m4_divert(-1)m4_dnl # # BIRD -- Construction of per-instruction structures # # (c) 2018 Maria Matejka # # Can be freely distributed and used under the terms of the GNU GPL. # # THIS IS A M4 MACRO FILE GENERATING 3 FILES ALTOGETHER. # KEEP YOUR HANDS OFF UNLESS YOU KNOW WHAT YOU'RE DOING. # EDITING AND DEBUGGING THIS FILE MAY DAMAGE YOUR BRAIN SERIOUSLY. # # But you're welcome to read and edit and debug if you aren't scared. # # Uncomment the following line to get exhaustive debug output. # m4_debugmode(aceflqtx) # # How it works: # 1) Instruction to code conversion (uses diversions 100..199) # 2) Code wrapping (uses diversions 1..99) # 3) Final preparation (uses diversions 200..299) # 4) Shipout # # See below for detailed description. # # # 1) Instruction to code conversion # The code provided in f-inst.c between consecutive INST() calls # is interleaved for many different places. It is here processed # and split into separate instances where split-by-instruction # happens. These parts are stored in temporary diversions listed: # # 101 content of per-inst struct # 102 constructor arguments # 109 constructor attributes # 103 constructor body # 104 dump line item content # (there may be nothing in dump-line content and # it must be handled specially in phase 2) # 105 linearize body # 106 comparator body # 107 struct f_line_item content # 108 interpreter body # # Here are macros to allow you to _divert to the right directions. m4_define(FID_STRUCT_IN, `m4_divert(101)') m4_define(FID_NEW_ARGS, `m4_divert(102)') m4_define(FID_NEW_ATTRIBUTES, `m4_divert(109)') m4_define(FID_NEW_BODY, `m4_divert(103)') m4_define(FID_DUMP_BODY, `m4_divert(104)m4_define([[FID_DUMP_BODY_EXISTS]])') m4_define(FID_LINEARIZE_BODY, `m4_divert(105)') m4_define(FID_SAME_BODY, `m4_divert(106)') m4_define(FID_LINE_IN, `m4_divert(107)') m4_define(FID_INTERPRET_BODY, `m4_divert(108)') # Sometimes you want slightly different code versions in different # outputs. # Use FID_HIC(code for inst-gen.h, code for inst-gen.c, code for inst-interpret.c) # and put it into [[ ]] quotes if it shall contain commas. m4_define(FID_HIC, `m4_ifelse(TARGET, [[H]], [[$1]], TARGET, [[I]], [[$2]], TARGET, [[C]], [[$3]])') # In interpreter code, this is quite common. m4_define(FID_INTERPRET_EXEC, `FID_HIC(,[[FID_INTERPRET_BODY()]],[[m4_divert(-1)]])') m4_define(FID_INTERPRET_NEW, `FID_HIC(,[[m4_divert(-1)]],[[FID_INTERPRET_BODY()]])') # If the instruction is never converted to constant, the interpret # code is not produced at all for constructor m4_define(NEVER_CONSTANT, `m4_define([[INST_NEVER_CONSTANT]])') m4_define(FID_IFCONST, `m4_ifdef([[INST_NEVER_CONSTANT]],[[$2]],[[$1]])') # If the instruction has some attributes (here called members), # these are typically carried with the instruction from constructor # to interpreter. This yields a line of code everywhere on the path. # FID_MEMBER is a macro to help with this task. m4_define(FID_MEMBER, `m4_dnl FID_LINE_IN()m4_dnl $1 $2; FID_STRUCT_IN()m4_dnl $1 $2; FID_NEW_ARGS()m4_dnl , $1 $2 FID_NEW_BODY()m4_dnl whati->$2 = $2; FID_LINEARIZE_BODY()m4_dnl item->$2 = whati->$2; m4_ifelse($3,,,[[ FID_SAME_BODY()m4_dnl if ($3) return 0; ]]) m4_ifelse($4,,,[[ FID_DUMP_BODY()m4_dnl debug("%s" $4 "\n", INDENT, $5); ]]) FID_INTERPRET_EXEC()m4_dnl const $1 $2 = whati->$2 FID_INTERPRET_BODY') # Instruction arguments are needed only until linearization is done. # This puts the arguments into the filter line to be