/* * BIRD -- Simple Network Management Protocol (SNMP) * BGP4-MIB bgpPeerTable * * (c) 2022 Vojtech Vilimek * (c) 2022 CZ.NIC z.s.p.o * * Can be freely distributed and used under the terms of the GNU GPL. */ #include "snmp.h" #include "snmp_utils.h" #include "subagent.h" #include "bgp4_mib.h" #include "mib_tree.h" /* hash table macros */ #define SNMP_HASH_KEY(n) n->peer_ip #define SNMP_HASH_NEXT(n) n->next #define SNMP_HASH_EQ(ip1, ip2) ip4_equal(ip1, ip2) #define SNMP_HASH_FN(ip) ip4_hash(ip) #define SNMP_HASH_LESS4(ip1, ip2) ip4_less(ip1, ip2) #define SNMP_HASH_LESS6(ip1, ip2) ip6_less(ip1, ip2) /* hash table only store ip4 addresses */ #define SNMP_HASH_LESS(ip1, ip2) SNMP_HASH_LESS4(ip1,ip2) // delete me #define SNMP_MANAGE_TBUF(...) (void)0 #define DECLARE_BGP4(addr, proto, conn, stats, config) \ ip4_addr addr; \ const struct bgp_proto UNUSED *proto; \ const struct bgp_conn UNUSED *conn; \ const struct bgp_stats UNUSED *stats; \ const struct bgp_config UNUSED *config #define POPULATE_BGP4(addr, proto, conn, stats, config) populate_bgp4(d, &(addr), &(proto), &(conn), &(stats), &(config)) static inline void ip4_to_oid(struct oid *oid, ip4_addr addr); static inline void snmp_hash_add_peer(struct snmp_proto *p, struct snmp_bgp_peer *peer) { HASH_INSERT(p->bgp_hash, SNMP_HASH, peer); } static inline struct snmp_bgp_peer * snmp_hash_find(struct snmp_proto *p, ip4_addr key) { return HASH_FIND(p->bgp_hash, SNMP_HASH, key); } static inline void snmp_bgp_last_error(const struct bgp_proto *bgp, char err[2]) { err[0] = bgp->last_error_code & 0x00FF0000 >> 16; err[1] = bgp->last_error_code & 0x000000FF; } static u8 bgp_get_candidate(u32 field) { const u8 translation_table[] = { [BGP4_MIB_PEER_IDENTIFIER] = BGP4_MIB_S_PEER_IDENTIFIER, [BGP4_MIB_STATE] = BGP4_MIB_S_STATE, [BGP4_MIB_ADMIN_STATUS] = BGP4_MIB_S_ADMIN_STATUS, [BGP4_MIB_NEGOTIATED_VERSION] = BGP4_MIB_S_NEGOTIATED_VERSION, [BGP4_MIB_LOCAL_ADDR] = BGP4_MIB_S_LOCAL_ADDR, [BGP4_MIB_LOCAL_PORT] = BGP4_MIB_S_LOCAL_PORT, [BGP4_MIB_REMOTE_ADDR] = BGP4_MIB_S_REMOTE_ADDR, [BGP4_MIB_REMOTE_PORT] = BGP4_MIB_S_REMOTE_PORT, [BGP4_MIB_REMOTE_AS] = BGP4_MIB_S_REMOTE_AS, [BGP4_MIB_RX_UPDATES] = BGP4_MIB_S_RX_UPDATES, [BGP4_MIB_TX_UPDATES] = BGP4_MIB_S_TX_UPDATES, [BGP4_MIB_RX_MESSAGES] = BGP4_MIB_S_RX_MESSAGES, [BGP4_MIB_TX_MESSAGES] = BGP4_MIB_S_TX_MESSAGES, [BGP4_MIB_LAST_ERROR] = BGP4_MIB_S_LAST_ERROR, [BGP4_MIB_FSM_TRANSITIONS] = BGP4_MIB_S_FSM_TRANSITIONS, [BGP4_MIB_FSM_ESTABLISHED_TIME] = BGP4_MIB_S_FSM_ESTABLISHED_TIME, [BGP4_MIB_RETRY_INTERVAL] = BGP4_MIB_S_RETRY_INTERVAL, [BGP4_MIB_HOLD_TIME] = BGP4_MIB_S_HOLD_TIME, [BGP4_MIB_KEEPALIVE] = BGP4_MIB_S_KEEPALIVE, [BGP4_MIB_HOLD_TIME_CONFIGURED] = BGP4_MIB_S_HOLD_TIME_CONFIGURED, [BGP4_MIB_KEEPALIVE_CONFIGURED] = BGP4_MIB_S_KEEPALIVE_CONFIGURED, [BGP4_MIB_ORIGINATION_INTERVAL] = BGP4_MIB_S_ORIGINATION_INTERVAL, [BGP4_MIB_MIN_ROUTE_ADVERTISEMENT] = BGP4_MIB_S_MIN_ROUTE_ADVERTISEMENT, [BGP4_MIB_IN_UPDATE_ELAPSED_TIME] = BGP4_MIB_S_IN_UPDATE_ELAPSED_TIME, }; /* * First value is in secord cell of array translation_table, as the * SNMP_BGP_IDENTIFIER == 1 */ if (field > 0 && field <= ARRAY_SIZE(translation_table)- 1) return translation_table[field]; else if (field == 0) return BGP4_MIB_S_PEER_ENTRY; else return BGP4_MIB_S_PEER_TABLE_END; } /** * snmp_bgp_state - linearize oid from BGP4-MIB * @oid: prefixed object identifier from BGP4-MIB::bgp subtree * * Returns linearized state for Get-PDU, GetNext-PDU and GetBulk-PDU packets. */ static u8 snmp_bgp_state(const struct oid *oid) { /* * Ids of Object Identifier that are already checked: * internet oid.prefix * v...... v * (*oid): .1.3.6.1.2.1.15 * -> BGP4-MIB::bgp (root) */ if (snmp_is_oid_empty(oid)) return BGP4_MIB_S_END; u8 state = BGP4_MIB_S_NO_VALUE; u8 candidate; switch (oid->n_subid) { default: if (oid->n_subid < 2) { state = BGP4_MIB_S_INVALID; break; } /* fall through */ /* * Between ids[5] and ids[8] (n_subid == 9) should be IP address. * Validity is checked later in execution because * this field also could mean a query boundry (upper or lower). */ case 9: case 8: case 7: case 6: case 5: state = bgp_get_candidate(oid->ids[4]); /* fall through */ case 4: if (oid->ids[3] == BGP4_MIB_PEER_ENTRY) state = (state == BGP4_MIB_S_NO_VALUE) ? BGP4_MIB_S_PEER_ENTRY : state; else state = BGP4_MIB_S_NO_VALUE; /* fall through */ case 3: /* u8 candidate; */ switch (oid->ids[2]) { case BGP4_MIB_VERSION: state = BGP4_MIB_S_VERSION; break; case BGP4_MIB_LOCAL_AS: state = BGP4_MIB_S_LOCAL_AS; break; case BGP4_MIB_PEER_TABLE: /* We use candidate to avoid overriding more specific state */ candidate = BGP4_MIB_S_PEER_TABLE; break; case BGP4_MIB_IDENTIFIER: state = BGP4_MIB_S_IDENTIFIER; break; default: /* test fails */ /* We force state invalidation */ if (oid->ids[2] < BGP4_MIB_VERSION) { state = BGP4_MIB_S_NO_VALUE; candidate = BGP4_MIB_S_NO_VALUE; } else /* oid->ids[2] > BGP4_MIB_PEER_TABLE */ state = BGP4_MIB_S_END; } state = (state == BGP4_MIB_S_NO_VALUE) ? candidate : state; /* fall through */ case 2: /* We found bare BGP4-MIB::bgp ObjectId */ if (state == BGP4_MIB_S_NO_VALUE || state == BGP4_MIB_S_INVALID) state = BGP4_MIB_S_BGP; } return state; } static void snmp_bgp_reg_ok(struct snmp_proto *p, const struct agentx_response *res, struct snmp_registration *reg) { const struct oid * const oid = reg->oid; (void)oid; (void)p; (void) res; } static void snmp_bgp_reg_failed(struct snmp_proto *p, const struct agentx_response *res, struct snmp_registration *reg) { const struct oid * const oid = reg->oid; (void) res; (void)oid; (void)p; } /* * snmp_bgp_notify_common - common functionaly for BGP4-MIB notifications * @p: SNMP protocol instance * @type: type of notification send - either established or backward transition * @ip4: IPv4 remote addr * @last_error: 2 bytes of BGP last error * @state_val: BGP peer state as