline void sockaddr_fill6(struct sockaddr_in6 *sa, ip_addr a, struct iface *ifa, uint port) { memset(sa, 0, sizeof(struct sockaddr_in6)); #ifdef SIN6_LEN sa->sin6_len = sizeof(struct sockaddr_in6); #endif sa->sin6_family = AF_INET6; sa->sin6_port = htons(port); sa->sin6_flowinfo = 0; sa->sin6_addr = ipa_to_in6(a); if (ifa && ipa_is_link_local(a)) sa->sin6_scope_id = ifa->index; } void sockaddr_fill(sockaddr *sa, int af, ip_addr a, struct iface *ifa, uint port) { if (af == AF_INET) sockaddr_fill4((struct sockaddr_in *) sa, a, ifa, port); else if (af == AF_INET6) sockaddr_fill6((struct sockaddr_in6 *) sa, a, ifa, port); else bug("Unknown AF"); } static inline void sockaddr_read4(struct sockaddr_in *sa, ip_addr *a, struct iface **ifa, uint *port) { *port = ntohs(sa->sin_port); *a = ipa_from_in4(sa->sin_addr); } static inline void sockaddr_read6(struct sockaddr_in6 *sa, ip_addr *a, struct iface **ifa, uint *port) { *port = ntohs(sa->sin6_port); *a = ipa_from_in6(sa->sin6_addr); if (ifa && ipa_is_link_local(*a)) *ifa = if_find_by_index(sa->sin6_scope_id); } int sockaddr_read(sockaddr *sa, int af, ip_addr *a, struct iface **ifa, uint *port) { if (sa->sa.sa_family != af) goto fail; if (af == AF_INET) sockaddr_read4((struct sockaddr_in *) sa, a, ifa, port); else if (af == AF_INET6) sockaddr_read6((struct sockaddr_in6 *) sa, a, ifa, port); else goto fail; return 0; fail: *a = IPA_NONE; *port = 0; return -1; } /* * IPv6 multicast syscalls */ /* Fortunately standardized in RFC 3493 */ #define INIT_MREQ6(maddr,ifa) \ { .ipv6mr_multiaddr = ipa_to_in6(maddr), .ipv6mr_interface = ifa->index } static inline int sk_setup_multicast6(sock *s) { int index = s->iface->index; int ttl = s->ttl; int n = 0; if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_IF, &index, sizeof(index)) < 0) ERR("IPV6_MULTICAST_IF"); if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_HOPS, &ttl, sizeof(ttl)) < 0) ERR("IPV6_MULTICAST_HOPS"); if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_LOOP, &n, sizeof(n)) < 0) ERR("IPV6_MULTICAST_LOOP"); return 0; } static inline int sk_join_group6(sock *s, ip_addr maddr) { struct ipv6_mreq mr = INIT_MREQ6(maddr, s->iface); if (setsockopt(s->fd, SOL_IPV6, IPV6_JOIN_GROUP, &mr, sizeof(mr)) < 0) ERR("IPV6_JOIN_GROUP"); return 0; } static inline int sk_leave_group6(sock *s, ip_addr maddr) { struct ipv6_mreq mr = INIT_MREQ6(maddr, s->iface); if (setsockopt(s->fd, SOL_IPV6, IPV6_LEAVE_GROUP, &mr, sizeof(mr)) < 0) ERR("IPV6_LEAVE_GROUP"); return 0; } /* * IPv6 packet control messages */ /* Also standardized, in RFC 3542 */ /* * RFC 2292 uses IPV6_PKTINFO for both the socket option and the cmsg * type, RFC 3542 changed the socket option to IPV6_RECVPKTINFO. If we * don't have IPV6_RECVPKTINFO we suppose the OS implements the older * RFC and we use IPV6_PKTINFO. */ #ifndef IPV6_RECVPKTINFO #define IPV6_RECVPKTINFO IPV6_PKTINFO #endif /* * Same goes for IPV6_HOPLIMIT -> IPV6_RECVHOPLIMIT. */ #ifndef IPV6_RECVHOPLIMIT #define IPV6_RECVHOPLIMIT IPV6_HOPLIMIT #endif #define CMSG6_SPACE_PKTINFO CMSG_SPACE(sizeof(struct in6_pktinfo)) #define CMSG6_SPACE_TTL CMSG_SPACE(sizeof(int)) static inline int sk_request_cmsg6_pktinfo(sock *s) { int y = 1; if (setsockopt(s->fd, SOL_IPV6, IPV6_RECVPKTINFO, &y, sizeof(y)) < 0) ERR("IPV6_RECVPKTINFO"); return 0; } static inline int sk_request_cmsg6_ttl(sock *s) { int y = 1; if (setsockopt(s->fd, SOL_IPV6, IPV6_RECVHOPLIMIT, &y, sizeof(y)) < 0) ERR("IPV6_RECVHOPLIMIT"); return 0; } static inline void sk_process_cmsg6_pktinfo(sock *s, struct cmsghdr *cm) { if (cm->cmsg_type == IPV6_PKTINFO) { struct in6_pktinfo *pi = (struct in6_pktinfo *) CMSG_DATA(cm); s->laddr = ipa_from_in6(pi->ipi6_addr); s->lifindex = pi->ipi6_ifindex; } } static inline void sk_process_cmsg6_ttl(sock *s, struct cmsghdr *cm) { if (cm->cmsg_type == IPV6_HOPLIMIT) s->rcv_ttl = * (int *) CMSG_DATA(cm); } static inline void sk_prepare_cmsgs6(sock *s, struct msghdr *msg, void *cbuf, size_t cbuflen) { struct cmsghdr *cm; struct in6_pktinfo *pi; int controllen = 0; msg->msg_control = cbuf; msg->msg_controllen = cbuflen; cm = CMSG_FIRSTHDR(msg); cm->cmsg_level = SOL_IPV6; cm->cmsg_type = IPV6_PKTINFO; cm->cmsg_len = CMSG_LEN(sizeof(*pi)); controllen += CMSG_SPACE(sizeof(*pi)); pi = (struct in6_pktinfo *) CMSG_DATA(cm); pi->ipi6_ifindex = s->iface ? s->iface->index : 0; pi->ipi6_addr = ipa_to_in6(s->saddr); msg->msg_controllen = controllen; } /* * Miscellaneous socket syscalls */ static inline int sk_set_ttl4(sock *s, int ttl) { if (setsockopt(s->fd, SOL_IP, IP_TTL, &ttl, sizeof(ttl)) < 0) ERR("IP_TTL"); return 0; } static inline int sk_set_ttl6(sock *s, int ttl) { if (setsockopt(s->fd, SOL_IPV6, IPV6_UNICAST_HOPS, &ttl, sizeof(ttl)) < 0) ERR("IPV6_UNICAST_HOPS"); return 0; } static inline int sk_set_tos4(sock *s, int tos) { if (setsockopt(s->fd, SOL_IP, IP_TOS, &tos, sizeof(tos)) < 0) ERR("IP_TOS"); return 0; } static inline int sk_set_tos6(sock *s, int tos) { if (setsockopt(s->fd, SOL_IPV6, IPV6_TCLASS, &tos, sizeof(tos)) < 0) ERR("IPV6_TCLASS"); return 0; } static inline int sk_set_high_port(sock *s) { /* Port range setting is optional, ignore it if not supported */ #ifdef IP_PORTRANGE if (sk_is_ipv4(s)) { int range = IP_PORTRANGE_HIGH; if (setsockopt(s->fd, SOL_IP, IP_PORTRANGE, &range, sizeof(range)) < 0) ERR("IP_PORTRANGE"); } #endif #ifdef IPV6_PORTRANGE if (sk_is_ipv6(s)) { int range = IPV6_PORTRANGE_HIGH; if (setsockopt(s->fd, SOL_IPV6, IPV6_PORTRANGE, &range, sizeof(range)) < 0) ERR("IPV6_PORTRANGE"); } #endif return 0; } static inline byte * sk_skip_ip_header(byte *pkt, int *len) { if ((*len < 20) || ((*pkt & 0xf0) != 0x40)) return NULL; int hlen = (*pkt & 0x0f) * 4; if ((hlen < 20) || (hlen > *len)) return NULL; *len -= hlen; return pkt + hlen; } byte * sk_rx_buffer(sock *s, int *len) { if (sk_is_ipv4(s) && (s->type == SK_IP)) return sk_skip_ip_header(s->rbuf, len); else return s->rbuf; } /* * Public socket functions */ /** * sk_setup_multicast - enable multicast for given socket * @s: socket * * Prepare transmission of multicast packets for given datagram socket. * The socket must have defined @iface. * * Result: 0 for success, -1 for an error. */ int sk_setup_multicast(sock *s) { ASSERT(s->iface); if (sk_is_ipv4(s)) return sk_setup_multicast4(s); else return sk_setup_multicast6(s); } /** * sk_join_group - join multicast group for given socket * @s: socket * @maddr: multicast address * * Join multicast group for given datagram socket and associated interface. * The socket must have defined @iface. * * Result: 0 for success, -1 for an error. */ int sk_join_group(sock *s, ip_addr maddr) { if (sk_is_ipv4(s)) return sk_join_group4(s, maddr); else return sk_join_group6(s, maddr); } /** * sk_leave_group - leave multicast group for given socket * @s: socket * @maddr: multicast address * * Leave multicast group for given datagram socket and associated interface. * The socket must have defined @iface. * * Result: 0 for success, -1 for an error. */ int sk_leave_group(sock *s, ip_addr maddr) { if (sk_is_ipv4(s)) return sk_leave_group4(s, maddr); else return sk_leave_group6(s, maddr); } /** * sk_setup_broadcast - enable broadcast for given socket * @s: socket * * Allow reception and transmission of broadcast packets for given datagram * socket. The socket must have defined @iface. For transmission, packets should * be send to @brd address of @iface. * * Result: 0 for success, -1 for an error. */ int sk_setup_broadcast(sock *s) { int y = 1; if (setsockopt(s->fd, SOL_SOCKET, SO_BROADCAST, &y, sizeof(y)) < 0) ERR("SO_BROADCAST"); #ifdef __FreeBSD__ if (setsockopt(s->fd, IPPROTO_IP, IP_ONESBCAST, &y, sizeof(y)) < 0) ERR("IP_ONESBCAST"); #endif return 0; } /** * sk_set_ttl - set transmit TTL for given socket * @s: socket * @ttl: TTL value * * Set TTL for already opened connections when TTL was not set before. Useful * for accepted connections when different ones