/* * BIRD -- Simple Network Management Procotol (SNMP) * * (c) 2024 Vojtech Vilimek * (c) 2024 CZ.NIC z.s.p.o. * * Can be freely distributed and used under the terms of the GNU GPL. */ /** * DOC: Simple Network Management Protocol * * The SNMP protocol is divided into several parts: |snmp.c| which implements * the BIRD intergration, |subagent.c| contains functions for creating and * parsing packets, |bgp4_mib.c| takes care of the bgp MIB subtree of standard * BGP4-MIB and |snmp_utils.c| which is collections of helper functions for * working with OIDs, VarBinds. * * Althrough called SNMP the BIRD does not implement SNMP directly but acts as * an AgentX subagent. AgentX subagent connects to AgentX master agent that * processes incomming SNMP requests and passes them down to the correct * subagent. Therefore you need also a running master agent somewhere. * Advantages of this design are that you are capable of doing aggregation of * statuses of multiple BIRDs at the master agent level and much simpler * implementation. * * Before any of the SNMP request could be processed, the SNMP need to * established AgentX session with the master agent and need to register all * subtrees to make them accessible from the master agent. The establishement of * the of session is handled by snmp_start(), snmp_start_locked() and * snmp_start_subagent(). Then we register all MIBs from configuration in * snmp_register_mibs(). * * The AgentX request are handled only during MIB subtree registrations and * after then on established session (in states SNMP_REGISTER and SNMP_CONN, see * below). It is also guaranteed that no request is received before MIB subtree * registration because the specific subagent is not authoratitave and also the * master agent has no info about MIB subtree supported by subagent. The AgentX * requests are handled by function snmp_rx() in |subagent.c|. * * * * SNMP State Machine * * States with main transitions * * * +-----------------+ * | SNMP_INIT | entry state after call snmp_start() * +-----------------+ * | * | acquiring object lock for tcp communication socket * V * +-----------------+ * | SNMP_LOCKED | object lock aquired * +-----------------+ * | * | opening communication socket * V * +-----------------+ * | SNMP_OPEN | socket created, starting subagent * +-----------------+ * | * | BIRD receive response for agentx-Open-PDU * V * +-----------------+ * | SNMP_REGISTER | session was established, subagent registers MIBs * +-----------------+ * | * | subagent received response for any registration requests * V * +-----------------+ * | SNMP_CONN | everything is set * +-----------------+ * | * | received malformed PDU, protocol disabled, * | BIRD sends agentx-Close-PDU or agentx-Response-PDU with an error * V * +-----------------+ * | SNMP_STOP | waiting until the prepared PDUs are sent * +-----------------+ * | * | cleaning protocol state * V * +-----------------+ * | SNMP_DOWN | session is closed * +-----------------+ * * * * Erroneous transitions: * SNMP is UP (PS_UP) in states SNMP_CONN and also in SNMP_REGISTER because * the session is establised and the GetNext request should be responsed * without regards to MIB registration. * * Reconfiguration is done in similar fashion to BGP, the reconfiguration * request is declined, the protocols is stoped and started with new * configuration. * */ #include "nest/bird.h" #include "nest/cli.h" #include "nest/locks.h" #include "lib/socket.h" #include "lib/lists.h" #include "snmp.h" #include "subagent.h" #include "snmp_utils.h" #include "mib_tree.h" #include "bgp4_mib.h" const