/* * Filters: Trie for prefix sets * * (c) 2009--2021 Ondrej Zajicek * (c) 2009--2021 CZ.NIC z.s.p.o. * * Can be freely distributed and used under the terms of the GNU GPL. */ /** * DOC: Trie for prefix sets * * We use a (compressed) trie to represent prefix sets. Every node in the trie * represents one prefix (&addr/&plen) and &plen also indicates the index of * bits in the address that are used to branch at the node. Note that such * prefix is not necessary a member of the prefix set, it is just a canonical * prefix associated with a node. Prefix lengths of nodes are aligned to * multiples of &TRIE_STEP (4) and there is 16-way branching in each * node. Therefore, we say that a node is associated with a range of prefix * lengths (&plen .. &plen + TRIE_STEP - 1). * * The prefix set is not just a set of prefixes, it is defined by a set of * prefix patterns. Each prefix pattern consists of &ppaddr/&pplen and two * integers: &low and &high. The tested prefix &paddr/&plen matches that pattern * if the first MIN(&plen, &pplen) bits of &paddr and &ppaddr are the same and * &low <= &plen <= &high. * * There are two ways to represent accepted prefixes for a node. First, there is * a bitmask &local, which represents independently all 15 prefixes that extend * the canonical prefix of the node and are within a range of prefix lengths * associated with the node. E.g., for node 10.0.0.0/8 they are 10.0.0.0/8, * 10.0.0.0/9, 10.128.0.0/9, .. 10.224.0.0/11. This order (first by length, then * lexicographically) is used for indexing the bitmask &local, starting at * position 1. I.e., index is 2^(plen - base) + offset within the same length, * see function trie_local_mask6() for details. * * Second, we use a bitmask &accept to represent accepted prefix lengths at a * node. The bit is set means that all prefixes of given length that are either * subprefixes or superprefixes of the canonical prefix are accepted. As there * are 33 prefix lengths (0..32 for IPv4), but there is just one prefix of zero * length in the whole trie so we have &zero flag in &f_trie (indicating whether * the trie accepts prefix 0.0.0.0/0) as a special case, and &accept bitmask * represents accepted prefix lengths from 1 to 32. * * One complication is handling of prefix patterns with unaligned prefix length. * When such pattern is to be added, we add a primary node above (with rounded * down prefix length &nlen) and a set of secondary nodes below (with rounded up * prefix lengths &slen). Accepted prefix lengths of the original prefix pattern * are then represented in different places based on their lengths. For prefixes * shorter than &nlen, it is &accept bitmask of the primary node, for prefixes * between &nlen and &slen - 1 it is &local bitmask of the primary node, and for * prefixes longer of equal &slen it is &accept bitmasks of secondary nodes. * * There are two cases in prefix matching - a match when the length of the * prefix is smaller that the length of the prefix pattern, (&plen < &pplen) and * otherwise. The second case is simple - we just walk through the trie and look * at every visited node whether that prefix accepts our prefix length (&plen). * The first case is tricky - we do not want to examine every descendant of a * final node, so (when we create the trie) we have to propagate that * information from nodes to their ascendants. * * There are two kinds of propagations - propagation from child's &accept * bitmask to parent's &accept bitmask, and propagation from child's &accept * bitmask to parent's &local bitmask. The first kind is simple - as all * superprefixes of a parent are also all superprefixes of appropriate length of * a child, then we can just add (by bitwise or) a child &accept mask masked by * parent prefix length mask to the parent &accept mask. This handles prefixes * shorter than node &plen. * * The second kind of propagation is necessary to handle superprefixes of a * child that are represented by parent &local mask - that are in the range of * prefix lengths associated with the parent. For each accepted (by child * &accept mask) prefix length from that range, we need to set appropriate bit * in &local mask. See function trie_amask_to_local() for details. * * There are four cases when we walk through a trie: * * - we are in NULL * - we are out of path (prefixes are inconsistent) * - we are in the wanted (final) node (node length == &plen) * - we are beyond the end of path (node length > &plen) * - we are still on path and keep walking (node length < &plen) * * The walking code in trie_match_net() is structured according to these cases. * * Iteration over prefixes in a trie can be done using TRIE_WALK() macro, or * directly using trie_walk_init() and trie_walk_next() functions. The second * approach allows suspending