defined in MIB */ static void snmp_bgp_notify_common(struct snmp_proto *p, uint type, ip4_addr ip4, char last_error[], uint state_val) { uint sz = (uint) (snmp_varbind_size_from_len(9, AGENTX_IP_ADDRESS, 0) + snmp_varbind_size_from_len(9, AGENTX_OCTET_STRING, 2) + snmp_varbind_size_from_len(9, AGENTX_INTEGER, 0)); u32 trap_ids[] = { 1, 0, type }; STATIC_ASSERT(ARRAY_SIZE(trap_ids) == 3); /* additional size for trap identification, here either * bgpEstablishedNotification or bgpBackwardTransNotification (see below) */ void *data = tmp_alloc(snmp_oid_size_from_len(ARRAY_SIZE(trap_ids)) + sz); struct oid *head = data; { /* trap id BGP4-MIB::bgpEstablishedNotification (.1.3.6.1.2.15.0.1) * or BGP4-MIB::bgpBackwardTransNotification (.1.3.6.1.2.15.0.2) */ head->n_subid = ARRAY_SIZE(trap_ids); head->prefix = SNMP_MGMT; head->include = head->reserved = 0; for (uint i = 0; i < head->n_subid; i++) head->ids[i] = trap_ids[i]; } data += sz; struct agentx_varbind *addr_vb = data; struct agentx_varbind *error_vb = \ data + snmp_varbind_size_from_len(9, AGENTX_IP_ADDRESS, 0); struct agentx_varbind *state_vb = \ (void *) error_vb + snmp_varbind_size_from_len(9, AGENTX_OCTET_STRING, 2); u32 oid_ids[] = { SNMP_MIB_2, BGP4_MIB, BGP4_MIB_PEER_TABLE, BGP4_MIB_PEER_ENTRY }; /* * The n_subid is 9 in all cases because all are rows entries of * BGP4-MIB::bgpPeerTable * BGP4-MIB::bgpPeerRemoteAddr = .1.3.6.1.[2].1.15.3.1.7.a.b.c.d * where .1.3.6.1 is internet prefix, .[2] is SNMP_MGMT, * .1.15.3.1.7.a.b.c.d has 9 elements (a.b.c.d are IP addr bytes) * Here subidentifier 7 is entry type bgpPeerRemoteAddr. */ #define PEER_TABLE_ENTRY 9 #define ENTRY_TYPE 4 { /* BGP4-MIB::bgpPeerRemoteAddr */ struct oid *addr = &addr_vb->name; *addr = (struct oid) { .n_subid = PEER_TABLE_ENTRY, .prefix = SNMP_MGMT, .include = 0, .reserved = 0, }; for (uint i = 0; i < ARRAY_SIZE(oid_ids); i++) addr->ids[i] = oid_ids[i]; addr->ids[ENTRY_TYPE] = BGP4_MIB_REMOTE_ADDR; ip4_to_oid(addr, ip4); } /* We have enough space inside the TX-buffer prepared */ struct snmp_pdu dummy = { 0 }; dummy.sr_vb_start = addr_vb; snmp_varbind_ip4(&dummy, ip4); { /* BGP4-MIB::bgpPeerLastError */ struct oid *error = &error_vb->name; *error = (struct oid) { .n_subid = PEER_TABLE_ENTRY, .prefix = SNMP_MGMT, .include = 0, .reserved = 0, }; for (uint i = 0; i < ARRAY_SIZE(oid_ids); i++) error->ids[i] = oid_ids[i]; error->ids[ENTRY_TYPE] = BGP4_MIB_LAST_ERROR; ip4_to_oid(error, ip4); } dummy.sr_vb_start = error_vb; snmp_varbind_nstr(&dummy, last_error, 2); { /* BGP4-MIB::bgpPeerState */ struct oid *state = &state_vb->name; *state = (struct oid) { .n_subid = PEER_TABLE_ENTRY, .prefix = SNMP_MGMT, .include = 0, .reserved = 0, }; for (uint i = 0; i < ARRAY_SIZE(oid_ids); i++) state->ids[i] = oid_ids[i]; state->ids[ENTRY_TYPE] = BGP4_MIB_STATE; ip4_to_oid(state, ip4); } dummy.sr_vb_start = state_vb; snmp_varbind_int(&dummy, state_val); /* We do not send the systemUpTime.0 */ snmp_notify_pdu(p, head, data, sz, 0); #undef OID_N_SUBID } /* * snmp_bgp_fsm_state - extract BGP FSM state for SNMP BGP4-MIB * @bgp_proto: BGP instance * * Return FSM state in BGP4-MIB encoding */ static inline uint snmp_bgp_fsm_state(const struct bgp_proto *bgp_proto) { const struct bgp_conn *bgp_conn = bgp_proto->conn; const struct bgp_conn *bgp_in = &bgp_proto->incoming_conn; const struct bgp_conn *bgp_out = &bgp_proto->outgoing_conn; if (bgp_conn) return bgp_conn->state + 1; if (MAX(bgp_in->state, bgp_out->state) == BS_CLOSE && MIN(bgp_in->state, bgp_out->state) != BS_CLOSE) return MIN(bgp_in->state, bgp_out->state) + 1; if (MIN(bgp_in->state, bgp_out->state) == BS_CLOSE) return BS_IDLE; return MAX(bgp_in->state, bgp_out->state) + 1; } static void snmp_bgp_notify_wrapper(struct snmp_proto *p, struct bgp_proto *bgp, uint type) { /* possibly incorrect cast */ ip4_addr ip4 = ipa_to_ip4(bgp->remote_ip); char last_error[2]; snmp_bgp_last_error(bgp, last_error); uint state_val = snmp_bgp_fsm_state(bgp); snmp_bgp_notify_common(p, type, ip4, last_error, state_val); } void snmp_bgp_notify_established(struct snmp_proto *p, struct bgp_proto *bgp) { snmp_bgp_notify_wrapper(p, bgp, BGP4_MIB_ESTABLISHED_NOTIFICATION); } void snmp_bgp_notify_backward_trans(struct snmp_proto *p, struct bgp_proto *bgp) { snmp_bgp_notify_wrapper(p, bgp, BGP4_MIB_BACKWARD_TRANS_NOTIFICATION); } void snmp_bgp4_register(struct snmp_proto *p) { u32 bgp_mib_prefix[] = { 1, BGP4_MIB }; // TODO remove constant { /* Register the whole BGP4-MIB::bgp root tree node */ struct snmp_registration *reg; reg = snmp_registration_create(p, BGP4_MIB); struct oid *oid = mb_allocz(p->pool, snmp_oid_size_from_len(ARRAY_SIZE(bgp_mib_prefix))); STORE_U8(oid->n_subid, ARRAY_SIZE(bgp_mib_prefix)); STORE_U8(oid->prefix, SNMP_MGMT); memcpy(oid->ids, bgp_mib_prefix, sizeof(bgp_mib_prefix)); reg->oid = oid; reg->reg_hook_ok = snmp_bgp_reg_ok; reg->reg_hook_fail = snmp_bgp_reg_failed; /* * We set both upper bound and index to zero, therefore only single OID * is being registered. */ snmp_register(p, oid, 0, 0, SNMP_REGISTER_TREE, SNMP_DEFAULT_CONTEXT); } } static int snmp_bgp_valid_ip4(const struct oid *o) { return snmp_valid_ip4_index(o, 5); } static inline ip4_addr ip4_from_oid(const struct oid *o) { return ip4_build( o->n_subid > 5 ? (o->ids[5] & 0xff) : 0, o->n_subid > 6 ? (o->ids[6] & 0xff) : 0, o->n_subid > 7 ? (o->ids[7] & 0xff) : 0, o->n_subid > 8 ? (o->ids[8] & 0xff) : 0 ); } static inline void ip4_to_oid(struct oid *o, ip4_addr addr) { u32 tmp = ip4_to_u32(addr); ASSUME(o->n_subid >= 9); STORE_U32(o->ids[5], (tmp & 0xFF000000) >> 24); STORE_U32(o->ids[6], (tmp & 0x00FF0000) >> 16); STORE_U32(o->ids[7], (tmp & 0x0000FF00) >> 8); STORE_U32(o->ids[8], (tmp & 0x000000FF) >> 0); } static void print_bgp_record(const struct bgp_proto *bgp_proto) { //struct proto_config *cf = bgp_proto->p.cf; struct