should have different TTL. * * Result: 0 for success, -1 for an error. */ int sk_set_ttl(sock *s, int ttl) { s->ttl = ttl; if (sk_is_ipv4(s)) return sk_set_ttl4(s, ttl); else return sk_set_ttl6(s, ttl); } /** * sk_set_min_ttl - set minimal accepted TTL for given socket * @s: socket * @ttl: TTL value * * Set minimal accepted TTL for given socket. Can be used for TTL security. * implementations. * * Result: 0 for success, -1 for an error. */ int sk_set_min_ttl(sock *s, int ttl) { if (sk_is_ipv4(s)) return sk_set_min_ttl4(s, ttl); else return sk_set_min_ttl6(s, ttl); } #if 0 /** * sk_set_md5_auth - add / remove MD5 security association for given socket * @s: socket * @a: IP address of the other side * @ifa: Interface for link-local IP address * @passwd: password used for MD5 authentication * * In TCP MD5 handling code in kernel, there is a set of pairs (address, * password) used to choose password according to address of the other side. * This function is useful for listening socket, for active sockets it is enough * to set s->password field. * * When called with passwd != NULL, the new pair is added, * When called with passwd == NULL, the existing pair is removed. * * Result: 0 for success, -1 for an error. */ int sk_set_md5_auth(sock *s, ip_addr a, struct iface *ifa, char *passwd) { DUMMY; } #endif /** * sk_set_ipv6_checksum - specify IPv6 checksum offset for given socket * @s: socket * @offset: offset * * Specify IPv6 checksum field offset for given raw IPv6 socket. After that, the * kernel will automatically fill it for outgoing packets and check it for * incoming packets. Should not be used on ICMPv6 sockets, where the position is * known to the kernel. * * Result: 0 for success, -1 for an error. */ int sk_set_ipv6_checksum(sock *s, int offset) { if (setsockopt(s->fd, SOL_IPV6, IPV6_CHECKSUM, &offset, sizeof(offset)) < 0) ERR("IPV6_CHECKSUM"); return 0; } int sk_set_icmp6_filter(sock *s, int p1, int p2) { /* a bit of lame interface, but it is here only for Radv */ struct icmp6_filter f; ICMP6_FILTER_SETBLOCKALL(&f); ICMP6_FILTER_SETPASS(p1, &f); ICMP6_FILTER_SETPASS(p2, &f); if (setsockopt(s->fd, SOL_ICMPV6, ICMP6_FILTER, &f, sizeof(f)) < 0) ERR("ICMP6_FILTER"); return 0; } void sk_log_error(sock *s, const char *p) { log(L_ERR "%s: Socket error: %s%#m", p, s->err); } /* * Actual struct birdsock code */ static list sock_list; static struct birdsock *current_sock; static struct birdsock *stored_sock; static int sock_recalc_fdsets_p; static inline sock * sk_next(sock *s) { if (!s->n.next->next) return NULL; else return SKIP_BACK(sock, n, s->n.next); } static void sk_alloc_bufs(sock *s) { if (!s->rbuf && s->rbsize) s->rbuf = s->rbuf_alloc = xmalloc(s->rbsize); s->rpos = s->rbuf; if (!s->tbuf && s->tbsize) s->tbuf = s->tbuf_alloc = xmalloc(s->tbsize); s->tpos = s->ttx = s->tbuf; } static void sk_free_bufs(sock *s) { if (s->rbuf_alloc) { xfree(s->rbuf_alloc); s->rbuf = s->rbuf_alloc = NULL; } if (s->tbuf_alloc) { xfree(s->tbuf_alloc); s->tbuf = s->tbuf_alloc = NULL; } } static void sk_free(resource *r) { sock *s = (sock *) r; sk_free_bufs(s); if (s->fd >= 0) { close(s->fd); /* FIXME: we should call sk_stop() for SKF_THREAD sockets */ if (s->flags & SKF_THREAD) return; if (s == current_sock) current_sock = sk_next(s); if (s == stored_sock) stored_sock = sk_next(s); rem_node(&s->n); sock_recalc_fdsets_p = 1; } } void sk_set_rbsize(sock *s, uint val) { ASSERT(s->rbuf_alloc == s->rbuf); if (s->rbsize == val) return; s->rbsize = val; xfree(s->rbuf_alloc); s->rbuf_alloc = xmalloc(val); s->rpos = s->rbuf = s->rbuf_alloc; } void sk_set_tbsize(sock *s, uint val) { ASSERT(s->tbuf_alloc == s->tbuf); if (s->tbsize == val) return; byte *old_tbuf = s->tbuf; s->tbsize = val; s->tbuf = s->tbuf_alloc = xrealloc(s->tbuf_alloc, val); s->tpos = s->tbuf + (s->tpos - old_tbuf); s->ttx = s->tbuf + (s->ttx - old_tbuf); } void sk_set_tbuf(sock *s, void *tbuf) { s->tbuf = tbuf ?: s->tbuf_alloc; s->ttx = s->tpos = s->tbuf; } void sk_reallocate(sock *s) { sk_free_bufs(s); sk_alloc_bufs(s); } static void sk_dump(resource *r) { sock *s = (sock *) r; static char *sk_type_names[] = { "TCP<", "TCP>", "TCP", "UDP", NULL, "IP", NULL, "MAGIC", "UNIX<", "UNIX", "DEL!" }; debug("(%s, ud=%p, sa=%I, sp=%d, da=%I, dp=%d, tos=%d, ttl=%d, if=%s)\n", sk_type_names[s->type], s->data, s->saddr, s->sport, s->daddr, s->dport, s->tos, s->ttl, s->iface ? s->iface->name : "none"); } static struct resclass sk_class = { "Socket", sizeof(sock), sk_free, sk_dump, NULL, NULL }; /** * sk_new - create a socket * @p: pool * * This function creates a new socket resource. If you want to use it, * you need to fill in all the required fields of the structure and * call sk_open() to do the actual opening of the socket. * * The real function name is sock_new(), sk_new() is a macro wrapper * to avoid collision with OpenSSL. */ sock * sock_new(pool *p) { sock *s = ralloc(p, &sk_class); s->pool = p; // s->saddr = s->daddr = IPA_NONE; s->tos = s->priority = s->ttl = -1; s->fd = -1; return s; } static int sk_setup(sock *s) { int y = 1; int fd = s->fd; if (fcntl(fd, F_SETFL, O_NONBLOCK) < 0) ERR("O_NONBLOCK"); if (!s->af) return 0; if (ipa_nonzero(s->saddr) && !(s->flags & SKF_BIND)) s->flags |= SKF_PKTINFO; #ifdef CONFIG_USE_HDRINCL if (sk_is_ipv4(s) && (s->type == SK_IP) && (s->flags & SKF_PKTINFO)) { s->flags &= ~SKF_PKTINFO; s->flags |= SKF_HDRINCL; if (setsockopt(fd, SOL_IP, IP_HDRINCL, &y, sizeof(y)) < 0) ERR("IP_HDRINCL"); } #endif if (s->iface) { #ifdef SO_BINDTODEVICE struct ifreq ifr = {}; strcpy(ifr.ifr_name, s->iface->name); if (setsockopt(s->fd, SOL_SOCKET, SO_BINDTODEVICE, &ifr, sizeof(ifr)) < 0) ERR("SO_BINDTODEVICE"); #endif #ifdef CONFIG_UNIX_DONTROUTE if (setsockopt(s->fd, SOL_SOCKET, SO_DONTROUTE, &y, sizeof(y)) < 0) ERR("SO_DONTROUTE"); #endif } if (s->priority >= 0) if (sk_set_priority(s, s->priority) < 0) return -1; if (sk_is_ipv4(s)) { if (s->flags & SKF_LADDR_RX) if (sk_request_cmsg4_pktinfo(s) < 0) return -1; if (s->flags & SKF_TTL_RX) if (sk_request_cmsg4_ttl(s) < 0) return -1; if ((s->type == SK_UDP) || (s->type == SK_IP)) if (sk_disable_mtu_disc4(s) < 0) return -1; if (s->ttl >= 0) if (sk_set_ttl4(s, s->ttl) < 0) return -1; if (s->tos >= 0) if (sk_set_tos4(s, s->tos) < 0) return -1; } if (sk_is_ipv6(s)) { if (s->flags & SKF_V6ONLY) if (setsockopt(fd, SOL_IPV6, IPV6_V6ONLY, &y, sizeof(y)) < 0) ERR("IPV6_V6ONLY"); if (s->flags & SKF_LADDR_RX) if (sk_request_cmsg6_pktinfo(s) < 0) return -1; if (s->flags & SKF_TTL_RX) if (sk_request_cmsg6_ttl(s) < 0) return -1; if ((s->type == SK_UDP) || (s->type == SK_IP)) if (sk_disable_mtu_disc6(s) < 0) return -1; if (s->ttl >= 0) if (sk_set_ttl6(s, s->ttl) < 0) return -1; if (s->tos >= 0) if (sk_set_tos6(s, s->tos) < 0) return -1; } return 0; } static void sk_insert(sock *s) { add_tail(&sock_list, &s->n); sock_recalc_fdsets_p = 1; } static void sk_tcp_connected(sock *s) { sockaddr sa; int sa_len = sizeof(sa); if ((getsockname(s->fd, &sa.sa, &sa_len) < 0) || (sockaddr_read(&sa, s->af, &s->saddr, &s->iface, &s->sport) < 0)) log(L_WARN "SOCK: Cannot get local IP address for TCP>"); s->type = SK_TCP; sk_alloc_bufs(s); s->tx_hook(s); } static int sk_passive_connected(sock *s, int type) { sockaddr loc_sa, rem_sa; int loc_sa_len = sizeof(loc_sa); int rem_sa_len = sizeof(rem_sa); int fd = accept(s->fd, ((type == SK_TCP) ? &rem_sa.sa : NULL), &rem_sa_len); if (fd < 0) { if ((errno != EINTR) && (errno != EAGAIN)) s->err_hook(s, errno); return 0; } sock *t = sk_new(s->pool); t->type = type; t->fd = fd; t->af = s->af; t->ttl = s->ttl; t->tos = s->tos; t->rbsize = s->rbsize; t->tbsize = s->tbsize; if (type == SK_TCP) { if ((getsockname(fd, &loc_sa.sa, &loc_sa_len) < 0) || (sockaddr_read(&loc_sa, s->af, &t->saddr, &t->iface, &t->sport) < 0)) log(L_WARN "SOCK: Cannot get local IP address for TCP<"); if (sockaddr_read(&rem_sa, s->af, &t->daddr, &t->iface, &t->dport) < 