the iteration and continuing in it later. * Prefixes are enumerated in the usual lexicographic order and may be * restricted to a subset of the trie (all subnets of a specified prefix). * * Note that the trie walk does not reliably enumerate `implicit' prefixes * defined by &low and &high fields in prefix patterns, it is supposed to be * used on tries constructed from `explicit' prefixes (&low == &plen == &high * in call to trie_add_prefix()). * * The trie walk has three basic state variables stored in the struct * &f_trie_walk_state -- the current node in &stack[stack_pos], &accept_length * for iteration over inter-node prefixes (non-branching prefixes on compressed * path between the current node and its parent node, stored in the bitmap * &accept of the current node) and &local_pos for iteration over intra-node * prefixes (stored in the bitmap &local). * * The trie also supports longest-prefix-match query by trie_match_longest_ip4() * and it can be extended to iteration over all covering prefixes for a given * prefix (from longest to shortest) using TRIE_WALK_TO_ROOT_IP4() macro. There * are also IPv6 versions (for practical reasons, these functions and macros are * separate for IPv4 and IPv6). There is the same limitation to enumeration of * `implicit' prefixes like with the previous TRIE_WALK() macro. */ #include "nest/bird.h" #include "lib/string.h" #include "conf/conf.h" #include "filter/filter.h" #include "filter/data.h" /* * In the trie_add_prefix(), we use ip_addr (assuming that it is the same as * ip6_addr) to handle both IPv4 and IPv6 prefixes. In contrast to rest of the * BIRD, IPv4 addresses are just zero-padded from right. That is why we have * ipt_from_ip4() and ipt_to_ip4() macros below. */ #define ipa_mkmask(x) ip6_mkmask(x) #define ipa_masklen(x) ip6_masklen(&x) #define ipa_pxlen(x,y) ip6_pxlen(x,y) #define ipa_getbit(a,p) ip6_getbit(a,p) #define ipa_getbits(a,p,n) ip6_getbits(a,p,n) #define ipa_setbits(a,p,n) ip6_setbits(a,p,n) #define trie_local_mask(a,b,c) trie_local_mask6(a,b,c) #define ipt_from_ip4(x) _MI6(_I(x), 0, 0, 0) #define ipt_to_ip4(x) _MI4(_I0(x)) /** * f_new_trie - allocates and returns a new empty trie * @lp: linear pool to allocate items from * @data_size: user data attached to node */ struct f_trie * f_new_trie(linpool *lp, uint data_size) { struct f_trie * ret; ret = lp_allocz(lp, sizeof(struct f_trie) + data_size); ret->lp = lp; ret->ipv4 = -1; ret->data_size = data_size; return ret; } static inline struct f_trie_node4 * new_node4(struct f_trie *t, uint plen, uint local, ip4_addr paddr, ip4_addr pmask, ip4_addr amask) { struct f_trie_node4 *n = lp_allocz(t->lp, sizeof(struct f_trie_node4) + t->data_size); n->plen = plen; n->local = local; n->addr = paddr; n->mask = pmask; n->accept = amask; return n; } static inline struct f_trie_node6 * new_node6(struct f_trie *t, uint plen, uint local, ip6_addr paddr, ip6_addr pmask, ip6_addr amask) { struct f_trie_node6 *n = lp_allocz(t->lp, sizeof(struct f_trie_node6) + t->data_size); n->plen = plen; n->local = local; n->addr = paddr; n->mask = pmask; n->accept = amask; return n; } static inline struct f_trie_node * new_node(struct f_trie *t, uint plen, uint local, ip_addr paddr, ip_addr pmask, ip_addr amask) { if (t->ipv4) return (struct f_trie_node *) new_node4(t, plen, local, ipt_to_ip4(paddr), ipt_to_ip4(pmask), ipt_to_ip4(amask)); else return (struct f_trie_node *) new_node6(t, plen, local, ipa_to_ip6(paddr), ipa_to_ip6(pmask), ipa_to_ip6(amask)); } static inline void attach_node4(struct f_trie_node4 *parent, struct f_trie_node4 *child) { parent->c[ip4_getbits(child->addr, parent->plen, TRIE_STEP)] = child; } static inline void attach_node6(struct f_trie_node6 *parent, struct f_trie_node6 *child) { parent->c[ip6_getbits(child->addr, parent->plen, TRIE_STEP)] = child; } static inline void attach_node(struct f_trie_node *parent, struct f_trie_node *child, int v4) { if (v4) attach_node4(&parent->v4, &child->v4); else attach_node6(&parent->v6, &child->v6); } /* * Internal prefixes of a node a represented by the local bitmask, each bit for * one prefix. Bit 0 is unused, Bit 1 is for the main prefix of the node, * remaining bits correspond to subprefixes by this pattern: * * 1 * 2 3 * 4 5 6 7 * 8 9 A B C D E F * * E.g. for 10.0.0.0/8 node, the 10.64.0.0/10 would be position 5. */ /* * Compute appropriate mask representing prefix px/plen in local bitmask of node * with prefix length nlen. Assuming that nlen <= plen < (nlen + TRIE_STEP). */ static inline uint trie_local_mask4(ip4_addr px, uint plen, uint nlen) { uint step = plen - nlen; uint pos = (1u << step) + ip4_getbits(px, nlen, step); return 1u << pos; } static inline uint trie_local_mask6(ip6_addr px, uint plen, uint nlen) { uint step = plen - nlen; uint pos = (1u << step) + ip6_getbits(px, nlen, step); return 1u << pos; } /* * Compute an appropriate local mask (for a node with prefix length nlen) * representing prefixes of px that are accepted by amask and fall within the * range associated with that node. Used for propagation of child accept mask * to parent local mask. */ static inline uint trie_amask_to_local(ip_addr px, ip_addr amask, uint nlen) { uint local = 0; for (uint plen = MAX(nlen, 1); plen < (nlen + TRIE_STEP); plen++) if (ipa_getbit(amask, plen - 1)) local |= trie_local_mask(px, plen, nlen); return local; } /* * Compute a bitmask representing a level of subprefixes (of the same length), * using specified position as a root. E.g., level 2 from root position 3 would * be bit positions C-F, returned as bitmask 0xf000. */ static inline uint trie_level_mask(uint pos, uint level) { return ((1u << (1u << level)) - 1) << (pos << level); } #define GET_ADDR(N,F,X) ((X) ? ipt_from_ip4((N)->v4.F) : ipa_from_ip6((N)->v6.F)) #define SET_ADDR(N,F,X,V) ({ if (X) (N)->v4.F =ipt_to_ip4(V); else (N)->v6.F =ipa_to_ip6(V); }) #define GET_LOCAL(N,X) ((X) ? (N)->v4.local : (N)->v6.local) #define ADD_LOCAL(N,X,V) ({ uint v_ = (V); if (X) (N)->v4.local |= v_; else (N)->v6.local |= v_; }) #define GET_CHILD(N,X,I) ((X) ? (struct f_trie_node *) (N)->v4.c[I] : (struct f_trie_node *) (N)->v6.c[I]) static void * trie_add_node(struct f_trie *t, uint plen, ip_addr px, uint local, uint l, uint h) { uint l_ = l ? (l - 1) : 0; ip_addr amask = (l_ < h) ? ipa_xor(ipa_mkmask(l_), ipa_mkmask(h)) : IPA_NONE; ip_addr pmask = ipa_mkmask(plen); ip_addr paddr = ipa_and(px, pmask); struct f_trie_node *o = NULL; struct f_trie_node *n = &t->root; int v4 = t->ipv4; /* Add all bits for each active level (0x0002 0x000c 0x00f0 0xff00) */ for (uint i = 0; i < TRIE_STEP; i++) if ((l <= (plen + i)) && ((plen + i) <= h)) local |= trie_level_mask(1, i); DBG("Insert node %I/%u (%I %x)\n", paddr, plen, amask, local); while (n) { ip_addr naddr = GET_ADDR(n, addr, v4); ip_addr nmask = GET_ADDR(n, mask, v4); ip_addr accept = GET_ADDR(n, accept, v4); ip_addr cmask = ipa_and(nmask, pmask); uint nlen = v4 ? n->v4.plen : n->v6.plen; DBG("Found node %I/%u (%I %x)\n", naddr, nlen, accept, v4 ? n->v4.local : n->v6.local); if (ipa_compare(ipa_and(paddr, cmask), ipa_and(naddr, cmask))) { /* We are out of path - we have to add branching node 'b' between node 'o' and node 'n', and attach new node 'a' as the other child of 'b'. */ int blen = ROUND_DOWN_POW2(ipa_pxlen(paddr, naddr), TRIE_STEP); ip_addr bmask = ipa_mkmask(blen); ip_addr baddr = ipa_and(px, bmask); /* Merge accept masks from children to get accept mask for node 'b' */ ip_addr baccm = ipa_and(ipa_or(amask, accept), bmask); uint bloc = trie_amask_to_local(naddr, accept, blen) | trie_amask_to_local(paddr, amask, blen); struct f_trie_node *a = new_node(t, plen, local, paddr, pmask, amask); struct f_trie_node *b = new_node(t, blen, bloc, baddr, bmask, baccm); attach_node(o, b, v4); attach_node(b, n, v4); attach_node(b, a, v4); t->prefix_count++; DBG("Case 1\n"); return a; } if (plen < nlen) { /* We add new node 'a' between node 'o' and node 'n' */ amask = ipa_or(amask, ipa_and(accept, pmask)); local |= trie_amask_to_local(naddr, accept, plen); struct f_trie_node *a = new_node(t, plen, local, paddr, pmask, amask); attach_node(o, a, v4); attach_node(a, n, v4); t->prefix_count++; DBG("Case 2\n"); return a; } if (plen == nlen) { /* We already found added node in trie. Just update accept and local mask */ accept = ipa_or(accept, amask); SET_ADDR(n, accept, v4, accept); if ((GET_LOCAL(n, v4) & local) != local) t->prefix_count++; ADD_LOCAL(n, v4, local); DBG("Case 3\n"); return n; } /* Update accept mask part M2 and go deeper */ accept = ipa_or(accept, ipa_and(amask, nmask)); SET_ADDR(n, accept, v4, accept); ADD_LOCAL(n, v4, trie_amask_to_local(paddr, amask, nlen)); DBG("Step %u\n", ipa_getbits(paddr, nlen)); /* n->plen < plen and plen <= 32 (128) */ o = n; n = GET_CHILD(n, v4, ipa_getbits(paddr, nlen, TRIE_STEP)); } /* We add new tail node 'a' after node 'o' */ struct f_trie_node *a = new_node(t, plen, local, paddr, pmask, amask); attach_node(o, a, v4); t->prefix_count++; DBG("Case 4\n"); return a; } /** * trie_add_prefix * @t: trie to add to * @net: IP network prefix * @l: prefix lower bound * @h: prefix upper bound * * Adds prefix (prefix pattern) @n to trie @t. @l and @h are lower * and upper bounds on accepted prefix lengths, both inclusive. * 0 <= l, h <= 32 (128 for IPv6). * * Returns a pointer to the allocated node. The function can return a pointer to * an existing node if @px and @plen are the same. If px/plen == 0/0 (or ::/0), * a pointer to the root node is returned. Returns NULL when called with * mismatched IPv4/IPv6 net type. */ void * trie_add_prefix(struct