executed before # the instruction itself. # # To achieve this, ARG_ANY must be called before anything writes into # the instruction line as it moves the instruction pointer forward. m4_define(ARG_ANY, ` FID_STRUCT_IN()m4_dnl struct f_inst * f$1; FID_NEW_ARGS()m4_dnl , struct f_inst * f$1 FID_NEW_ATTRIBUTES()m4_dnl NONNULL(m4_eval($1+1)) FID_NEW_BODY()m4_dnl whati->f$1 = f$1; const struct f_inst *child$1 = f$1; do { what->size += child$1->size; FID_IFCONST([[ if (child$1->fi_code != FI_CONSTANT) constargs = 0; ]]) } while (child$1 = child$1->next); FID_LINEARIZE_BODY pos = linearize(dest, whati->f$1, pos); FID_INTERPRET_BODY()') # Some instructions accept variable number of arguments. m4_define(VARARG, ` FID_NEW_ARGS()m4_dnl , struct f_inst * fvar FID_STRUCT_IN()m4_dnl struct f_inst * fvar; uint varcount; FID_LINE_IN()m4_dnl uint varcount; FID_NEW_BODY()m4_dnl whati->varcount = 0; whati->fvar = fvar; for (const struct f_inst *child = fvar; child; child = child->next, whati->varcount++) { what->size += child->size; FID_IFCONST([[ if (child->fi_code != FI_CONSTANT) constargs = 0; ]]) } FID_IFCONST([[ const struct f_inst **items = NULL; if (constargs && whati->varcount) { items = alloca(whati->varcount * sizeof(struct f_inst *)); const struct f_inst *child = fvar; for (uint i=0; child; i++) child = (items[i] = child)->next; } ]]) FID_LINEARIZE_BODY()m4_dnl pos = linearize(dest, whati->fvar, pos); item->varcount = whati->varcount; FID_DUMP_BODY()m4_dnl debug("%snumber of varargs %u\n", INDENT, item->varcount); FID_SAME_BODY()m4_dnl if (f1->varcount != f2->varcount) return 0; FID_INTERPRET_BODY() FID_HIC(,[[ if (fstk->vcnt < whati->varcount) runtime("Stack underflow"); fstk->vcnt -= whati->varcount; ]],) ') # Some arguments need to check their type. After that, ARG_ANY is called. m4_define(ARG, `ARG_ANY($1) ARG_TYPE($1,$2)') m4_define(ARG_TYPE, `ARG_TYPE_STATIC($1,$2) ARG_TYPE_DYNAMIC($1,$2)') m4_define(ARG_TYPE_STATIC, ` FID_NEW_BODY()m4_dnl if (f$1->type && (f$1->type != ($2)) && !f_const_promotion(f$1, ($2))) cf_error("Argument $1 of %s must be of type %s, got type %s", f_instruction_name(what->fi_code), f_type_name($2), f_type_name(f$1->type)); FID_INTERPRET_BODY()') m4_define(ARG_TYPE_DYNAMIC, ` FID_INTERPRET_EXEC()m4_dnl if (v$1.type != ($2)) runtime("Argument $1 of %s must be of type %s, got type %s", f_instruction_name(what->fi_code), f_type_name($2), f_type_name(v$1.type)); FID_INTERPRET_BODY()') m4_define(ARG_SAME_TYPE, ` FID_NEW_BODY()m4_dnl if (f$1->type && f$2->type && (f$1->type != f$2->type) && !f_const_promotion(f$2, f$1->type) && !f_const_promotion(f$1, f$2->type)) cf_error("Arguments $1 and $2 of %s must be of the same type", f_instruction_name(what->fi_code)); FID_INTERPRET_BODY()') # Executing another filter line. This replaces the recursion # that was needed in the former implementation. m4_define(LINEX, `FID_INTERPRET_EXEC()LINEX_($1)FID_INTERPRET_NEW()return $1 FID_INTERPRET_BODY()') m4_define(LINEX_, `do { fstk->estk[fstk->ecnt].pos = 0; fstk->estk[fstk->ecnt].line = $1; fstk->estk[fstk->ecnt].ventry = fstk->vcnt; fstk->estk[fstk->ecnt].vbase = fstk->estk[fstk->ecnt-1].vbase; fstk->estk[fstk->ecnt].emask = 0; fstk->ecnt++; } while (0)') m4_define(LINE, ` FID_LINE_IN()m4_dnl const struct f_line * fl$1; FID_STRUCT_IN()m4_dnl struct f_inst * f$1; FID_NEW_ARGS()m4_dnl , struct f_inst * f$1 FID_NEW_BODY()m4_dnl whati->f$1 = f$1; FID_DUMP_BODY()m4_dnl f_dump_line(item->fl$1, indent + 1); FID_LINEARIZE_BODY()m4_dnl item->fl$1 = f_linearize(whati->f$1); FID_SAME_BODY()m4_dnl if (!f_same(f1->fl$1, f2->fl$1)) return 0; FID_INTERPRET_EXEC()m4_dnl do { if (whati->fl$1) { LINEX_(whati->fl$1); } } while(0) FID_INTERPRET_NEW()m4_dnl return whati->f$1 FID_INTERPRET_BODY()') # Some of the instructions have a result. These constructions # state the result and put it to the right place. m4_define(RESULT, `RESULT_TYPE([[$1]]) RESULT_([[$1]],[[$2]],[[$3]])') m4_define(RESULT_, `RESULT_VAL([[ (struct f_val) { .type = $1, .val.$2 = $3 } ]])') m4_define(RESULT_VAL, `FID_HIC(, [[do { res = $1; fstk->vcnt++; } while (0)]], [[return fi_constant(what, $1)]])') m4_define(RESULT_VOID, `RESULT_VAL([[ (struct f_val) { .type = T_VOID } ]])') m4_define(ERROR, `m4_errprint(m4___file__:m4___line__: $* )m4_m4exit(1)') # This macro specifies result type and makes there are no conflicting definitions m4_define(RESULT_TYPE, `m4_ifdef([[INST_RESULT_TYPE]], [[m4_ifelse(INST_RESULT_TYPE,$1,,[[ERROR([[Multiple type definitons]])]])]], [[m4_define(INST_RESULT_TYPE,$1) RESULT_TYPE_($1)]])') m4_define(RESULT_TYPE_, ` FID_NEW_BODY()m4_dnl what->type = $1; FID_INTERPRET_BODY()') # Some common filter instruction members m4_define(SYMBOL, `FID_MEMBER(struct symbol *, sym, [[strcmp(f1->sym->name, f2->sym->name) || (f1->sym->class != f2->sym->class)]], "symbol %s", item->sym->name)') m4_define(RTC, `FID_MEMBER(struct rtable_config *, rtc, [[strcmp(f1->rtc->name, f2->rtc->name)]], "route table %s", item->rtc->name)') m4_define(STATIC_ATTR, `FID_MEMBER(struct f_static_attr, sa, f1->sa.sa_code != f2->sa.sa_code,,)') m4_define(DYNAMIC_ATTR, `FID_MEMBER(struct f_dynamic_attr, da, f1->da.ea_code != f2->da.ea_code,,)') m4_define(ACCESS_RTE, `FID_HIC(,[[do { if (!fs->rte) runtime("No route to access"); } while (0)]],NEVER_CONSTANT())') # 2) Code wrapping # The code produced in 1xx temporary diversions is a raw code without # any auxiliary commands and syntactical structures around. When the # instruction is done, INST_FLUSH is called. More precisely, it is called # at the beginning of INST() call and at the end of file. # # INST_FLUSH picks all the temporary diversions, wraps their content # into appropriate headers and structures and saves them into global # diversions listed: # # 4 enum fi_code # 5 enum fi_code to string # 6 dump line item # 7 dump line item callers # 8 linearize # 9 same (filter comparator) # 1 union in struct f_inst # 3 constructors + interpreter # # These global diversions contain blocks of code that can be directly # put into the final file, yet it still can't be written out now as # every instruction writes to all of these diversions. # Code wrapping diversion names. Here we want an explicit newline # after the C comment. m4_define(FID_ZONE, `m4_divert($1) /* $2 for INST_NAME() */ ') m4_define(FID_INST, `FID_ZONE(1, Instruction structure for config)') m4_define(FID_LINE, `FID_ZONE(2, Instruction structure for interpreter)') m4_define(FID_NEW, `FID_ZONE(3, Constructor)') m4_define(FID_ENUM, `FID_ZONE(4, Code enum)') m4_define(FID_ENUM_STR, `FID_ZONE(5, Code enum to string)') m4_define(FID_DUMP, `FID_ZONE(6, Dump line)') m4_define(FID_DUMP_CALLER, `FID_ZONE(7, Dump line caller)') m4_define(FID_LINEARIZE, `FID_ZONE(8, Linearize)') m4_define(FID_SAME, `FID_ZONE(9, Comparison)') # This macro does all the code wrapping. See inline comments. m4_define(INST_FLUSH, `m4_ifdef([[INST_NAME]], [[ FID_ENUM()m4_dnl