#include <stdio.h> #include <math.h> #include <unistd.h> #include <stdlib.h> int h[65536]; /* * Probability analysis of hashing function: * * Let n be number of items and k number of boxes. For uniform distribution * we get: * * Expected value of "item i is in given box": Xi = 1/k * Expected number of items in given box: a = EX = E(sum Xi) = sum E(Xi) = n/k * Expected square value: E(X^2) = E((sum Xi)^2) = E((sum_i Xi^2) + (sum_i,j i<>j XiXj)) = * = sum_i E(Xi^2) + sum_i,j i<>j E(XiXj) = * = sum_i E(Xi) [Xi is binary] + sum_i,j i<>j E(XiXj) [those are independent] = * = n/k + n*(n-1)/k^2 * Variance: var X = E(X^2) - (EX)^2 = n/k + n*(n-1)/k^2 - n^2/k^2 = * = n/k - n/k^2 = a * (1-1/k) * Probability of fixed box being zero: Pz = ((k-1)/k)^n = (1-1/k)^n = (1-1/k)^(ak) = * = ((1-1/k)^k)^a which we can approximate by e^-a. */ uint hf(uint n) { #if 0 n = (n ^ (n >> 16)) & 0xffff; n = (n ^ (n << 8)) & 0xffff; #elif 1 n = (n >> 16) ^ n; n = (n ^ (n << 10)) & 0xffff; #elif 0 n = (n >> 16) ^ n; n *= 259309; #elif 0 n ^= (n >> 20); n ^= (n >> 10); n ^= (n >> 5); #elif 0 n = (n * 259309) + ((n >> 16) * 123479); #else return random(); #endif return n; } int main(int argc, char **argv) { int cnt=0; int i; int bits = atol(argv[1]); int z = 1 << bits; int max = atol(argv[2]); while (max--) { uint i, e; if (scanf("%x/%d", &i, &e) != 2) { if (feof(stdin)) break; else fprintf(stderr, "BUGGG\n"); } // i >>= (32-e); // i |= (i >> e); cnt++; h[(hf(i) >> 1*(16 - bits)) & (z-1)]++; } // printf(">>> %d addresses\n", cnt); #if 0 for(i=0; i<z; i++) printf("%d\t%d\n", i, h[i]); #else { int min=cnt, max=0, zer=0; double delta=0; double avg = (double) cnt / z; double exdelta = avg*(1-1/(double)z); double exzer = exp(-avg); for(i=0; i<z; i++) { if (h[i] < min) min=h[i]; if (h[i] > max) max=h[i]; delta += (h[i] - avg) * (h[i] - avg); if (!h[i]) zer++; } printf("size=%5d, min=%d, max=%2d, delta=%-7.6g (%-7.6g), avg=%-5.3g, zero=%g%% (%g%%)\n", z, min, max, delta/z, exdelta, avg, zer/(double)z*100, exzer*100); } #endif return 0; }