f_trie *t, const net_addr *net, uint l, uint h) { uint plen = net_pxlen(net); ip_addr px; int v4; switch (net->type) { case NET_IP4: case NET_VPN4: case NET_ROA4: px = ipt_from_ip4(net4_prefix(net)); v4 = 1; break; case NET_IP6: case NET_VPN6: case NET_ROA6: case NET_IP6_SADR: px = ipa_from_ip6(net6_prefix(net)); v4 = 0; break; default: bug("invalid type"); } if (t->ipv4 != v4) { if (t->ipv4 < 0) t->ipv4 = v4; else return NULL; } DBG("\nInsert net %N (%u-%u)\n", net, l, h); if (l == 0) t->zero = 1; if (h < plen) plen = h; /* Primary node length, plen rounded down */ uint nlen = ROUND_DOWN_POW2(plen, TRIE_STEP); if (plen == nlen) return trie_add_node(t, nlen, px, 0, l, h); /* Secondary node length, plen rouned up */ uint slen = nlen + TRIE_STEP; void *node = NULL; /* * For unaligned prefix lengths it is more complicated. We need to encode * matching prefixes of lengths from l to h. There are three cases of lengths: * * 1) 0..nlen are encoded by the accept mask of the primary node * 2) nlen..(slen-1) are encoded by the local mask of the primary node * 3) slen..max are encoded in secondary nodes */ if (l < slen) { uint local = 0; /* Compute local bits for accepted nlen..(slen-1) prefixes */ for (uint i = 0; i < TRIE_STEP; i++) if ((l <= (nlen + i)) && ((nlen + i) <= h)) { uint pos = (1u << i) + ipa_getbits(px, nlen, i); uint len = ((nlen + i) <= plen) ? 1 : (1u << (nlen + i - plen)); /* We need to fill 'len' bits starting at 'pos' position */ local |= ((1u << len) - 1) << pos; } /* Add the primary node */ node = trie_add_node(t, nlen, px, local, l, nlen); } if (slen <= h) { uint l2 = MAX(l, slen); uint max = (1u << (slen - plen)); /* Add secondary nodes */ for (uint i = 0; i < max; i++) node = trie_add_node(t, slen, ipa_setbits(px, slen - 1, i), 0, l2, h); } return node; } static int trie_match_net4(const struct f_trie *t, ip4_addr px, uint plen) { if (plen == 0) return t->zero; int plentest = plen - 1; uint nlen = ROUND_DOWN_POW2(plen, TRIE_STEP); uint local = trie_local_mask4(px, plen, nlen); const struct f_trie_node4 *n = &t->root.v4; while (n) { /* We are out of path */ if (!ip4_prefix_equal(px, n->addr, MIN(plen, n->plen))) return 0; /* Check local mask */ if ((n->plen == nlen) && (n->local & local)) return 1; /* Check accept mask */ if (ip4_getbit(n->accept, plentest)) return 1; /* We finished trie walk and still no match */ if (nlen <= n->plen) return 0; /* Choose children */ n = n->c[ip4_getbits(px, n->plen, TRIE_STEP)]; } return 0; } static int trie_match_net6(const struct f_trie *t, ip6_addr px, uint plen) { if (plen == 0) return t->zero; int plentest = plen - 1; uint nlen = ROUND_DOWN_POW2(plen, TRIE_STEP); uint local = trie_local_mask6(px, plen, nlen); const struct f_trie_node6 *n = &t->root.v6; while (n) { /* We are out of path */ if (!ip6_prefix_equal(px, n->addr, MIN(plen, n->plen))) return 0; /* Check local mask */ if ((n->plen == nlen) && (n->local & local)) return 1; /* Check accept mask */ if (ip6_getbit(n->accept, plentest)) return 1; /* We finished trie walk and still no match */ if (nlen <= n->plen) return 0; /* Choose children */ n = n->c[ip6_getbits(px, n->plen, TRIE_STEP)]; } return 0; } /** * trie_match_net * @t: trie * @n: net address * * Tries to find a matching net in the trie such that * prefix @n matches that prefix pattern. Returns 1 if there * is such prefix pattern in the trie. */ int trie_match_net(const struct f_trie *t, const net_addr *n) { switch (n->type) { case NET_IP4: case NET_VPN4: case NET_ROA4: return t->ipv4 ? trie_match_net4(t, net4_prefix(n), net_pxlen(n)) : 0; case NET_IP6: case NET_VPN6: case NET_ROA6: return !t->ipv4 ? trie_match_net6(t, net6_prefix(n), net_pxlen(n)) : 0; default: return 0; } } /** * trie_match_longest_ip4 * @t: trie * @net: net address * @dst: return value * @found0: optional returned bitmask of found nodes * * Perform longest prefix match for the address @net and return the resulting * prefix in the buffer @dst. The bitmask @found0 is used to report lengths of * prefixes on the path from the root to the resulting prefix. E.g., if there is * also a /20 shorter matching prefix, then 20-th bit is set in @found0. This * can be used to enumerate all matching prefixes for the network @net using * function trie_match_next_longest_ip4() or macro TRIE_WALK_TO_ROOT_IP4(). * * This function assumes IPv4 trie, there is also an IPv6 variant. The @net * argument is typed as net_addr_ip4, but would accept any IPv4-based net_addr, * like net4_prefix(). Anyway, returned @dst is always net_addr_ip4. * * Result: 1 if a matching prefix was found, 0 if not. */ int trie_match_longest_ip4(const struct f_trie *t, const net_addr_ip4 *net, net_addr_ip4 *dst, ip4_addr *found0) { ASSERT(t->ipv4); const ip4_addr prefix = net->prefix; const int pxlen = net->pxlen; const