char agentx_master_addr[] = AGENTX_MASTER_ADDR; const struct oid *agentx_available_mibs[AGENTX_MIB_COUNT + 1] = { 0 }; static void snmp_start_locked(struct object_lock *lock); static void snmp_sock_err(sock *sk, int err); static void snmp_stop_timeout(timer *tm); static void snmp_cleanup(struct snmp_proto *p); static const char *snmp_state_str[] = { [SNMP_INIT] = "acquiring address lock", [SNMP_LOCKED] = "address lock acquired", [SNMP_OPEN] = "starting AgentX subagent", [SNMP_REGISTER] = "registering MIBs", [SNMP_CONN] = "AgentX session established", [SNMP_STOP] = "stopping AgentX subagent", [SNMP_DOWN] = "protocol down", }; /* * agentx_get_mib_init - init function for agentx_get_mib() * @p: SNMP instance protocol pool */ void agentx_get_mib_init(pool *p) { const struct oid *src = agentx_available_mibs[AGENTX_MIB_COUNT - 1]; size_t size = snmp_oid_size(src); struct oid *dest = mb_alloc(p, size); memcpy(dest, src, size); u8 ids = src->n_subid; if (ids > 0) dest->ids[ids - 1] = src->ids[ids - 1] + 1; agentx_available_mibs[AGENTX_MIB_COUNT] = dest; } /* * agentx_get_mib - classify an OID based on MIB prefix * @o: Object Identifier to classify */ enum agentx_mibs agentx_get_mib(const struct oid *o) { /* TODO: move me into MIB tree as hooks/MIB module root */ enum agentx_mibs mib = AGENTX_MIB_UNKNOWN; for (uint i = 0; i < AGENTX_MIB_COUNT + 1; i++) { ASSERT(agentx_available_mibs[i]); if (snmp_oid_compare(o, agentx_available_mibs[i]) < 0) return mib; mib = (enum agentx_mibs) i; } return AGENTX_MIB_UNKNOWN; } /* * snmp_rx_skip - skip all received data * @sk: communication socket * @size: size of received PDUs * * Socket rx_hook used when we are reseting the connection due to malformed PDU. */ static int snmp_rx_skip(sock UNUSED *sk, uint UNUSED size) { return 1; } /* * snmp_tx_skip - handle empty TX buffer during session reset * @sk: communication socket * * The socket tx_hook is called when the TX buffer is empty, i.e. all data was * send. This function is used only when we found malformed PDU and we are * resetting the established session. If called, we perform a SNMP protocol * state change. */ static void snmp_tx_skip(sock *sk) { struct snmp_proto *p = sk->data; proto_notify_state(&p->p, snmp_set_state(p, SNMP_STOP)); } /* * snmp_set_state - change state with associated actions * @p: SNMP protocol instance * @state: new SNMP protocol state * * This function does not notify the bird about protocol state. Return current * protocol state (PS_UP, ...). */ int snmp_set_state(struct snmp_proto *p, enum snmp_proto_state state) { enum snmp_proto_state last = p->state; const struct snmp_config *cf = (struct snmp_config *) p->p.cf; p->state = state; switch (state) { case SNMP_INIT: TRACE(D_EVENTS, "TODO"); ASSERT(last == SNMP_DOWN); if (cf->trans_type == SNMP_TRANS_TCP) { /* We need to lock the IP address */ struct object_lock *lock; lock = p->lock = olock_new(p->pool); lock->addr = p->remote_ip; lock->port = p->remote_port; lock->type = OBJLOCK_TCP; lock->hook = snmp_start_locked; lock->data = p; olock_acquire(lock); return PS_START; } last = SNMP_INIT; p->state = state = SNMP_LOCKED; /* Fall thru */ case SNMP_LOCKED: TRACE(D_EVENTS, "snmp %s: address lock acquired", p->p.name); ASSERT(last == SNMP_INIT); sock *s = sk_new(p->pool); if (cf->trans_type == SNMP_TRANS_TCP) { s->type = SK_TCP_ACTIVE; //s->saddr = ipa_from_ip4(p->local_ip); s->daddr = p->remote_ip; s->dport = p->remote_port; s->rbsize = SNMP_RX_BUFFER_SIZE; s->tbsize = SNMP_TX_BUFFER_SIZE; } else { s->type = SK_UNIX_ACTIVE; s->host = cf->remote_path; /* daddr */ s->rbsize = SNMP_RX_BUFFER_SIZE; s->tbsize = SNMP_TX_BUFFER_SIZE; } /* s->tos = IP_PREC_INTERNET_CONTROL */ s->tx_hook = snmp_connected; s->err_hook = snmp_sock_err; p->sock = s; s->data = p; /* Try opening the socket, schedule a retry on fail */ if (sk_open(s) < 0) { TRACE(D_EVENTS, "opening of communication socket failed"); rfree(s); p->sock = NULL; // TODO handle 0 timeout tm_start(p->startup_timer, p->timeout); } return PS_START; case SNMP_OPEN: TRACE(D_EVENTS, "communication socket opened, starting AgentX subagent"); ASSERT(last == SNMP_LOCKED); p->sock->rx_hook = snmp_rx; p->sock->tx_hook = NULL; snmp_start_subagent(p); p->startup_timer->hook = snmp_stop_timeout; tm_start(p->startup_timer, 1 S); return PS_START; case SNMP_REGISTER: TRACE(D_EVENTS, "registering MIBs"); ASSERT(last == SNMP_OPEN); tm_stop(p->startup_timer); /* stop timeout */ p->sock->rx_hook = snmp_rx; p->sock->tx_hook = snmp_tx; snmp_register_mibs(p); return PS_START; case SNMP_CONN: TRACE(D_EVENTS, "MIBs registered"); ASSERT(last == SNMP_REGISTER); return PS_UP; case SNMP_STOP: if (p->sock && p->state != SNMP_OPEN) { TRACE(D_EVENTS, "closing AgentX session"); if (p->state == SNMP_OPEN || p->state == SNMP_REGISTER || p->state == SNMP_CONN) snmp_stop_subagent(p); p->sock->rx_hook = snmp_rx_skip; p->sock->tx_hook = snmp_tx_skip; p->startup_timer->hook = snmp_stop_timeout; tm_start(p->startup_timer, 150 MS); return PS_STOP; } p->state = state = SNMP_DOWN; /* Fall thru */ case SNMP_DOWN: TRACE(D_EVENTS, "AgentX session closed"); snmp_cleanup(p); return PS_DOWN; default: die("unknown snmp state transition"); return PS_DOWN; } } /* * snmp_init - preinitialize SNMP instance * @CF: SNMP configuration generic handle * * Returns a generic handle pointing to preinitialized SNMP procotol * instance. */ static struct proto * snmp_init(struct proto_config *CF) { struct proto *P = proto_new(CF); struct snmp_proto *p = SKIP_BACK(struct snmp_proto, p, P); p->rl_gen = (struct tbf) TBF_DEFAULT_LOG_LIMITS; p->state = SNMP_DOWN; return P; } /* * snmp_cleanup - free all resources allocated by SNMP protocol * @p: SNMP protocol instance * * This function forcefully stops and cleans all resources and memory acqiured * by given SNMP protocol instance, such as timers, lists, hash tables etc. */ static inline void snmp_cleanup(struct snmp_proto *p) { /* Function tm_stop() is called inside rfree() */ rfree(p->startup_timer); p->startup_timer = NULL; rfree(p->ping_timer); p->ping_timer = NULL; rfree(p->sock); p->sock = NULL; rfree(p->lock); p->lock = NULL; struct snmp_registration *r, *r2; WALK_LIST_DELSAFE(r, r2, p->registration_queue) { rem_node(&r->n); mb_free(r); r = NULL; } HASH_FREE(p->bgp_hash); rfree(p->lp); p->bgp_trie = NULL; rfree(p->end_oids); p->end_oids = NULL; p->state = SNMP_DOWN; } /* * snmp_connected - start AgentX session on created socket * @sk: socket owned by SNMP protocol instance * * Starts the AgentX communication by sending an agentx-Open-PDU. * This function is internal and shouldn't be used outside the SNMP module. */ void snmp_connected(sock *sk) { struct snmp_proto *p = sk->data; snmp_set_state(p, SNMP_OPEN); } /* * snmp_reset - reset AgentX session * @p: SNMP protocol instance * * We wait until the last PDU written into the socket is send while ignoring all * incomming PDUs. Then we hard reset the connection by socket closure. The * protocol instance is automatically restarted by nest. * * Return protocol state (PS_STOP, ...). */ int snmp_reset(struct snmp_proto *p) { int proto_state = snmp_set_state(p, SNMP_STOP); proto_notify_state(&p->p, proto_state); return