0) log(L_WARN "SOCK: Cannot get remote IP address for TCP<"); } if (fd >= FD_SETSIZE) { /* FIXME: Call err_hook instead ? */ log(L_ERR "SOCK: Incoming connection from %I%J (port %d) %s", t->daddr, ipa_is_link_local(t->daddr) ? t->iface : NULL, t->dport, "rejected due to FD_SETSIZE limit"); close(fd); t->fd = -1; rfree(t); return 1; } if (sk_setup(t) < 0) { /* FIXME: Call err_hook instead ? */ log(L_ERR "SOCK: Incoming connection: %s%#m", t->err); /* FIXME: handle it better in rfree() */ close(t->fd); t->fd = -1; rfree(t); return 1; } sk_insert(t); sk_alloc_bufs(t); s->rx_hook(t, 0); return 1; } /** * sk_open - open a socket * @s: socket * * This function takes a socket resource created by sk_new() and * initialized by the user and binds a corresponding network connection * to it. * * Result: 0 for success, -1 for an error. */ int sk_open(sock *s) { int af = BIRD_AF; int fd = -1; int do_bind = 0; int bind_port = 0; ip_addr bind_addr = IPA_NONE; sockaddr sa; switch (s->type) { case SK_TCP_ACTIVE: s->ttx = ""; /* Force s->ttx != s->tpos */ /* Fall thru */ case SK_TCP_PASSIVE: fd = socket(af, SOCK_STREAM, IPPROTO_TCP); bind_port = s->sport; bind_addr = s->saddr; do_bind = bind_port || ipa_nonzero(bind_addr); break; case SK_UDP: fd = socket(af, SOCK_DGRAM, IPPROTO_UDP); bind_port = s->sport; bind_addr = (s->flags & SKF_BIND) ? s->saddr : IPA_NONE; do_bind = 1; break; case SK_IP: fd = socket(af, SOCK_RAW, s->dport); bind_port = 0; bind_addr = (s->flags & SKF_BIND) ? s->saddr : IPA_NONE; do_bind = ipa_nonzero(bind_addr); break; case SK_MAGIC: af = 0; fd = s->fd; break; default: bug("sk_open() called for invalid sock type %d", s->type); } if (fd < 0) ERR("socket"); if (fd >= FD_SETSIZE) ERR2("FD_SETSIZE limit reached"); s->af = af; s->fd = fd; if (sk_setup(s) < 0) goto err; if (do_bind) { if (bind_port) { int y = 1; if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &y, sizeof(y)) < 0) ERR2("SO_REUSEADDR"); #ifdef CONFIG_NO_IFACE_BIND /* Workaround missing ability to bind to an iface */ if ((s->type == SK_UDP) && s->iface && ipa_zero(bind_addr)) { if (setsockopt(fd, SOL_SOCKET, SO_REUSEPORT, &y, sizeof(y)) < 0) ERR2("SO_REUSEPORT"); } #endif } else if (s->flags & SKF_HIGH_PORT) if (sk_set_high_port(s) < 0) log(L_WARN "Socket error: %s%#m", s->err); sockaddr_fill(&sa, af, bind_addr, s->iface, bind_port); if (bind(fd, &sa.sa, SA_LEN(sa)) < 0) ERR2("bind"); } if (s->password) if (sk_set_md5_auth(s, s->daddr, s->iface, s->password) < 0) goto err; switch (s->type) { case SK_TCP_ACTIVE: sockaddr_fill(&sa, af, s->daddr, s->iface, s->dport); if (connect(fd, &sa.sa, SA_LEN(sa)) >= 0) sk_tcp_connected(s); else if (errno != EINTR && errno != EAGAIN && errno != EINPROGRESS && errno != ECONNREFUSED && errno != EHOSTUNREACH && errno != ENETUNREACH) ERR2("connect"); break; case SK_TCP_PASSIVE: if (listen(fd, 8) < 0) ERR2("listen"); break; case SK_MAGIC: break; default: sk_alloc_bufs(s); } if (!(s->flags & SKF_THREAD)) sk_insert(s); return 0; err: close(fd); s->fd = -1; return -1; } int sk_open_unix(sock *s, char *name) { struct sockaddr_un sa; int fd; /* We are sloppy during error (leak fd and not set s->err), but we die anyway */ fd = socket(AF_UNIX, SOCK_STREAM, 0); if (fd < 0) return -1; if (fcntl(fd, F_SETFL, O_NONBLOCK) < 0) return -1; /* Path length checked in test_old_bird() */ sa.sun_family = AF_UNIX; strcpy(sa.sun_path, name); if (bind(fd, (struct sockaddr *) &sa, SUN_LEN(&sa)) < 0) return -1; if (listen(fd, 8) < 0) return -1; s->fd = fd; sk_insert(s); return 0; } #define CMSG_RX_SPACE MAX(CMSG4_SPACE_PKTINFO+CMSG4_SPACE_TTL, \ CMSG6_SPACE_PKTINFO+CMSG6_SPACE_TTL) #define CMSG_TX_SPACE MAX(CMSG4_SPACE_PKTINFO,CMSG6_SPACE_PKTINFO) static void sk_prepare_cmsgs(sock *s, struct msghdr *msg, void *cbuf, size_t cbuflen) { if (sk_is_ipv4(s)) sk_prepare_cmsgs4(s, msg, cbuf, cbuflen); else sk_prepare_cmsgs6(s, msg, cbuf, cbuflen); } static void sk_process_cmsgs(sock *s, struct msghdr *msg) { struct