struct f_trie_node4 *n = &t->root.v4; int len = 0; ip4_addr found = IP4_NONE; int last = -1; while (n) { /* We are out of path */ if (!ip4_prefix_equal(prefix, n->addr, MIN(pxlen, n->plen))) goto done; /* Check accept mask */ for (; len < n->plen; len++) { if (len > pxlen) goto done; if (ip4_getbit(n->accept, len - 1)) { /* len is always < 32 due to len < n->plen */ ip4_setbit(&found, len); last = len; } } /* Special case for max length, there is only one valid local position */ if (len == IP4_MAX_PREFIX_LENGTH) { if (n->local & (1u << 1)) last = len; goto done; } /* Check local mask */ for (int pos = 1; pos < (1 << TRIE_STEP); pos = 2 * pos + ip4_getbit(prefix, len), len++) { if (len > pxlen) goto done; if (n->local & (1u << pos)) { /* len is always < 32 due to special case above */ ip4_setbit(&found, len); last = len; } } /* Choose child */ n = n->c[ip4_getbits(prefix, n->plen, TRIE_STEP)]; } done: if (last < 0) return 0; *dst = NET_ADDR_IP4(ip4_and(prefix, ip4_mkmask(last)), last); if (found0) *found0 = found; return 1; } /** * trie_match_longest_ip6 * @t: trie * @net: net address * @dst: return value * @found0: optional returned bitmask of found nodes * * Perform longest prefix match for the address @net and return the resulting * prefix in the buffer @dst. The bitmask @found0 is used to report lengths of * prefixes on the path from the root to the resulting prefix. E.g., if there is * also a /20 shorter matching prefix, then 20-th bit is set in @found0. This * can be used to enumerate all matching prefixes for the network @net using * function trie_match_next_longest_ip6() or macro TRIE_WALK_TO_ROOT_IP6(). * * This function assumes IPv6 trie, there is also an IPv4 variant. The @net * argument is typed as net_addr_ip6, but would accept any IPv6-based net_addr, * like net6_prefix(). Anyway, returned @dst is always net_addr_ip6. * * Result: 1 if a matching prefix was found, 0 if not. */ int trie_match_longest_ip6(const struct f_trie *t, const net_addr_ip6 *net, net_addr_ip6 *dst, ip6_addr *found0) { ASSERT(!t->ipv4); const ip6_addr prefix = net->prefix; const int pxlen = net->pxlen; const struct f_trie_node6 *n = &t->root.v6; int len = 0; ip6_addr found = IP6_NONE; int last = -1; while (n) { /* We are out of path */ if (!ip6_prefix_equal(prefix, n->addr, MIN(pxlen, n->plen))) goto done; /* Check accept mask */ for (; len < n->plen; len++) { if (len > pxlen) goto done; if (ip6_getbit(n->accept, len - 1)) { /* len is always < 128 due to len < n->plen */ ip6_setbit(&found, len); last = len; } } /* Special case for max length, there is only one valid local position */ if (len == IP6_MAX_PREFIX_LENGTH) { if (n->local & (1u << 1)) last = len; goto done; } /* Check local mask */ for (int pos = 1; pos < (1 << TRIE_STEP); pos = 2 * pos + ip6_getbit(prefix, len), len++) { if (len > pxlen) goto done; if (n->local & (1u << pos)) { /* len is always < 128 due to special case above */ ip6_setbit(&found, len); last = len; } } /* Choose child */ n = n->c[ip6_getbits(prefix, n->plen, TRIE_STEP)]; } done: if (last < 0) return 0; *dst = NET_ADDR_IP6(ip6_and(prefix, ip6_mkmask(last)), last); if (found0) *found0 = found; return 1; } #define SAME_PREFIX(A,B,X,L) ((X) ? ip4_prefix_equal((A)->v4.addr, net4_prefix(B), (L)) : ip6_prefix_equal((A)->v6.addr, net6_prefix(B), (L))) #define GET_NET_BITS(N,X,A,B) ((X) ? ip4_getbits(net4_prefix(N), (A), (B)) : ip6_getbits(net6_prefix(N), (A), (B))) #define GET_NODE_BITS(N,X,A,B) ((X) ? ip4_getbits((N)->v4.addr, (A), (B)) : ip6_getbits((N)->v6.addr, (A), (B))) //#define GET_ACCEPT_BITS(N,X,B) ((X) ? ip4_getbits((N)->v4.accept, (B), TRIE_STEP) : ip6_getbits((N)->v6.accept, (B), TRIE_STEP)) #define NEXT_PREFIX(A,B,X) ((X) ? ip4_compare((A)->v4.addr, net4_prefix(B)) < 0 : ip6_compare((A)->v6.addr, net6_prefix(B)) < 0) #define MATCH_LOCAL_MASK(A,B,L,X) \ ((X) ? (A)->v4.local >= trie_local_mask4(net4_prefix(B), (B)->pxlen, (L)) : (A)->v6.local >= trie_local_mask6(net6_prefix(B), (B)->pxlen, (L))) void _print_net(const net_addr *net, int v4) { char buf[64]; net_format(net, buf, 64); log("net: %s", buf); } void _print_node(const struct f_trie_node *n, int v4) { if (n == NULL) { log("node: (null)"); return; } int nlen = v4 ? n->v4.plen : n->v6.plen; char buf[64]; net_addr curr; if (v4) net_fill_ip4(&curr, ip4_and(n->v4.addr, ip4_mkmask(nlen)), nlen); else net_fill_ip6(&curr, ip6_and(n->v6.addr, ip6_mkmask(nlen)), nlen); net_format(&curr, buf, 64); log("node: %s", buf); } /** * trie_walk_init * @s: walk state * @t: trie * @net: optional subnet for walk * @include_successors: optional flag for continue walking beyond subnet @net * * Initialize walk state for subsequent walk through nodes of the trie @t by * trie_walk_next(). The argument @net allows to restrict walk to given subnet, * otherwise