proto_state; } /* * snmp_sock_err - handle errors on socket by reopenning the socket * @sk: socket owned by SNMP protocol instance * @err: socket error code */ static void snmp_sock_err(sock *sk, int UNUSED err) { struct snmp_proto *p = sk->data; if (err != 0) TRACE(D_EVENTS, "SNMP socket error (%d)", err); snmp_set_state(p, SNMP_DOWN); } /* * snmp_start_locked - open the socket on locked address * @lock: object lock guarding the communication mean (address, ...) * * This function is called when the object lock is acquired. Main goal is to set * socket parameters and try to open configured socket. Function * snmp_connected() handles next stage of SNMP protocol start. When the socket * coundn't be opened, a new try is scheduled after a small delay. */ static void snmp_start_locked(struct object_lock *lock) { struct snmp_proto *p = lock->data; if (p->startup_delay) { ASSERT(p->startup_timer); p->startup_timer->hook = snmp_startup_timeout; tm_start(p->startup_timer, p->startup_delay); } else snmp_set_state(p, SNMP_LOCKED); } /* * snmp_startup_timeout - start the initiliazed SNMP protocol * @tm: the startup_timer holding the SNMP protocol instance. * * When the timer rings, the function snmp_startup() is invoked. * This function is internal and shouldn't be used outside the SNMP module. * Used when we delaying the start procedure, or we want to retry opening * the communication socket. */ void snmp_startup_timeout(timer *tm) { struct snmp_proto *p = tm->data; snmp_set_state(p, SNMP_LOCKED); } /* * snmp_stop_timeout - a timeout for non-responding master agent * @tm: the startup_timer holding the SNMP protocol instance. * * We are trying to empty the TX buffer of communication socket. But if it is * not done in reasonable amount of time, the function is called by timeout * timer. We down the whole SNMP protocol with cleanup of associated data * structures. */ static void snmp_stop_timeout(timer *tm) { struct snmp_proto *p = tm->data; proto_notify_state(&p->p, snmp_set_state(p, SNMP_DOWN)); } /* * snmp_ping_timeout - send a agentx-Ping-PDU * @tm: the ping_timer holding the SNMP protocol instance. * * Send an agentx-Ping-PDU. This function is periodically called by ping * timer. */ static void snmp_ping_timeout(timer *tm) { struct snmp_proto *p = tm->data; snmp_ping(p); } /* * snmp_start - Initialize the SNMP protocol instance * @P: SNMP protocol generic handle * * The first step in AgentX subagent startup is protocol initialition. * We must prepare lists, find BGP peers and finally asynchronously start * a AgentX subagent session. */ static int snmp_start(struct proto *P) { struct snmp_proto *p = (void *) P; struct snmp_config *cf = (struct snmp_config *) P->cf; p->local_ip = cf->local_ip; p->remote_ip = cf->remote_ip; p->local_port = cf->local_port; p->remote_port = cf->remote_port; p->bgp_local_as = cf->bgp_local_as; p->bgp_local_id = cf->bgp_local_id; p->timeout = cf->timeout; p->startup_delay = cf->startup_delay; p->pool = p->p.pool; p->lp = lp_new(p->pool); p->mib_tree = mb_alloc(p->pool, sizeof(struct mib_tree)); p->bgp_trie = f_new_trie(p->lp, 0); p->end_oids = lp_new(p->pool); p->startup_timer = tm_new_init(p->pool, snmp_startup_timeout, p, 0, 0); p->ping_timer = tm_new_init(p->pool, snmp_ping_timeout, p, p->timeout, 0); init_list(&p->registration_queue); /* We create copy of bonds to BGP protocols. */ HASH_INIT(p->bgp_hash, p->pool, 10); mib_tree_init(p->pool, p->mib_tree); snmp_bgp4_start(p); agentx_get_mib_init(p->pool); return snmp_set_state(p, SNMP_INIT); } static inline int snmp_reconfigure_logic(struct