cmsghdr *cm; s->laddr = IPA_NONE; s->lifindex = 0; s->rcv_ttl = -1; for (cm = CMSG_FIRSTHDR(msg); cm != NULL; cm = CMSG_NXTHDR(msg, cm)) { if ((cm->cmsg_level == SOL_IP) && sk_is_ipv4(s)) { sk_process_cmsg4_pktinfo(s, cm); sk_process_cmsg4_ttl(s, cm); } if ((cm->cmsg_level == SOL_IPV6) && sk_is_ipv6(s)) { sk_process_cmsg6_pktinfo(s, cm); sk_process_cmsg6_ttl(s, cm); } } } static inline int sk_sendmsg(sock *s) { struct iovec iov = {s->tbuf, s->tpos - s->tbuf}; byte cmsg_buf[CMSG_TX_SPACE]; sockaddr dst = {}; sockaddr_fill(&dst, s->af, s->daddr, s->iface, s->dport); struct msghdr msg = { .msg_name = &dst.sa, .msg_namelen = SA_LEN(dst), .msg_iov = &iov, .msg_iovlen = 1 }; #ifdef CONFIG_USE_HDRINCL byte hdr[20]; struct iovec iov2[2] = { {hdr, 20}, iov }; if (s->flags & SKF_HDRINCL) { sk_prepare_ip_header(s, hdr, iov.iov_len); msg.msg_iov = iov2; msg.msg_iovlen = 2; } #endif if (s->flags & SKF_PKTINFO) sk_prepare_cmsgs(s, &msg, cmsg_buf, sizeof(cmsg_buf)); return sendmsg(s->fd, &msg, 0); } static inline int sk_recvmsg(sock *s) { struct iovec iov = {s->rbuf, s->rbsize}; byte cmsg_buf[CMSG_RX_SPACE]; sockaddr src; struct msghdr msg = { .msg_name = &src.sa, .msg_namelen = sizeof(src), // XXXX ?? .msg_iov = &iov, .msg_iovlen = 1, .msg_control = cmsg_buf, .msg_controllen = sizeof(cmsg_buf), .msg_flags = 0 }; int rv = recvmsg(s->fd, &msg, 0); if (rv < 0) return rv; //ifdef IPV4 // if (cf_type == SK_IP) // rv = ipv4_skip_header(pbuf, rv); //endif sockaddr_read(&src, s->af, &s->faddr, NULL, &s->fport); sk_process_cmsgs(s, &msg); if (msg.msg_flags & MSG_TRUNC) s->flags |= SKF_TRUNCATED; else s->flags &= ~SKF_TRUNCATED; return rv; } static inline void reset_tx_buffer(sock *s) { s->ttx = s->tpos = s->tbuf; } static int sk_maybe_write(sock *s) { int e; switch (s->type) { case SK_TCP: case SK_MAGIC: case SK_UNIX: while (s->ttx != s->tpos) { e = write(s->fd, s->ttx, s->tpos - s->ttx); if (e < 0) { if (errno != EINTR && errno != EAGAIN) { reset_tx_buffer(s); /* EPIPE is just a connection close notification during TX */ s->err_hook(s, (errno != EPIPE) ? errno : 0); return -1; } return 0; } s->ttx += e; } reset_tx_buffer(s); return 1; case SK_UDP: case SK_IP: { if (s->tbuf == s->tpos) return 1; e = sk_sendmsg(s); if (e < 0) { if (errno != EINTR && errno != EAGAIN) { reset_tx_buffer(s); s->err_hook(s, errno); return -1; } if (!s->tx_hook) reset_tx_buffer(s); return 0; } reset_tx_buffer(s); return 1; } default: bug("sk_maybe_write: unknown socket type %d", s->type); } } int sk_rx_ready(sock *s) { fd_set rd, wr; struct timeval timo; int rv; FD_ZERO(&rd); FD_ZERO(&wr); FD_SET(s->fd, &rd); timo.tv_sec = 0; timo.tv_usec = 0; redo: rv = select(s->fd+1, &rd, &wr, NULL, &timo); if ((rv < 0) && (errno == EINTR || errno == EAGAIN)) goto redo; return rv; } /** * sk_send - send data to a socket * @s: socket * @len: number of bytes to send * * This function sends @len bytes of data prepared in the * transmit buffer of the socket @s to the network connection. * If the packet can be sent immediately, it does so and returns * 1, else it queues the packet for later processing, returns 0 * and calls the @tx_hook of the socket when the tranmission * takes place. */ int sk_send(sock *s, unsigned len) { s->ttx = s->tbuf; s->tpos = s->tbuf + len; return sk_maybe_write(s); } /** * sk_send_to - send data to a specific destination * @s: socket * @len: number of bytes to send * @addr: IP address to send the packet to * @port: port to send the packet to * * This is a sk_send() replacement for connection-less packet sockets * which allows destination of the packet to be chosen dynamically. * Raw IP sockets should use 0 for @port. */ int sk_send_to(sock *s, unsigned len, ip_addr addr, unsigned port) { s->daddr = addr; if (port) s->dport = port; s->ttx = s->tbuf; s->tpos = s->tbuf + len; return sk_maybe_write(s); } /* int sk_send_full(sock *s, unsigned len, struct iface *ifa, ip_addr saddr, ip_addr daddr, unsigned dport) { s->iface = ifa; s->saddr = saddr; s->daddr = daddr; s->dport = dport; s->ttx = s->tbuf; s->tpos = s->tbuf + len; return sk_maybe_write(s); } */ /* sk_read() and sk_write() are called from BFD's event loop */ int sk_read(sock *s) { switch (s->type) { case SK_TCP_PASSIVE: return sk_passive_connected(s, SK_TCP); case SK_UNIX_PASSIVE: return sk_passive_connected(s, SK_UNIX); case SK_TCP: case SK_UNIX: { int c = read(s->fd, s->rpos, s->rbuf + s->rbsize - s->rpos); if (c < 0) { if (errno != EINTR && errno != EAGAIN) s->err_hook(s, errno); } else if (!c) s->err_hook(s, 0); else { s->rpos += c; if (s->rx_hook(s, s->rpos - s->rbuf)) { /* We need to be careful since the socket could have been deleted by the hook */ if (current_sock == s) s->rpos = s->rbuf; } return 1; } return 0; } case SK_MAGIC: return s->rx_hook(s, 0); default: { int e = sk_recvmsg(s); if (e < 0) { if (errno != EINTR && errno != EAGAIN) s->err_hook(s, errno); return 0; } s->rpos = s->rbuf + e; s->rx_hook(s, e); return 1; } } } int sk_write(sock *s) { switch (s->type) { case SK_TCP_ACTIVE: { sockaddr sa; sockaddr_fill(&sa, s->af, s->daddr, s->iface, s->dport); if (connect(s->fd, &sa.sa, SA_LEN(sa)) >= 0 || errno == EISCONN) sk_tcp_connected(s); else if (errno != EINTR && errno != EAGAIN && errno != EINPROGRESS) s->err_hook(s, errno); return 0; } default: if (s->ttx != s->tpos && sk_maybe_write(s) > 0) { if (s->tx_hook) s->tx_hook(s); return 1; } return 0; } } void sk_dump_all(void) { node *n; sock *s; debug("Open sockets:\n"); WALK_LIST(n, sock_list) { s = SKIP_BACK(sock, n, n); debug("%p ", s); sk_dump(&s->r); } debug("\n"); } /* * Internal event log and watchdog */ #define EVENT_LOG_LENGTH 32 struct event_log_entry { void *hook; void *data; btime timestamp; btime duration; }; static struct event_log_entry event_log[EVENT_LOG_LENGTH]; static struct event_log_entry *event_open; static int event_log_pos, event_log_num, watchdog_active; static btime last_time; static btime loop_time; static void io_update_time(void) { struct timespec ts; int rv; if (!clock_monotonic_available) return; /* * This is third time-tracking procedure (after update_times() above and * times_update() in BFD), dedicated to internal event log and latency * tracking. Hopefully, we consolidate these sometimes. */ rv = clock_gettime(CLOCK_MONOTONIC, &ts); if (rv < 0) die("clock_gettime: %m"); last_time = ((s64) ts.tv_sec S) + (ts.tv_nsec / 1000); if (event_open) { event_open->duration = last_time - event_open->timestamp; if (event_open->duration > config->latency_limit) log(L_WARN "Event 0x%p 0x%p took %d ms", event_open->hook, event_open->data, (int) (event_open->duration TO_MS)); event_open = NULL; } } /** * io_log_event - mark approaching event into event log * @hook: event hook address * @data: event data address * * Store info (hook, data, timestamp) about the following internal event into * a circular event log (@event_log). When latency tracking is enabled, the log * entry is kept open (in @event_open) so the duration can be filled later. */ void io_log_event(void *hook, void *data) { if (config->latency_debug) io_update_time(); struct event_log_entry *en = event_log + event_log_pos; en->hook = hook; en->data = data; en->timestamp = last_time; en->duration = 0; event_log_num++; event_log_pos++; event_log_pos %= EVENT_LOG_LENGTH; event_open = config->latency_debug ? en : NULL; } static inline void io_close_event(void) { if (event_open) io_update_time(); } void io_log_dump(void) { int i; log(L_DEBUG "Event log:"); for (i = 0; i < EVENT_LOG_LENGTH; i++) { struct event_log_entry *en = event_log + (event_log_pos + i) % EVENT_LOG_LENGTH; if (en->hook) log(L_DEBUG " Event 0x%p 0x%p at %8d for %d ms", en->hook, en->data, (int) ((last_time - en->timestamp) TO_MS), (int) (en->duration TO_MS)); } } void watchdog_sigalrm(int sig UNUSED) { /* Update last_time and duration, but skip latency check */ config->latency_limit = 0xffffffff; io_update_time(); /* We want