bgp_conn *conn = bgp_proto->conn; DBG(" name: %s", cf->name); DBG("."); DBG(" rem. identifier: %u", bgp_proto->remote_id); DBG(" local ip: %I", config->local_ip); DBG(" remote ip: %I", config->remote_ip); DBG(" local port: %u", config->local_port); DBG(" remote port: %u", config->remote_port); if (conn) { DBG(" state: %u", conn->state); DBG(" remote as: %u", conn->remote_caps->as4_number); } DBG(" in updates: %u", bgp_proto->stats.rx_updates); DBG(" out updates: %u", bgp_proto->stats.tx_updates); DBG(" in total: %u", bgp_proto->stats.rx_messages); DBG(" out total: %u", bgp_proto->stats.tx_messages); DBG(" fsm transitions: %u", bgp_proto->stats.fsm_established_transitions); DBG(" fsm total time: -- (0)"); // not supported by bird DBG(" retry interval: %u", config->connect_retry_time); DBG(" hold configurated: %u", config->hold_time ); DBG(" keep alive config: %u", config->keepalive_time ); DBG(" min AS origin. int.: -- (0)"); // not supported by bird DBG(" min route advertisement: %u", 0 ); DBG(" in update elapsed time: %u", 0 ); if (!conn) DBG(" no connection established"); DBG(" outgoinin_conn state %u", bgp_proto->outgoing_conn.state + 1); DBG(" incoming_conn state: %u", bgp_proto->incoming_conn.state + 1); } static void UNUSED print_bgp_record_all(struct snmp_proto *p) { DBG("dumping watched bgp status"); HASH_WALK(p->bgp_hash, next, peer) { print_bgp_record(peer->bgp_proto); } HASH_WALK_END; DBG("dumping watched end"); } /* * is_dynamic - is state dependent on runtime BGP peer state * @state: tested bgp4_mib state * * Used to distinguish states that depend on runtime BGP peer states. * * Return nonzero for states with value that may change at runtime. */ static inline int is_dynamic(u8 state) { return (state >= BGP4_MIB_S_PEER_IDENTIFIER && state <= BGP4_MIB_S_IN_UPDATE_ELAPSED_TIME); } /* * is_static - logical inverse of is_dynamic() for states with value * @state: tested bgp4_mib state * * Return nonzero for states with value that do not change at runtime. */ static inline int is_static(u8 state) { return (state == BGP4_MIB_S_VERSION || state == BGP4_MIB_S_LOCAL_AS || state == BGP4_MIB_S_IDENTIFIER); } static inline int snmp_bgp_has_value(u8 state) { if (state <= BGP4_MIB_S_BGP || state == BGP4_MIB_S_PEER_TABLE || state == BGP4_MIB_S_PEER_ENTRY || state == BGP4_MIB_S_PEER_TABLE_END || state >= BGP4_MIB_S_END) return 0; else return 1; } /** * snmp_bgp_get_valid - only states with valid value * @state: BGP linearized state * * Returns @state if has value in BGP4-MIB, zero otherwise. Used for Get-PDU * packets. */ u8 snmp_bgp_get_valid(u8 state) { if (state == BGP4_MIB_S_INVALID || state == BGP4_MIB_S_BGP || state == BGP4_MIB_S_PEER_TABLE || state == BGP4_MIB_S_PEER_ENTRY || state == BGP4_MIB_S_PEER_TABLE_END || state >= BGP4_MIB_S_END) return 0; else return state; } /** * snmp_bgp_next_state - next state that has value * @state: BGP linearized state * * Returns successor state of @state with valid value in BG4-MIB. Used for * GetNext-PDU and GetBulk-PDU packets. */ u8 snmp_bgp_next_state(u8 state) { switch (state) { case BGP4_MIB_S_LOCAL_AS: case BGP4_MIB_S_PEER_TABLE: case BGP4_MIB_S_PEER_ENTRY: return BGP4_MIB_S_PEER_IDENTIFIER; case BGP4_MIB_S_IN_UPDATE_ELAPSED_TIME: case BGP4_MIB_S_PEER_TABLE_END: return BGP4_MIB_S_IDENTIFIER; case BGP4_MIB_S_IDENTIFIER: case BGP4_MIB_S_END: return BGP4_MIB_S_END; default: return state + 1; } } static int oid_state_compare(const struct oid *oid, u8 state) { ASSUME(oid != NULL); if (state >= BGP4_MIB_S_PEER_IDENTIFIER && state <= BGP4_MIB_S_IN_UPDATE_ELAPSED_TIME) return (oid->n_subid > 9) - (oid->n_subid < 9); if ((state >= BGP4_MIB_S_VERSION && state <= BGP4_MIB_S_PEER_TABLE) || (state == BGP4_MIB_S_IDENTIFIER)) return (oid->n_subid > 3) - (oid->n_subid < 3); if (state == BGP4_MIB_S_PEER_ENTRY) return (oid->n_subid > 4) - (oid->n_subid < 4); if (state == BGP4_MIB_S_BGP) return (oid->n_subid > 2) - (oid->n_subid < 2); return -1; } static inline enum snmp_search_res populate_bgp4(struct snmp_data *d, ip4_addr *addr, const struct bgp_proto **proto, const struct bgp_conn **conn, const struct bgp_stats **stats, const struct bgp_config **config) { const struct oid * const oid = &d->c->sr_vb_start->name; if (snmp_bgp_valid_ip4(oid) && LOAD_U8(oid->n_subid) == 9) *addr = ip4_from_oid(oid); else { snmp_log("populate() invalid ip4"); return SNMP_SEARCH_NO_INSTANCE; } struct snmp_bgp_peer *pe = snmp_hash_find(d->p, *addr); if (!pe) { snmp_log("populate() hash find failed"); return SNMP_SEARCH_NO_INSTANCE; } const struct bgp_proto *bgp_proto; *proto = bgp_proto = pe->bgp_proto; if (!ipa_is_ip4(bgp_proto->remote_ip)) { log(L_ERR "%s: Found BGP protocol instance with IPv6 address", bgp_proto->p.name); d->c->error = AGENTX_RES_GEN_ERROR; return SNMP_SEARCH_NO_INSTANCE; } ip4_addr proto_ip = ipa_to_ip4(bgp_proto->remote_ip); if (!ip4_equal(proto_ip, pe->peer_ip)) { /* Here, we could be in problem as the bgp_proto IP address could be changed */ log(L_ERR "%s: Stored hash key IP address and peer remote address differ " "(%I, %I).", bgp_proto->p.name, proto_ip, pe->peer_ip); d->c->error = AGENTX_RES_GEN_ERROR; return SNMP_SEARCH_NO_INSTANCE; } *conn = bgp_proto->conn; *stats = &bgp_proto->stats; *config = bgp_proto->cf; snmp_log("populate() ok"); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_bgp_version(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fill ver"); if (LOAD_U8(d->c->sr_vb_start->name.n_subid) != 3) return SNMP_SEARCH_NO_INSTANCE; d->c->size -= snmp_str_size_from_len(1); snmp_varbind_nstr(d->c, BGP4_VERSIONS, 1); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_local_as(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fill as"); if (LOAD_U8(d->c->sr_vb_start->name.n_subid) != 3) return SNMP_SEARCH_NO_INSTANCE; snmp_varbind_int(d->c, d->p->bgp_local_as); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_peer_id(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fill