Contents of enum fi_code { ... } INST_NAME(), FID_ENUM_STR()m4_dnl Contents of const char * indexed by enum fi_code [INST_NAME()] = "INST_NAME()", FID_INST()m4_dnl Anonymous structure inside struct f_inst struct { m4_undivert(101)m4_dnl } i_[[]]INST_NAME(); FID_LINE()m4_dnl Anonymous structure inside struct f_line_item struct { m4_undivert(107)m4_dnl } i_[[]]INST_NAME(); FID_NEW()m4_dnl Constructor and interpreter code together FID_HIC( [[m4_dnl Public declaration of constructor in H file struct f_inst * m4_undivert(109)m4_dnl f_new_inst_]]INST_NAME()[[(enum f_instruction_code fi_code m4_undivert(102)m4_dnl );]], [[m4_dnl The one case in The Big Switch inside interpreter case INST_NAME(): #define whati (&(what->i_]]INST_NAME()[[)) m4_ifelse(m4_eval(INST_INVAL() > 0), 1, [[if (fstk->vcnt < INST_INVAL()) runtime("Stack underflow"); fstk->vcnt -= INST_INVAL(); ]]) m4_undivert(108)m4_dnl #undef whati break; ]], [[m4_dnl Constructor itself struct f_inst * m4_undivert(109)m4_dnl f_new_inst_]]INST_NAME()[[(enum f_instruction_code fi_code m4_undivert(102)m4_dnl ) { /* Allocate the structure */ struct f_inst *what = fi_new(fi_code); FID_IFCONST([[uint constargs = 1;]]) /* Initialize all the members */ #define whati (&(what->i_]]INST_NAME()[[)) m4_undivert(103)m4_dnl /* If not constant, return the instruction itself */ FID_IFCONST([[if (!constargs)]]) return what; /* Try to pre-calculate the result */ FID_IFCONST([[m4_undivert(108)]])m4_dnl #undef whati } ]]) FID_DUMP_CALLER()m4_dnl Case in another big switch used in instruction dumping (debug) case INST_NAME(): f_dump_line_item_]]INST_NAME()[[(item, indent + 1); break; FID_DUMP()m4_dnl The dumper itself m4_ifdef([[FID_DUMP_BODY_EXISTS]], [[static inline void f_dump_line_item_]]INST_NAME()[[(const struct f_line_item *item_, const int indent)]], [[static inline void f_dump_line_item_]]INST_NAME()[[(const struct f_line_item *item UNUSED, const int indent UNUSED)]]) m4_undefine([[FID_DUMP_BODY_EXISTS]]) { #define item (&(item_->i_]]INST_NAME()[[)) m4_undivert(104)m4_dnl #undef item } FID_LINEARIZE()m4_dnl The linearizer case INST_NAME(): { #define whati (&(what->i_]]INST_NAME()[[)) #define item (&(dest->items[pos].i_]]INST_NAME()[[)) m4_undivert(105)m4_dnl #undef whati #undef item dest->items[pos].fi_code = what->fi_code; dest->items[pos].lineno = what->lineno; break; } FID_SAME()m4_dnl This code compares two f_line"s while reconfiguring case INST_NAME(): #define f1 (&(f1_->i_]]INST_NAME()[[)) #define f2 (&(f2_->i_]]INST_NAME()[[)) m4_undivert(106)m4_dnl #undef f1 #undef f2 break; m4_divert(-1)FID_FLUSH(101,200)m4_dnl And finally this flushes all the unused diversions ]])') m4_define(INST, `m4_dnl This macro is called on beginning of each instruction. INST_FLUSH()m4_dnl First, old data is flushed m4_define([[INST_NAME]], [[$1]])m4_dnl Then we store instruction name, m4_define([[INST_INVAL]], [[$2]])m4_dnl instruction input value count, m4_undefine([[INST_NEVER_CONSTANT]])m4_dnl reset NEVER_CONSTANT trigger, m4_undefine([[INST_RESULT_TYPE]])m4_dnl and reset RESULT_TYPE value. FID_INTERPRET_BODY()m4_dnl By default, every code is interpreter code. ') # 3) Final preparation # # Now we prepare all the code around the global diversions. # It must be here, not in m4wrap, as we want M4 to mark the code # by #line directives correctly, not to claim that every single line # is at the beginning of the m4wrap directive. # # This part is split by the final file. # H