full walk over all nodes is used. This is done by finding node at * or below @net and starting position in it. The argument @include_successors * removes the restriction for all subnets lexicographically succeeding the * @net. In case of @net search fail the walk state starting position points to * the nearest parent node availible. If you use @net and @include_successors, * beware that the trie_walk_next() could return a net preceding the one * specified in @net. * * If desired start position node was found in trie, 1 is returned, 0 otherwise. */ int trie_walk_init(struct f_trie_walk_state *s, const struct f_trie *t, const net_addr *net, u8 include_successors) { *s = (struct f_trie_walk_state) { .ipv4 = t->ipv4, .accept_length = 0, .start_pos = 1, .local_pos = 1, .stack_pos = 0, .stack[0] = &t->root }; /* Local work copy of @net */ if (!net) return 0; /* We want to find node of level at least plen */ int plen = ROUND_DOWN_POW2(net->pxlen, TRIE_STEP); const struct f_trie_node *n = &t->root; const int v4 = t->ipv4; while (n) { int nlen = v4 ? n->v4.plen : n->v6.plen; /* We are out of path */ if (!SAME_PREFIX(n, net, v4, MIN(net->pxlen, nlen))) break; /* We found final node */ if (nlen >= plen) { if (!include_successors) s->stack[0] = n; else { s->stack[s->stack_pos] = n; } s->start_pos = 1; if (nlen == plen) { /* Find proper local_pos, while accept_length is not used */ s->local_pos = 1; s->accept_length = plen; //if (include_successors && (GET_LOCAL(n, v4) < TRIE_LOCAL_MASK(net, nlen, v4))) //goto find_successor; if (include_successors) { if (GET_LOCAL(n, v4) != 0 && !MATCH_LOCAL_MASK(n, net, nlen, v4)) goto find_successor; int pos = 1; u32 bits = GET_NET_BITS(net, v4, nlen, TRIE_STEP); for (int i = 0; i < net->pxlen - plen; i++) { if (bits & (1u << (TRIE_STEP - i - 1))) pos = 2 * pos + 1; else pos = 2 * pos; } //if (GET_CHILD(n, v4, bits) != NULL) //{ s->local_pos = pos; return 0; //} } // if (v4) // { // struct net_addr_ip4 *net4 = &((net_addr_union *) net)->ip4; // /* succesor is not in current node */ // if (include_successors && (GET_LOCAL(n, v4) < trie_local_mask4(net4->prefix, net4->pxlen, nlen))) // goto find_successor; // // /* successor could be in current node */ // if (include_successors) // { // int pos = 1; // u32 bits = ip4_getbits(net4->prefix, nlen, TRIE_STEP); // // /* calculate pos for local bitmap */ // for (int i = 0; i < net4->pxlen - plen; i++) // { // if (bits & (1u << (TRIE_STEP - i - 1))) // pos = 2 * pos + 1; // else // pos = 2 * pos; // } // // if (n->v4.c[bits] != NULL) // { // s->local_pos = pos; // return 1; // } // // /* if the prefix on position pos is present, go one step back */ // if (GET_LOCAL(n, v4) & (1u << pos)) // if (pos == 1) // {} // else // s->local_pos = pos / 2; // else // s->local_pos = pos; // // return 1; // } // } // else // { // struct net_addr_ip6 *net6 = &((net_addr_union *) net)->ip6; // if (include_successors && (GET_LOCAL(n, v4) < trie_local_mask6(net6->prefix, net6->pxlen, nlen))) // goto find_successor; // // if (include_successors) // { // return 1; // } // } } else { /* Start from pos 1 in current node, but first try accept mask */ s->accept_length = net->pxlen; } return 1; } /* We store node in stack before moving on */ if (include_successors) s->stack[s->stack_pos++] = n; /* Choose child */ n = GET_CHILD(n, v4, GET_NET_BITS(net, v4, nlen, TRIE_STEP)); } /* We do not override the trie root in case of inclusive search */ if (!include_successors) s->stack[0] = NULL; /* We are out of path, find nearest successor */ else { if (s->stack_pos == 0) return 0; // if (s->stack_pos == 0) // { // if (s->stack[0] == NULL) // { /* no elements, -> invalid state */ log(" return 4 invalid"); return 0; } // // /* empty trie with only root node !? */ // bug("couldn't happen"); // } /* * If we end up on node that has compressed path, we need to step up node * for better decision making */ // if (n == NULL || (v4 ? n->v4.plen < s->stack[s->stack_pos - 1]->v4.plen : // n->v6.plen < s->stack[s->stack_pos - 1]->v6.plen && NEXT_PREFIX(n, net, v4))) // { // s->stack_pos--; // n = s->stack[s->stack_pos]; // } s->stack_pos--; n = s->stack[s->stack_pos]; ASSERT(n != NULL); //u32 nlen = v4 ? n->v4.plen : n->v6.plen; //s->accept_length = nlen; //u32 bits = GET_NET_BITS(net, v4, nlen, TRIE_STEP); //uint nlen = v4 ? n->v4.plen : n->v6.plen; //u32 bits = GET_NET_BITS(net, v4, nlen, TRIE_STEP); //const struct f_trie_node *child = GET_CHILD(n, v4, bits); //if (child != NULL) //{ // u32 clen; /* child prefix length */ // do // { // clen = v4 ? child->v4.plen : child->v6.plen; // s->stack_pos++; // s->stack[s->stack_pos] = child; // s->local_pos = 0x1f; // n = child; // nlen = clen; // bits = GET_NET_BITS(net, v4, nlen, TRIE_STEP); // child = GET_CHILD(n, v4, bits); // } // while (child != NULL && clen > nlen && NEXT_PREFIX(child, net, v4)); //} //s->accept_length = nlen; ///* the while cycle above wasn't entered */ //if (s->local_pos != 0x1f) // s->local_pos = 0x10 | bits; /* We find the nearest successor in subsequent trie_walk_next() */ int nlen = v4 ? n->v4.plen : n->v6.plen; u32 bits = GET_NET_BITS(net, v4, nlen, TRIE_STEP); const struct f_trie_node *child = GET_CHILD(n, v4, bits); if (child != NULL) { int clen = v4 ? child->v4.plen : child->v6.plen; /* child prefix length */ /* We are dealing with a compressed child */ if (clen > nlen + TRIE_STEP) { int len = nlen; while (GET_NODE_BITS(child, v4, len, TRIE_STEP) == bits && len < MIN(clen, plen)) { len += TRIE_STEP; bits = GET_NET_BITS(net, v4, len, TRIE_STEP); } if (len > nlen) { s->stack_pos++; s->stack[s->stack_pos] = child; } /* successive siblings walk */ const struct f_trie_node *ns = NULL; for (u32 i = bits + 1; i < (1u << TRIE_STEP); i++) { /* n is parent and ns is older sibling of child */ if ((ns = v4 ? (struct f_trie_node *) n->v4.c[i] : (struct f_trie_node *) n->v6.c[i]) == NULL) continue; //if (GET_NODE_BITS(ns, v4, len, TRIE_STEP) < bits) // break; if (GET_NET_BITS(net, v4, len, TRIE_STEP) < bits) break; } if (ns == NULL) ns = child; //if (GET_NODE_BITS(ns, v4, len, TRIE_STEP) < bits) // s->local_pos = 0x1f; if (GET_NET_BITS(net, v4, len, TRIE_STEP) < bits) s->local_pos = 0x1f; else s->local_pos = 1; s->accept_length = len; return 0; } // if (clen > nlen && NEXT_PREFIX(child, net, v4)) // { // //clen = v4 ? child->v4.plen : child->v6.plen; // // s->stack_pos++; // s->stack[s->stack_pos] = child; // s->local_pos = 0x1f; // // n = child; // nlen = clen; // // bits = GET_NET_BITS(net, v4, nlen, TRIE_STEP); // child = GET_CHILD(n, v4, bits); // } else s->local_pos = 0x10 + bits; // if (plen > nlen && NEXT_PREFIX(child, net, v4)) // { // s->stack_pos++; // s->stack[s->stack_pos] = child; // s->local_pos = 0x1f; // } // if (s->local_pos != 0x1f) // { // s->local_pos = 0x10 + bits; // } } else { s->local_pos = 0x10 + bits; } nlen = v4 ? n->v4.plen : n->v6.plen; s->accept_length = nlen; // if (k4) // /* compressed child */ // if (n->v4.c[bits] != NULL && n->v4.c[bits]->plen > nlen + TRIE_STEP && // ip4_getbits((n->v4.c[bits]->addr), nlen + TRIE_STEP, TRIE_STEP) < ip4_getbits(((net_addr_ip4 *)net)->prefix, nlen + TRIE_STEP, TRIE_STEP)) // { // s->stack_pos++; // s->stack[s->stack_pos] = (const struct f_trie_node *) n->v4.c[bits]; // s->local_pos = 0x1f; // } // else // s->local_pos = 0x10 + bits; // else // {} } return 0; find_successor:; log("find_successor"); ASSERT(n != NULL); u32 nlen = v4 ? n->v4.plen : n->v6.plen; { _print_node(n, v4); } u32 bits = GET_NET_BITS(net, v4, nlen, TRIE_STEP); s->local_pos = 0x10 + bits; // //const struct f_trie_node *old = n; // if (v4) // { // struct net_addr_ip4 *addr = &((union net_addr_union *) &local)->ip4; // u32 bits = ip4_getbits(addr->prefix, nlen, TRIE_STEP); // /* what about compress nodes ?!? TODO */ // s->local_pos = 0x10 + bits; // } // else // { // } return 0; } #define GET_ACCEPT_BIT(N,X,B) ((X) ? ip4_getbit((N)->v4.accept, (B)) : ip6_getbit((N)->v6.accept, (B))) #define GET_LOCAL_BIT(N,X,B) (((X) ? (N)->v4.local : (N)->v6.local) & (1u << (B))) /** * trie_walk_next * @s: walk state * @net: return value * * Find the next prefix in the trie walk and return it in the buffer @net. * Prefixes are walked in the usual lexicographic order and may be restricted * to a subset of the trie during walk setup by trie_walk_init(). Note that the * trie walk does not iterate reliably over 'implicit' prefixes defined by &low * and &high fields in prefix patterns, it is supposed to be used on tries * constructed from 'explicit' prefixes (&low == &plen == &high in call to * trie_add_prefix()). * * Result: 1 if the next prefix was found, 0 for the end of walk. */ int trie_walk_next(struct f_trie_walk_state *s, net_addr *net) { const struct f_trie_node *n = s->stack[s->stack_pos]; int len = s->accept_length; int pos = s->local_pos; int v4 = s->ipv4; /* * The walk has three basic state variables -- n, len and pos. In each node n, * we first walk superprefixes (by len in &accept bitmask), and then we walk * internal positions (by pos in &local bitmask). These positions are: * * 1 * 2 3 * 4 5 6 7 * 8 9 A B C D E e * * We walk them depth-first, including virtual positions 10-1F that are * equivalent of position 1 in child nodes 0-F. */ if (!n) { memset(net, 0, v4 ? sizeof(net_addr_ip4) : sizeof(net_addr_ip6)); return 0; } next_node:; /* Current node prefix length */ int nlen = v4 ? n->v4.plen : n->v6.plen; /* First, check for accept prefix */ for (; len < nlen; len++) if (GET_ACCEPT_BIT(n, v4, len - 1)) { if (v4) net_fill_ip4(net, ip4_and(n->v4.addr, ip4_mkmask(len)), len); else