peer id"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; uint fsm_state = snmp_bgp_fsm_state(bgp_proto); if (fsm_state == BGP4_MIB_OPENCONFIRM || fsm_state == BGP4_MIB_ESTABLISHED) // TODO last snmp_varbind_ip4(d->c, ip4_from_u32(bgp_proto->remote_id)); else snmp_varbind_ip4(d->c, IP4_NONE); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_peer_state(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fill peer state"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; uint fsm_state = snmp_bgp_fsm_state(bgp_proto); snmp_varbind_int(d->c, fsm_state); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_admin_status(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fill adm status"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; if (bgp_proto->p.disabled) snmp_varbind_int(d->c, AGENTX_ADMIN_STOP); else snmp_varbind_int(d->c, AGENTX_ADMIN_START); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_neg_version(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fill neg ver"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; uint fsm_state = snmp_bgp_fsm_state(bgp_proto); if (fsm_state == BGP4_MIB_ESTABLISHED || fsm_state == BGP4_MIB_ESTABLISHED) snmp_varbind_int(d->c, BGP4_MIB_NEGOTIATED_VER_VALUE); else snmp_varbind_int(d->c, BGP4_MIB_NEGOTIATED_VER_NO_VALUE); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_local_addr(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("bgp4_mib fill local addr"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); snmp_log("fill local addr result %u", res); if (res != SNMP_SEARCH_OK) return res; snmp_varbind_ip4(d->c, ipa_to_ip4(bgp_proto->local_ip)); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_local_port(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("bgp4_mib fill local port"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; snmp_varbind_int(d->c, bgp_conf->local_port); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_remote_addr(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("bgp4_mib fill remote addr"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; snmp_varbind_ip4(d->c, ipa_to_ip4(bgp_proto->remote_ip)); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_remote_port(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("bgp4_mib fill remote port"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; snmp_varbind_int(d->c, bgp_conf->remote_port); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_remote_as(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fill rem as"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; snmp_varbind_int(d->c, bgp_proto->remote_as); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_in_updates(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fill in updates"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; snmp_varbind_counter32(d->c, bgp_stats->rx_updates); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_out_updates(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fill out updates"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; snmp_varbind_counter32(d->c, bgp_stats->tx_updates); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_in_total_msg(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fill in total"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; snmp_varbind_counter32(d->c, bgp_stats->rx_messages); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_out_total_msg(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fill out total"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; snmp_varbind_counter32(d->c, bgp_stats->tx_messages); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_last_err(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fill last err"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; char last_error[2]; snmp_bgp_last_error(bgp_proto, last_error); snmp_varbind_nstr(d->c, last_error, 2); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_established_trans(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fill est trans"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; snmp_varbind_counter32(d->c, bgp_stats->fsm_established_transitions); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_established_time(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fill est time"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; snmp_varbind_gauge32(d->c, (current_time() - bgp_proto->last_established) TO_S); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_retry_interval(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fill retry int"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; snmp_varbind_int(d->c, bgp_conf->connect_retry_time); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_hold_time(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fill hold time"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; snmp_varbind_int(d->c, (bgp_conn) ? bgp_conn->hold_time : 0); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_keep_alive(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fill keepalive"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; if (!bgp_conf->hold_time) snmp_varbind_int(d->c, 0); else snmp_varbind_int(d->c, (bgp_conn) ? bgp_conn->keepalive_time : 0); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_hold_time_conf(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fill hold time c"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; snmp_varbind_int(d->c, bgp_conf->hold_time); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_keep_alive_conf(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fill keepalive c"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; if (!bgp_conf->keepalive_time) snmp_varbind_int(d->c, 0); else snmp_varbind_int(d->c, (bgp_conn) ? bgp_conn->keepalive_time : 0); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_min_as_org_interval(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fill min org int"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; /* value should be in 1..65535 but is not supported by bird */ snmp_varbind_int(d->c, 0); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_route_adv_interval(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fill rt adv int"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; /* value should be in 1..65535 but is not supported by bird */ snmp_varbind_int(d->c, 0); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_in_update_elapsed_time(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fil in elapsed"); enum snmp_search_res res; DECLARE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); res = POPULATE_BGP4(addr, bgp_proto, bgp_conn, bgp_stats, bgp_conf); if (res != SNMP_SEARCH_OK) return res; snmp_varbind_gauge32(d->c, (current_time() - bgp_proto->last_rx_update) TO_S ); return SNMP_SEARCH_OK; } static enum snmp_search_res fill_local_id(struct mib_walk_state *walk UNUSED, struct snmp_data *d) { snmp_log("fill local id"); if (LOAD_U8(d->c->sr_vb_start->name.n_subid) != 3) return SNMP_SEARCH_NO_INSTANCE; snmp_varbind_ip4(d->c, d->p->bgp_local_id); return SNMP_SEARCH_OK; } static struct oid * update_bgp_vb(struct snmp_proto *p, struct agentx_varbind **vb, u8 state, struct snmp_pdu *c) { struct oid *oid = &(*vb)->name; if (state == BGP4_MIB_S_END || state == BGP4_MIB_S_INVALID || state == BGP4_MIB_S_NO_VALUE) return &(*vb)->name; /* No need to reallocate anything if the OID has same lin. state */ if (snmp_bgp_state(oid) == state) { if (state >= BGP4_MIB_S_PEER_IDENTIFIER && state <= BGP4_MIB_S_IN_UPDATE_ELAPSED_TIME && oid->n_subid == 9) return oid; if (state >= BGP4_MIB_S_VERSION && state <= BGP4_MIB_S_PEER_TABLE && oid->n_subid == 3) return oid; if (state == BGP4_MIB_S_PEER_ENTRY && oid->n_subid == 4) return oid; if (state == BGP4_MIB_S_BGP && oid->n_subid == 2) return oid; } switch (state) { case BGP4_MIB_S_BGP: /* This could potentially destroy same old data */ if (oid->n_subid != 2) oid = snmp_varbind_set_name_len(p, vb, 2, c); oid->ids[0] = SNMP_MIB_2; oid->ids[1] = BGP4_MIB; break; case BGP4_MIB_S_VERSION: if (oid->n_subid != 3) oid = snmp_varbind_set_name_len(p, vb, 3, c); oid->ids[2] = BGP4_MIB_VERSION; break; case BGP4_MIB_S_LOCAL_AS: if (oid->n_subid != 3) oid =snmp_varbind_set_name_len(p, vb, 3, c); oid->ids[2] = BGP4_MIB_LOCAL_AS; break; case BGP4_MIB_S_PEER_IDENTIFIER: if (oid->n_subid != 9) { u8 n_subid = LOAD_U8(oid->n_subid); oid = snmp_varbind_set_name_len(p, vb, 9, c); if (n_subid < 6) oid->ids[5] = 0; if (n_subid < 7) oid->ids[6] = 0; if (n_subid < 8) oid->ids[7] = 0; if (n_subid < 9) oid->ids[8] = 0; } oid->ids[2] = BGP4_MIB_PEER_TABLE; oid->ids[3] = BGP4_MIB_PEER_ENTRY; oid->ids[4] = BGP4_MIB_PEER_IDENTIFIER; break; #define SNMP_UPDATE_CASE(num, update) \ case num: \ if (oid->n_subid != 9) \ { \ u8 n_subid = LOAD_U8(oid->n_subid); \ oid = snmp_varbind_set_name_len(p, vb, 9, c); \ \ if (n_subid < 6) \ oid->ids[5] = 0; \ if (n_subid < 7) \ oid->ids[6] = 0; \ if (n_subid < 8) \ oid->ids[7] = 0; \ if (n_subid < 9) \ oid->ids[8] = 0; \ } \ \ oid->n_subid = 9; \ oid->ids[4] = update; \ break; SNMP_UPDATE_CASE(BGP4_MIB_S_STATE, BGP4_MIB_STATE) SNMP_UPDATE_CASE(BGP4_MIB_S_ADMIN_STATUS, BGP4_MIB_ADMIN_STATUS) SNMP_UPDATE_CASE(BGP4_MIB_S_NEGOTIATED_VERSION, BGP4_MIB_NEGOTIATED_VERSION) SNMP_UPDATE_CASE(BGP4_MIB_S_LOCAL_ADDR, BGP4_MIB_LOCAL_ADDR) SNMP_UPDATE_CASE(BGP4_MIB_S_LOCAL_PORT, BGP4_MIB_LOCAL_PORT) SNMP_UPDATE_CASE(BGP4_MIB_S_REMOTE_ADDR, BGP4_MIB_REMOTE_ADDR) SNMP_UPDATE_CASE(BGP4_MIB_S_REMOTE_PORT, BGP4_MIB_REMOTE_PORT) SNMP_UPDATE_CASE(BGP4_MIB_S_REMOTE_AS, BGP4_MIB_REMOTE_AS) SNMP_UPDATE_CASE(BGP4_MIB_S_RX_UPDATES, BGP4_MIB_RX_UPDATES) SNMP_UPDATE_CASE(BGP4_MIB_S_TX_UPDATES, BGP4_MIB_TX_UPDATES) SNMP_UPDATE_CASE(BGP4_MIB_S_RX_MESSAGES, BGP4_MIB_RX_MESSAGES) SNMP_UPDATE_CASE(BGP4_MIB_S_TX_MESSAGES, BGP4_MIB_TX_MESSAGES) SNMP_UPDATE_CASE(BGP4_MIB_S_LAST_ERROR, BGP4_MIB_LAST_ERROR) SNMP_UPDATE_CASE(BGP4_MIB_S_FSM_TRANSITIONS, BGP4_MIB_FSM_TRANSITIONS) SNMP_UPDATE_CASE(BGP4_MIB_S_FSM_ESTABLISHED_TIME, BGP4_MIB_FSM_ESTABLISHED_TIME) SNMP_UPDATE_CASE(BGP4_MIB_S_RETRY_INTERVAL, BGP4_MIB_RETRY_INTERVAL) SNMP_UPDATE_CASE(BGP4_MIB_S_HOLD_TIME, BGP4_MIB_HOLD_TIME) SNMP_UPDATE_CASE(BGP4_MIB_S_KEEPALIVE, BGP4_MIB_KEEPALIVE) SNMP_UPDATE_CASE(BGP4_MIB_S_HOLD_TIME_CONFIGURED, BGP4_MIB_HOLD_TIME_CONFIGURED) SNMP_UPDATE_CASE(BGP4_MIB_S_KEEPALIVE_CONFIGURED, BGP4_MIB_KEEPALIVE_CONFIGURED) SNMP_UPDATE_CASE(BGP4_MIB_S_ORIGINATION_INTERVAL, BGP4_MIB_ORIGINATION_INTERVAL) SNMP_UPDATE_CASE(BGP4_MIB_S_MIN_ROUTE_ADVERTISEMENT, BGP4_MIB_MIN_ROUTE_ADVERTISEMENT) SNMP_UPDATE_CASE(BGP4_MIB_S_IN_UPDATE_ELAPSED_TIME, BGP4_MIB_IN_UPDATE_ELAPSED_TIME) case BGP4_MIB_S_IDENTIFIER: if (oid->n_subid != 3) oid = snmp_varbind_set_name_len(p, vb, 3, c); oid->n_subid = 3; oid->ids[2] = 4; break; default: /* intentionally left blank */ break; } return oid; #undef SNMP_UPDATE_CASE } /** * snmp_bgp_find_next_oid - walk bgp peer addresses and update @o_start oid * * @p: * @oid: * @contid: */ static int snmp_bgp_find_next_oid(struct snmp_proto *p, struct oid *oid, uint UNUSED contid) { ip4_addr ip4 = ip4_from_oid(oid); net_addr net; net_fill_ip4(&net, ip4, IP4_MAX_PREFIX_LENGTH); struct f_trie_walk_state ws; int match = trie_walk_init(&ws, p->bgp_trie, &net, 1); if (match && oid->include) { oid->include = 0; return 1; } /* We skip the first match as we should not include ip address in oid */ if (match) { trie_walk_next(&ws, &net); } if (trie_walk_next(&ws, &net)) { ASSUME(oid->n_subid == 9); ip4_addr res = ipa_to_ip4(net_prefix(&net)); ip4_to_oid(oid, res); return 1; } return 0; } static enum snmp_search_res UNUSED snmp_bgp_search_dynamic(struct snmp_proto *p, struct oid **searched, const struct oid *o_end, uint UNUSED contid, u8 next_state, struct snmp_pdu *c) { struct oid *oid = *searched; u8 end_state = MIN(snmp_bgp_state(o_end), BGP4_MIB_S_PEER_TABLE_END); ASSUME(end_state <= BGP4_MIB_S_END); ASSUME(oid != NULL); // TODO TODO remove me struct agentx_varbind data = { 0 }; struct agentx_varbind *vb = &data; oid = update_bgp_vb(p, &vb, next_state, c); //oid = update_bgp_oid(oid, next_state); int found; while (!