snmp_proto *p, const struct snmp_config *new) { const struct snmp_config *old = SKIP_BACK(struct snmp_config, cf, p->p.cf); if (old->bonds != new->bonds) return 0; uint bonds = old->bonds; struct snmp_bond *b1, *b2; WALK_LIST(b1, new->bgp_entries) { WALK_LIST(b2, old->bgp_entries) { if (!bstrcmp(b1->config->name, b2->config->name)) goto skip; } return 0; skip: bonds--; } if (bonds != 0) return 0; if (old->trans_type != new->trans_type || ip4_compare(old->local_ip, new->local_ip) || old->local_port != new->local_port || ipa_compare(old->remote_ip, new->remote_ip) || !bstrcmp(old->remote_path, new->remote_path) || old->remote_port != new->remote_port // TODO can be changed on the fly || !ip4_compare(old->bgp_local_id, new->bgp_local_id) || old->bgp_local_as != new->bgp_local_as // TODO can be changed on the fly || old->timeout != new->timeout //|| old->startup_delay != new->startup_delay || old->priority != new->priority || !strncmp(old->description, new->description, UINT32_MAX)) return 0; return 1; /* return !memcmp(((byte *) old) + sizeof(struct proto_config), ((byte *) new) + sizeof(struct proto_config), OFFSETOF(struct snmp_config, description) - sizeof(struct proto_config)) && ! strncmp(old->description, new->description, UINT32_MAX); */ } /* * snmp_reconfigure - Indicate instance reconfigurability * @P - SNMP protocol generic handle, current state * @CF - SNMP protocol configuration generic handle carring new values * * We accept the reconfiguration if the new configuration @CF is identical with * the currently deployed configuration. Otherwise we deny reconfiguration because * the implementation would be cumbersome. */ static int snmp_reconfigure(struct proto *P, struct proto_config *CF) { struct snmp_proto *p = SKIP_BACK(struct snmp_proto, p, P); const struct snmp_config *new = SKIP_BACK(struct snmp_config, cf, CF); // TODO do not reject reconfiguration when only BGP peer list changed /* We are searching for configuration changes */ int config_changed = snmp_reconfigure_logic(p, new); if (config_changed) { /* Reinitialize the hash after snmp_shutdown() */ HASH_INIT(p->bgp_hash, p->pool, 10); snmp_bgp4_start(p); } return config_changed; } /* * snmp_show_proto_info - print basic information about SNMP protocol instance * @P: SNMP protocol generic handle */ static void snmp_show_proto_info(struct proto *P) { struct snmp_proto *p = (void *) P; cli_msg(-1006, " SNMP state: %s", snmp_state_str[p->state]); cli_msg(-1006, " MIBs"); snmp_bgp4_show_info(p); } /* * snmp_postconfig - Check configuration correctness * @CF: SNMP procotol configuration generic handle */ static void snmp_postconfig(struct proto_config *CF) { const struct snmp_config *cf = (struct snmp_config *) CF; /* Walk the BGP protocols and cache their references. */ if (cf->bgp_local_as == 0) cf_error("local as not specified"); } /* * snmp_shutdown - Forcefully stop the SNMP protocol instance * @P: SNMP protocol generic handle * * Simple cast-like wrapper around snmp_reset(), see more info there. */ static int snmp_shutdown(struct proto *P) { struct snmp_proto *p = SKIP_BACK(struct snmp_proto, p, P); return snmp_reset(p); } /* * Protocol infrastructure */ struct protocol proto_snmp = { .name = "SNMP", .template = "snmp%d", .channel_mask = 0, .proto_size = sizeof(struct snmp_proto), .config_size = sizeof(struct snmp_config), .postconfig = snmp_postconfig, .init = snmp_init, .start = snmp_start, .reconfigure = snmp_reconfigure, .shutdown = snmp_shutdown, .show_proto_info = snmp_show_proto_info, }; void snmp_build(void) { proto_build(&proto_snmp); }