net_fill_ip6(net, ip6_and(n->v6.addr, ip6_mkmask(len)), len); s->local_pos = pos; s->accept_length = len + 1; return 1; } next_pos: /* Bottom of this node */ if (pos >= (1 << TRIE_STEP)) { const struct f_trie_node *child = GET_CHILD(n, v4, pos - (1 << TRIE_STEP)); int dir = 0; /* No child node */ if (!child) { /* Step up until return from left child (pos is even) */ do { /* Step up from start node */ if ((s->stack_pos == 0) && (pos == s->start_pos)) { s->stack[0] = NULL; memset(net, 0, v4 ? sizeof(net_addr_ip4) : sizeof(net_addr_ip6)); return 0; } /* Top of this node */ if (pos == 1) { ASSERT(s->stack_pos); const struct f_trie_node *old = n; /* Move to parent node */ s->stack_pos--; n = s->stack[s->stack_pos]; nlen = v4 ? n->v4.plen : n->v6.plen; pos = v4 ? ip4_getbits(old->v4.addr, nlen, TRIE_STEP) : ip6_getbits(old->v6.addr, nlen, TRIE_STEP); pos += (1 << TRIE_STEP); len = nlen; ASSERT(GET_CHILD(n, v4, pos - (1 << TRIE_STEP)) == old); } /* Step up */ dir = pos % 2; pos = pos / 2; } while (dir); /* Continue with step down to the right child */ pos = 2 * pos + 1; goto next_pos; } /* Move to child node */ pos = 1; len = nlen + TRIE_STEP; s->stack_pos++; n = s->stack[s->stack_pos] = child; goto next_node; } /* Check for local prefix */ if (GET_LOCAL_BIT(n, v4, pos)) { /* Convert pos to address of local network */ int x = (pos >= 2) + (pos >= 4) + (pos >= 8); int y = pos & ((1u << x) - 1); if (v4) net_fill_ip4(net, !x ? n->v4.addr : ip4_setbits(n->v4.addr, nlen + x - 1, y), nlen + x); else net_fill_ip6(net, !x ? n->v6.addr : ip6_setbits(n->v6.addr, nlen + x - 1, y), nlen + x); s->local_pos = 2 * pos; s->accept_length = len; return 1; } /* Step down */ pos = 2 * pos; goto next_pos; } static int trie_node_same4(const struct f_trie_node4 *t1, const struct f_trie_node4 *t2) { if ((t1 == NULL) && (t2 == NULL)) return 1; if ((t1 == NULL) || (t2 == NULL)) return 0; if ((t1->plen != t2->plen) || (! ip4_equal(t1->addr, t2->addr)) || (! ip4_equal(t1->accept, t2->accept))) return 0; for (uint i = 0; i < (1 << TRIE_STEP); i++) if (! trie_node_same4(t1->c[i], t2->c[i])) return 0; return 1; } static int trie_node_same6(const struct f_trie_node6 *t1, const struct f_trie_node6 *t2) { if ((t1 == NULL) && (t2 == NULL)) return 1; if ((t1 == NULL) || (t2 == NULL)) return 0; if ((t1->plen != t2->plen) || (! ip6_equal(t1->addr, t2->addr)) || (! ip6_equal(t1->accept, t2->accept))) return 0; for (uint i = 0; i < (1 << TRIE_STEP); i++) if (! trie_node_same6(t1->c[i], t2->c[i])) return 0; return 1; } /** * trie_same * @t1: first trie to be compared * @t2: second one * * Compares two tries and returns 1 if they are same */ int trie_same(const struct f_trie *t1, const struct f_trie *t2) { if ((t1->zero != t2->zero) || (t1->ipv4 != t2->ipv4)) return 0; if (t1->ipv4) return trie_node_same4(&t1->root.v4, &t2->root.v4); else return trie_node_same6(&t1->root.v6, &t2->root.v6); } static const u8 log2[16] = {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3}; static void trie_node_format(const struct f_trie_node *n, buffer *buf, int v4) { if (n == NULL) return; if (v4) { if (ip4_nonzero(n->v4.accept)) buffer_print(buf, "%I4/%d{%I4}, ", n->v4.addr, n->v4.plen, n->v4.accept); } else { if (ip6_nonzero(n->v6.accept)) buffer_print(buf, "%I6/%d{%I6}, ", n->v6.addr, n->v6.plen, n->v6.accept); } int nlen = v4 ? n->v4.plen : n->v6.plen; uint local = v4 ? n->v4.local : n->v6.local; for (int i = (nlen ? 0 : 1); i < TRIE_STEP; i++) if (GET_ACCEPT_BIT(n, v4, nlen + i - 1)) local &= ~trie_level_mask(1, i); for (int pos = 2; local && (pos < (1 << TRIE_STEP)); pos++) if (local & (1u << pos)) { int lvl = log2[pos]; int plen = nlen + lvl; int i; for (i = 0; lvl + i < TRIE_STEP; i++) { uint lmask = trie_level_mask(pos, i); if ((local & lmask) != lmask) break; local &= ~lmask; } uint addr_bits = pos & ((1u << lvl) - 1); uint accept_bits = (1u << i) - 1; int h = plen + i - 1; if (v4) { ip4_addr addr = ip4_setbits(n->v4.addr, plen - 1, addr_bits); ip4_addr mask = ip4_setbits(IP4_NONE, h - 1, accept_bits); buffer_print(buf, "%I4/%d{%I4}, ", addr, plen, mask); } else { ip6_addr addr = ip6_setbits(n->v6.addr, plen - 1, addr_bits); ip6_addr mask = ip6_setbits(IP6_NONE, h - 1, accept_bits); buffer_print(buf, "%I6/%d{%I6}, ", addr, plen, mask); } } for (int i = 0; i < (1 << TRIE_STEP); i++) trie_node_format(GET_CHILD(n, v4, i), buf, v4); } /** * trie_format * @t: trie to be formatted * @buf: destination buffer * * Prints the trie to the supplied buffer. */ void trie_format(const struct f_trie *t, buffer *buf) { buffer_puts(buf, "["); if (t->zero) buffer_print(buf, "%I/%d, ", t->ipv4 ? IPA_NONE4 : IPA_NONE6, 0); trie_node_format(&t->root, buf, t->ipv4); if (buf->pos == buf->end) return; /* Undo last separator */ if (buf->pos[-1] != '[') buf->pos -= 2; buffer_puts(buf, "]"); }