(found = snmp_bgp_find_next_oid(p, oid, contid)) && next_state <= end_state) { next_state = snmp_bgp_next_state(next_state); if (next_state == BGP4_MIB_S_IDENTIFIER) break; //oid = update_bgp_oid(oid, next_state); oid = update_bgp_vb(p, &vb, next_state, c); /* In case of search for next bgp state, we want to start from beginning. */ oid->ids[5] = oid->ids[6] = oid->ids[7] = oid->ids[8] = 0; } if (next_state < BGP4_MIB_S_PEER_TABLE_END && next_state <= end_state) { *searched = oid; return SNMP_SEARCH_OK; } return SNMP_SEARCH_END_OF_VIEW; } enum snmp_search_res snmp_bgp_search(struct snmp_proto *p, struct agentx_varbind **vb_search, const struct oid *o_end, struct snmp_pdu *c) { (void)p; (void)vb_search; (void)o_end; (void)c; return SNMP_SEARCH_END_OF_VIEW; #if 0 enum snmp_search_res r = SNMP_SEARCH_END_OF_VIEW; u8 bgp_state = snmp_bgp_state(*searched); u8 state; if (bgp_state == BGP4_MIB_S_END) { return SNMP_SEARCH_NO_OBJECT; } if (is_static(bgp_state) && (*searched)->include) { return SNMP_SEARCH_OK; } state = snmp_bgp_next_state(bgp_state); if (is_static(state) && !is_dynamic(bgp_state)) { *searched = update_bgp_oid(*searched, state); return SNMP_SEARCH_OK; } if (is_dynamic(state) && !is_dynamic(bgp_state)) { for (uint i = 5; i < MIN(9, (*searched)->n_subid); i++) (*searched)->ids[i] = 0; r = snmp_bgp_search_dynamic(p, searched, o_end, contid, state); if (r != SNMP_SEARCH_END_OF_VIEW) return r; } if (is_dynamic(bgp_state)) { r = snmp_bgp_search_dynamic(p, searched, o_end, contid, bgp_state); if (r != SNMP_SEARCH_END_OF_VIEW) return r; } state = snmp_bgp_next_state(bgp_state); if (state <= BGP4_MIB_S_IDENTIFIER) { *searched = update_bgp_oid(*searched, state); return SNMP_SEARCH_OK; } // TODO add route table /* end not found */ return SNMP_SEARCH_END_OF_VIEW; #endif } static void bgp_fill_dynamic(struct snmp_proto *p, struct agentx_varbind **vb, struct snmp_pdu *c, u8 state) { struct oid *oid = &(*vb)->name; //byte *pkt; ip4_addr addr; if (oid_state_compare(oid, state) == 0 && snmp_bgp_valid_ip4(oid)) addr = ip4_from_oid(oid); else { snmp_set_varbind_type(*vb, AGENTX_NO_SUCH_INSTANCE); return; } struct snmp_bgp_peer *pe = snmp_hash_find(p, addr); if (!pe) { snmp_set_varbind_type(*vb, AGENTX_NO_SUCH_INSTANCE); return; } const struct bgp_proto *bgp_proto = pe->bgp_proto; if (!ipa_is_ip4(bgp_proto->remote_ip)) { log(L_ERR, "%s: Found BGP protocol instance with IPv6 address", bgp_proto->p.name); c->error = AGENTX_RES_GEN_ERROR; snmp_set_varbind_type(*vb, AGENTX_NO_SUCH_INSTANCE); return; } ip4_addr proto_ip = ipa_to_ip4(bgp_proto->remote_ip); if (!ip4_equal(proto_ip, pe->peer_ip)) { /* Here, we could be in problem as the bgp_proto IP address could be changed */ log(L_ERR, "%s: Stored hash key IP address and peer remote address differ.", bgp_proto->p.name); c->error = AGENTX_RES_GEN_ERROR; snmp_set_varbind_type(*vb, AGENTX_NO_SUCH_INSTANCE); return; } //const struct bgp_conn *bgp_conn = bgp_proto->conn; //const struct bgp_stats *bgp_stats = &bgp_proto->stats; const struct bgp_config *bgp_conf = bgp_proto->cf; uint fsm_state = snmp_bgp_fsm_state(bgp_proto); char last_error[2]; snmp_bgp_last_error(bgp_proto, last_error); snmp_set_varbind_type(*vb, AGENTX_NO_SUCH_INSTANCE); switch (state) { case BGP4_MIB_S_PEER_IDENTIFIER: if (c->size < AGENTX_TYPE_IP4_SIZE) { snmp_log("BGP4-MIB small buffer"); snmp_manage_tbuf(p, c); } if (fsm_state == BGP4_MIB_OPENCONFIRM || fsm_state == BGP4_MIB_ESTABLISHED) // TODO last {} //snmp_varbind_ip4(*vb, c, ip4_from_u32(bgp_proto->remote_id)); else {} //snmp_varbind_ip4(*vb, c, IP4_NONE); break; case BGP4_MIB_S_STATE: if (c->size < AGENTX_TYPE_INT_SIZE) { snmp_log("BGP4-MIB small buffer 2"); snmp_manage_tbuf(p, c); } //snmp_varbind_int(*vb, c, fsm_state); break; case BGP4_MIB_S_ADMIN_STATUS: if (c->size < AGENTX_TYPE_INT_SIZE) SNMP_MANAGE_TBUF(p, vb, c); if (bgp_proto->p.disabled) {} //snmp_varbind_int(*vb, c, AGENTX_ADMIN_STOP); else {} //snmp_varbind_int(*vb, c, AGENTX_ADMIN_START); break; case BGP4_MIB_S_NEGOTIATED_VERSION: if (c->size < AGENTX_TYPE_INT_SIZE) SNMP_MANAGE_TBUF(p, vb, c); uint fsm_state = snmp_bgp_fsm_state(bgp_proto); if (fsm_state == BGP4_MIB_ESTABLISHED || fsm_state == BGP4_MIB_ESTABLISHED) {} //snmp_varbind_int(*vb, c, BGP4_MIB_NEGOTIATED_VER_VALUE); else {} //snmp_varbind_int(*vb, c, BGP4_MIB_NEGOTIATED_VER_NO_VALUE); break; case BGP4_MIB_S_LOCAL_ADDR: if (c->size < AGENTX_TYPE_IP4_SIZE) SNMP_MANAGE_TBUF(p, vb, c); {} //snmp_varbind_ip4(*vb, c, ipa_to_ip4(bgp_proto->local_ip)); break; case BGP4_MIB_S_LOCAL_PORT: if (c->size < AGENTX_TYPE_INT_SIZE) SNMP_MANAGE_TBUF(p, vb, c); {} //snmp_varbind_int(*vb, c, bgp_conf->local_port); break; case BGP4_MIB_S_REMOTE_ADDR: if (c->size < AGENTX_TYPE_IP4_SIZE) SNMP_MANAGE_TBUF(p, vb, c); {} //snmp_varbind_ip4(*vb, c, ipa_to_ip4(bgp_proto->remote_ip)); break; case BGP4_MIB_S_REMOTE_PORT: if (c->size < AGENTX_TYPE_INT_SIZE) SNMP_MANAGE_TBUF(p, vb, c); {} //snmp_varbind_int(*vb, c, bgp_conf->remote_port); break; case BGP4_MIB_S_REMOTE_AS: if (c->size < AGENTX_TYPE_INT_SIZE) SNMP_MANAGE_TBUF(p, vb, c); {} //snmp_varbind_int(*vb, c, bgp_proto->remote_as); break; case BGP4_MIB_S_RX_UPDATES: /* bgpPeerInUpdates */ if (c->size < AGENTX_TYPE_COUNTER32_SIZE) SNMP_MANAGE_TBUF(p, vb, c); {} //snmp_varbind_counter32(*vb, c, bgp_stats->rx_updates); break; case BGP4_MIB_S_TX_UPDATES: /* bgpPeerOutUpdate */ if (c->size < AGENTX_TYPE_COUNTER32_SIZE) SNMP_MANAGE_TBUF(p, vb, c); {} //snmp_varbind_counter32(*vb, c, bgp_stats->tx_updates); break; case BGP4_MIB_S_RX_MESSAGES: /* bgpPeerInTotalMessages */ if (c->size < AGENTX_TYPE_COUNTER32_SIZE) SNMP_MANAGE_TBUF(p, vb, c); {} //snmp_varbind_counter32(*vb, c, bgp_stats->rx_messages); break; case BGP4_MIB_S_TX_MESSAGES: /* bgpPeerOutTotalMessages */ if (c->size < AGENTX_TYPE_COUNTER32_SIZE) SNMP_MANAGE_TBUF(p, vb, c); {} //snmp_varbind_counter32(*vb, c, bgp_stats->tx_messages); break; case BGP4_MIB_S_LAST_ERROR: if (c->size < snmp_str_size_from_len(2)) SNMP_MANAGE_TBUF(p, vb, c); {} //snmp_varbind_nstr(*vb, c, last_error, 2); break; case BGP4_MIB_S_FSM_TRANSITIONS: if (c->size < AGENTX_TYPE_COUNTER32_SIZE) SNMP_MANAGE_TBUF(p, vb, c); //snmp_varbind_counter32(*vb, c, // bgp_stats->fsm_established_transitions); break; case BGP4_MIB_S_FSM_ESTABLISHED_TIME: if (c->size < AGENTX_TYPE_COUNTER32_SIZE) SNMP_MANAGE_TBUF(p, vb, c); //snmp_varbind_gauge32(*vb, c, // (current_time() - bgp_proto->last_established) TO_S); break; case BGP4_MIB_S_RETRY_INTERVAL: /* retry inverval value should be != 0 */ if (c->size < AGENTX_TYPE_INT_SIZE) SNMP_MANAGE_TBUF(p, vb, c); //snmp_varbind_int(*vb, c, bgp_conf->connect_retry_time); break; case BGP4_MIB_S_HOLD_TIME: /* hold time should be == 0 or in 3..65535 */ if (c->size < AGENTX_TYPE_INT_SIZE) SNMP_MANAGE_TBUF(p, vb, c); //snmp_varbind_int(*vb, c, (bgp_conn) ? bgp_conn->hold_time : 0); break; case BGP4_MIB_S_KEEPALIVE: if (c->size < AGENTX_TYPE_INT_SIZE) SNMP_MANAGE_TBUF(p, vb, c); if (!bgp_conf->hold_time) {} //snmp_varbind_int(*vb, c, 0); else {} //snmp_varbind_int(*vb, c, // (bgp_conn) ? bgp_conn->keepalive_time : 0); break; case BGP4_MIB_S_HOLD_TIME_CONFIGURED: if (c->size < AGENTX_TYPE_INT_SIZE) SNMP_MANAGE_TBUF(p, vb, c); //snmp_varbind_int(*vb, c, bgp_conf->hold_time); break; case BGP4_MIB_S_KEEPALIVE_CONFIGURED: if (c->size < AGENTX_TYPE_INT_SIZE) SNMP_MANAGE_TBUF(p, vb, c); if (!bgp_conf->keepalive_time) {} //snmp_varbind_int(*vb, c, 0); else {} //snmp_varbind_int(*vb, c, // (bgp_conn) ? bgp_conn->keepalive_time : 0); break; case BGP4_MIB_S_ORIGINATION_INTERVAL: /* value should be in 1..65535 but is not supported by bird */ if (c->size < AGENTX_TYPE_INT_SIZE) SNMP_MANAGE_TBUF(p, vb, c); //snmp_varbind_int(*vb, c, 0); break; case BGP4_MIB_S_MIN_ROUTE_ADVERTISEMENT: /* value should be in 1..65535 but is not supported by bird */ if (c->size < AGENTX_TYPE_INT_SIZE) SNMP_MANAGE_TBUF(p, vb, c); //snmp_varbind_int(*vb, c, 0); break; case BGP4_MIB_S_IN_UPDATE_ELAPSED_TIME: if (c->size < AGENTX_TYPE_INT_SIZE) SNMP_MANAGE_TBUF(p, vb, c); //snmp_varbind_gauge32(*vb, c, //(current_time() - bgp_proto->last_rx_update) TO_S //); break; case BGP4_MIB_S_END: break; case BGP4_MIB_S_INVALID: break; case BGP4_MIB_S_BGP: break; case BGP4_MIB_S_PEER_TABLE: break; case BGP4_MIB_S_PEER_ENTRY: break; case BGP4_MIB_S_NO_VALUE: break; } } void bgp_fill_static(struct snmp_proto *p, struct agentx_varbind **vb, struct snmp_pdu *c, u8 state) { (void)p; ASSUME(c->buffer == snmp_varbind_data(*vb)); struct oid *oid = &(*vb)->name; /* * snmp_bgp_state() check only prefix. To be sure on OID equivalence we need to * compare the oid->n_subid length. All BGP static fields have same n_subid. */ if (oid_state_compare(oid, state) < 0 || state == BGP4_MIB_S_END) snmp_set_varbind_type(*vb, AGENTX_NO_SUCH_OBJECT); else if (oid_state_compare(oid, state) > 0) snmp_set_varbind_type(*vb, AGENTX_NO_SUCH_INSTANCE); switch (state) { case BGP4_MIB_S_VERSION:; uint sz = snmp_str_size_from_len(1); if (c->size < sz) SNMP_MANAGE_TBUF(p, vb, c); c->size -= sz; //snmp_varbind_nstr(*vb, c, BGP4_VERSIONS, 1); break; case BGP4_MIB_S_LOCAL_AS: if (c->size < AGENTX_TYPE_INT_SIZE) SNMP_MANAGE_TBUF(p, vb, c); //snmp_varbind_int(*vb, c, p->bgp_local_as); break; case BGP4_MIB_S_IDENTIFIER: if (c->size < AGENTX_TYPE_IP4_SIZE) SNMP_MANAGE_TBUF(p, vb, c); //snmp_varbind_ip4(*vb, c, p->bgp_local_id); break; default: snmp_set_varbind_type(*vb, AGENTX_NO_SUCH_OBJECT); break; } } void snmp_bgp_fill(struct snmp_proto *p, struct agentx_varbind **vb, struct snmp_pdu *c) { ASSERT(vb != NULL); u8 state = snmp_bgp_state(&((*vb)->name)); if (is_static(state)) { bgp_fill_static(p, vb, c, state); return; } if (is_dynamic(state)) { bgp_fill_dynamic(p, vb, c, state); return; } snmp_set_varbind_type(*vb, AGENTX_NO_SUCH_OBJECT); } /* * bgp4_next_peer */ static int UNUSED bgp4_next_peer(struct mib_walk_state *state, struct snmp_data *data) { //struct agentx_varbind *vb = data->c->sr_vb_start; struct oid *oid = &data->c->sr_vb_start->name; /* BGP4-MIB::bgpPeerIdentifier */ STATIC_OID(9) bgp4_peer_id = { .n_subid = 9, .prefix = SNMP_MGMT, .include = 0, .reserved = 0, .ids = { SNMP_MIB_2, BGP4_MIB, BGP4_MIB_PEER_TABLE, BGP4_MIB_PEER_ENTRY, BGP4_MIB_PEER_IDENTIFIER, /* IP4_NONE */ 0, 0, 0, 0 } }; ip4_addr ip4 = ip4_from_oid(oid); const struct oid *peer_oid = (const struct oid *) &bgp4_peer_id; int precise = 1; if (LOAD_U8(oid->n_subid) > 9) precise = 0; if (LOAD_U8(oid->n_subid) != 9 || snmp_oid_compare(oid, peer_oid) < 0) { int old = snmp_oid_size(oid); int new = snmp_oid_size(peer_oid); if (new - old > 0 && (uint) new - old > data->c->size) { snmp_log("bgp4_next_peer small buffer"); snmp_manage_tbuf(data->p, data->c); oid = &data->c->sr_vb_start->name; // TODO fix sr_vb_start in manage_tbuf } data->c->buffer += (new - old); snmp_oid_copy(oid, peer_oid); STORE_U8(oid->include, 1); } ASSUME(oid->n_subid == 9); /* full path BGP4-MIB::bgpPeerEntry.x: .1.3.6.1.2.1.15.3.1.x * index offset = ARRAY_SIZE(snmp_internet) + 1 + 4 + 1 */ ASSUME(state->stack_pos > 10); oid->ids[4] = state->stack[10]->empty.id; net_addr net; net_fill_ip4(&net, ip4, IP4_MAX_PREFIX_LENGTH); struct f_trie_walk_state ws; int match = trie_walk_init(&ws, data->p->bgp_trie, &net, 1); if (match && LOAD_U8(oid->include) && precise) { STORE_U8(oid->include, 0); ip4_to_oid(oid, ip4); return 0; } /* We skip the first match as we should not include ip address in oid */ if (match) (void) trie_walk_next(&ws, &net); if (trie_walk_next(&ws, &net)) { ASSUME(oid->n_subid == 9); ip4_addr res = ipa_to_ip4(net_prefix(&net)); ip4_to_oid(oid, res); return 0; } return 1; } /* * snmp_bgp_start - prepare BGP4-MIB * @p - SNMP protocol instance holding memory pool * * This function create all runtime bindings to BGP procotol structures. * It is gruaranteed that the BGP protocols exist. */ void snmp_bgp4_start(struct snmp_proto *p) { struct snmp_config *cf = SKIP_BACK(struct snmp_config, cf, p->p.cf); /* Create binding to BGP protocols */ struct snmp_bond *b; WALK_LIST(b, cf->bgp_entries) { const struct bgp_config *bgp_config = (struct bgp_config *) b->config; const struct bgp_proto *bgp = SKIP_BACK(struct bgp_proto, p, bgp_config->c.proto); struct snmp_bgp_peer *peer = \ mb_alloc(p->pool, sizeof(struct snmp_bgp_peer)); peer->bgp_proto = bgp; peer->peer_ip = ipa_to_ip4(bgp->remote_ip); struct net_addr net; net_fill_ip4(&net, ipa_to_ip4(bgp->remote_ip), IP4_MAX_PREFIX_LENGTH); trie_add_prefix(p->bgp_trie, &net, IP4_MAX_PREFIX_LENGTH, IP4_MAX_PREFIX_LENGTH); snmp_hash_add_peer(p, peer); } const STATIC_OID(2) bgp4_mib_root = { .n_subid = 2, .prefix = SNMP_MGMT, .include = 0, .reserved = 0, .ids = { SNMP_MIB_2, BGP4_MIB }, }; const STATIC_OID(4) bgp4_mib_peer_entry = { .n_subid = 4, .prefix = SNMP_MGMT, .include = 0, .reserved = 0, .ids = { SNMP_MIB_2, BGP4_MIB, BGP4_MIB_PEER_TABLE, BGP4_MIB_PEER_ENTRY }, }; (void) mib_tree_hint(p->pool, p->mib_tree, (const struct oid *) &bgp4_mib_root, BGP4_MIB_IDENTIFIER); (void) mib_tree_hint(p->pool, p->mib_tree, (const struct oid *) &bgp4_mib_peer_entry, BGP4_MIB_IN_UPDATE_ELAPSED_TIME); mib_node_u *node; struct mib_leaf *leaf; STATIC_OID(3) bgp4_var = { .n_subid = 3, .prefix = SNMP_MGMT, .include = 0, .reserved = 0, .ids = { SNMP_MIB_2, BGP4_MIB, BGP4_MIB_VERSION }, }; struct { u32 id; enum snmp_search_res (*filler)(struct mib_walk_state *state, struct snmp_data *data); enum agentx_type type; int size; } leafs[] = { { .id = BGP4_MIB_VERSION, .filler = fill_bgp_version, .type = AGENTX_OCTET_STRING, .size = snmp_str_size_from_len(sizeof(BGP4_VERSIONS)), }, { .id = BGP4_MIB_LOCAL_AS, .filler = fill_local_as, .type = AGENTX_INTEGER, }, { .id = BGP4_MIB_IDENTIFIER, .filler = fill_local_id, .type = AGENTX_IP_ADDRESS, }, }; for (uint i = 0; i < ARRAY_SIZE(leafs); i++) { bgp4_var.ids[ARRAY_SIZE(bgp4_var.ids) - 1] = leafs[i].id; node = mib_tree_add(p->pool, p->mib_tree, (const struct oid *) &bgp4_var, 1); ASSUME(mib_node_is_leaf(node)); leaf = &node->leaf; leaf->filler = leafs[i].filler; leaf->call_next = NULL; leaf->type = leafs[i].type; leaf->size = leafs[i].size; } STATIC_OID(5) bgp4_entry_var = { .n_subid = 5, .prefix = SNMP_MGMT, .include = 0, .reserved = 0, .ids = { SNMP_MIB_2, BGP4_MIB, BGP4_MIB_PEER_TABLE, BGP4_MIB_PEER_ENTRY, BGP4_MIB_PEER_IDENTIFIER }, }; struct { enum snmp_search_res (*filler)(struct mib_walk_state *state, struct snmp_data *data); enum agentx_type type; int size; } entry_leafs[] = { [BGP4_MIB_PEER_IDENTIFIER] = { .filler = fill_peer_id, .type = AGENTX_IP_ADDRESS, }, [BGP4_MIB_STATE] = { .filler = fill_peer_state, .type = AGENTX_INTEGER, }, [BGP4_MIB_ADMIN_STATUS] = { .filler = fill_admin_status, .type = AGENTX_INTEGER, }, [BGP4_MIB_NEGOTIATED_VERSION] = { .filler = fill_neg_version, .type = AGENTX_INTEGER, }, [BGP4_MIB_LOCAL_ADDR] = { .filler = fill_local_addr, .type = AGENTX_IP_ADDRESS, }, [BGP4_MIB_LOCAL_PORT] = { .filler = fill_local_port, .type = AGENTX_INTEGER, }, [BGP4_MIB_REMOTE_ADDR] = { .filler = fill_remote_addr, .type = AGENTX_IP_ADDRESS, }, [BGP4_MIB_REMOTE_PORT] = { .filler = fill_remote_port, .type = AGENTX_INTEGER, }, [BGP4_MIB_REMOTE_AS] = { .filler = fill_remote_as, .type = AGENTX_INTEGER, }, [BGP4_MIB_RX_UPDATES] = { .filler = fill_in_updates, .type = AGENTX_COUNTER_32, }, [BGP4_MIB_TX_UPDATES] = { .filler = fill_out_updates, .type = AGENTX_COUNTER_32, }, [BGP4_MIB_RX_MESSAGES] = { .filler = fill_in_total_msg, .type = AGENTX_COUNTER_32, }, [BGP4_MIB_TX_MESSAGES] = { .filler = fill_out_total_msg, .type = AGENTX_COUNTER_32, }, [BGP4_MIB_LAST_ERROR] = { .filler = fill_last_err, .type = AGENTX_OCTET_STRING, .size = snmp_str_size_from_len(2), }, [BGP4_MIB_FSM_TRANSITIONS] = { .filler = fill_established_trans, .type = AGENTX_COUNTER_32, }, [BGP4_MIB_FSM_ESTABLISHED_TIME] = { .filler = fill_established_time, .type = AGENTX_GAUGE_32, }, [BGP4_MIB_RETRY_INTERVAL] = { .filler = fill_retry_interval, .type = AGENTX_INTEGER, }, [BGP4_MIB_HOLD_TIME] = { .filler = fill_hold_time, .type = AGENTX_INTEGER, }, [BGP4_MIB_KEEPALIVE] = { .filler = fill_keep_alive, .type = AGENTX_INTEGER, }, [BGP4_MIB_HOLD_TIME_CONFIGURED] = { .filler = fill_hold_time_conf, .type = AGENTX_INTEGER, }, [BGP4_MIB_KEEPALIVE_CONFIGURED] = { .filler = fill_keep_alive_conf, .type = AGENTX_INTEGER, }, [BGP4_MIB_ORIGINATION_INTERVAL] = { .filler = fill_min_as_org_interval, .type = AGENTX_INTEGER, }, [BGP4_MIB_MIN_ROUTE_ADVERTISEMENT] = { .filler = fill_route_adv_interval, .type = AGENTX_INTEGER, }, [BGP4_MIB_IN_UPDATE_ELAPSED_TIME] = { .filler = fill_in_update_elapsed_time, .type = AGENTX_GAUGE_32, }, }; /* struct _anon entry_leafs[] */ for (enum bgp4_mib_peer_entry_row e = BGP4_MIB_PEER_IDENTIFIER; e <= BGP4_MIB_IN_UPDATE_ELAPSED_TIME; e++) { bgp4_entry_var.ids[ARRAY_SIZE(bgp4_entry_var.ids) - 1] = (u32) e; node = mib_tree_add(p->pool, p->mib_tree, (const struct oid *) &bgp4_entry_var, 1); ASSUME(mib_node_is_leaf(node)); leaf = &node->leaf; leaf->filler = entry_leafs[e].filler; leaf->call_next = bgp4_next_peer; leaf->type = entry_leafs[e].type; leaf->size = entry_leafs[e].size; } }