core dump */ abort(); } static inline void watchdog_start1(void) { io_update_time(); loop_time = last_time; } static inline void watchdog_start(void) { io_update_time(); loop_time = last_time; event_log_num = 0; if (config->watchdog_timeout) { alarm(config->watchdog_timeout); watchdog_active = 1; } } static inline void watchdog_stop(void) { io_update_time(); if (watchdog_active) { alarm(0); watchdog_active = 0; } btime duration = last_time - loop_time; if (duration > config->watchdog_warning) log(L_WARN "I/O loop cycle took %d ms for %d events", (int) (duration TO_MS), event_log_num); } /* * Main I/O Loop */ volatile int async_config_flag; /* Asynchronous reconfiguration/dump scheduled */ volatile int async_dump_flag; volatile int async_shutdown_flag; void io_init(void) { init_list(&near_timers); init_list(&far_timers); init_list(&sock_list); init_list(&global_event_list); krt_io_init(); init_times(); update_times(); boot_time = now; srandom((int) now_real); } static int short_loops = 0; #define SHORT_LOOP_MAX 10 void io_loop(void) { fd_set rd, wr; struct timeval timo; time_t tout; int hi, events; sock *s; node *n; watchdog_start1(); sock_recalc_fdsets_p = 1; for(;;) { events = ev_run_list(&global_event_list); update_times(); tout = tm_first_shot(); if (tout <= now) { tm_shot(); continue; } timo.tv_sec = events ? 0 : MIN(tout - now, 3); timo.tv_usec = 0; io_close_event(); if (sock_recalc_fdsets_p) { sock_recalc_fdsets_p = 0; FD_ZERO(&rd); FD_ZERO(&wr); } hi = 0; WALK_LIST(n, sock_list) { s = SKIP_BACK(sock, n, n); if (s->rx_hook) { FD_SET(s->fd, &rd); if (s->fd > hi) hi = s->fd; } else FD_CLR(s->fd, &rd); if (s->tx_hook && s->ttx != s->tpos) { FD_SET(s->fd, &wr); if (s->fd > hi) hi = s->fd; } else FD_CLR(s->fd, &wr); } /* * Yes, this is racy. But even if the signal comes before this test * and entering select(), it gets caught on the next timer tick. */ if (async_config_flag) { io_log_event(async_config, NULL); async_config(); async_config_flag = 0; continue; } if (async_dump_flag) { io_log_event(async_dump, NULL); async_dump(); async_dump_flag = 0; continue; } if (async_shutdown_flag) { io_log_event(async_shutdown, NULL); async_shutdown(); async_shutdown_flag = 0; continue; } /* And finally enter select() to find active sockets */ watchdog_stop(); hi = select(hi+1, &rd, &wr, NULL, &timo); watchdog_start(); if (hi < 0) { if (errno == EINTR || errno == EAGAIN) continue; die("select: %m"); } if (hi) { /* guaranteed to be non-empty */ current_sock = SKIP_BACK(sock, n, HEAD(sock_list)); while (current_sock) { sock *s = current_sock; int e; int steps; steps = MAX_STEPS; if ((s->type >= SK_MAGIC) && FD_ISSET(s->fd, &rd) && s->rx_hook) do { steps--; io_log_event(s->rx_hook, s->data); e = sk_read(s); if (s != current_sock) goto next; } while (e && s->rx_hook && steps); steps = MAX_STEPS; if (FD_ISSET(s->fd, &wr)) do { steps--; io_log_event(s->tx_hook, s->data); e = sk_write(s); if (s != current_sock) goto next; } while (e && steps); current_sock = sk_next(s); next: ; } short_loops++; if (events && (short_loops < SHORT_LOOP_MAX)) continue; short_loops = 0; int count = 0; current_sock = stored_sock; if (current_sock == NULL) current_sock = SKIP_BACK(sock, n, HEAD(sock_list)); while (current_sock && count < MAX_RX_STEPS) { sock *s = current_sock; int e UNUSED; if ((s->type < SK_MAGIC) && FD_ISSET(s->fd, &rd) && s->rx_hook) { count++; io_log_event(s->rx_hook, s->data); e = sk_read(s); if (s != current_sock) goto next2; } current_sock = sk_next(s); next2: ; } stored_sock = current_sock; } } } void test_old_bird(char *path) { int fd; struct sockaddr_un sa; fd = socket(AF_UNIX, SOCK_STREAM, 0); if (fd < 0) die("Cannot create socket: %m"); if (strlen(path) >= sizeof(sa.sun_path)) die("Socket path too long"); bzero(&sa, sizeof(sa)); sa.sun_family = AF_UNIX; strcpy(sa.sun_path, path); if (connect(fd, (struct sockaddr *) &sa, SUN_LEN(&sa)) == 0) die("I found another BIRD running."); close(fd); }