for inst-gen.h # I for inst-interpret.c # C for inst-gen.c # # So we in cycle: # A. open a diversion # B. send there some code # C. close that diversion # D. flush a global diversion # E. open another diversion and goto B. # # Final diversions # 200+ completed text before it is flushed to output # This is a list of output diversions m4_define(FID_WR_PUT_LIST) # This macro does the steps C to E, see before. m4_define(FID_WR_PUT_ALSO, `m4_define([[FID_WR_PUT_LIST]],FID_WR_PUT_LIST()[[FID_WR_DPUT(]]FID_WR_DIDX[[)FID_WR_DPUT(]]$1[[)]])m4_define([[FID_WR_DIDX]],m4_eval(FID_WR_DIDX+1))m4_divert(FID_WR_DIDX)') # These macros do the splitting between H/I/C m4_define(FID_WR_DIRECT, `m4_ifelse(TARGET,[[$1]],[[FID_WR_INIT()]],[[FID_WR_STOP()]])') m4_define(FID_WR_INIT, `m4_define([[FID_WR_DIDX]],200)m4_define([[FID_WR_PUT]],[[FID_WR_PUT_ALSO($]][[@)]])m4_divert(200)') m4_define(FID_WR_STOP, `m4_define([[FID_WR_PUT]])m4_divert(-1)') # Here is the direct code to be put into the output files # together with the undiversions, being hidden under FID_WR_PUT() m4_changequote([[,]]) FID_WR_DIRECT(I) FID_WR_PUT(3) FID_WR_DIRECT(C) #if defined(__GNUC__) && __GNUC__ >= 6 #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wmisleading-indentation" #endif #include "nest/bird.h" #include "filter/filter.h" #include "filter/f-inst.h" /* Instruction codes to string */ static const char * const f_instruction_name_str[] = { FID_WR_PUT(5) }; const char * f_instruction_name_(enum f_instruction_code fi) { if (fi < (sizeof(f_instruction_name_str) / sizeof(f_instruction_name_str[0]))) return f_instruction_name_str[fi]; else bug("Got unknown instruction code: %d", fi); } static inline struct f_inst * fi_new(enum f_instruction_code fi_code) { struct f_inst *what = cfg_allocz(sizeof(struct f_inst)); what->lineno = ifs->lino; what->size = 1; what->fi_code = fi_code; return what; } static inline struct f_inst * fi_constant(struct f_inst *what, struct f_val val) { what->fi_code = FI_CONSTANT; what->i_FI_CONSTANT.val = val; return what; } static int f_const_promotion(struct f_inst *arg, enum f_type want) { if (arg->fi_code != FI_CONSTANT) return 0; struct f_val *c = &arg->i_FI_CONSTANT.val; if ((c->type == T_IP) && ipa_is_ip4(c->val.ip) && (want == T_QUAD)) { *c = (struct f_val) { .type = T_QUAD, .val.i = ipa_to_u32(c->val.ip), }; return 1; } return 0; } #define v1 whati->f1->i_FI_CONSTANT.val #define v2 whati->f2->i_FI_CONSTANT.val #define v3 whati->f3->i_FI_CONSTANT.val #define vv(i) items[i]->i_FI_CONSTANT.val #define runtime(fmt, ...) cf_error("filter preevaluation, line %d: " fmt, ifs->lino, ##__VA_ARGS__) #define fpool cfg_mem #define falloc(size) cfg_alloc(size) /* Instruction constructors */ FID_WR_PUT(3) #undef v1 #undef v2 #undef v3 #undef vv /* Line dumpers */ #define INDENT (((const char *) f_dump_line_indent_str) + sizeof(f_dump_line_indent_str) - (indent) - 1) static const char f_dump_line_indent_str[] = " "; FID_WR_PUT(6) void f_dump_line(const struct f_line *dest, uint indent) { if (!dest) { debug("%sNo filter line (NULL)\n", INDENT); return; } debug("%sFilter line %p (len=%u)\n", INDENT, dest, dest->len); for (uint i=0; ilen; i++) { const struct f_line_item *item = &dest->items[i]; debug("%sInstruction %s at line %u\n", INDENT, f_instruction_name_(item->fi_code), item->lineno); switch (item->fi_code) { FID_WR_PUT(7) default: bug("Unknown instruction %x in f_dump_line", item->fi_code); } } debug("%sFilter line %p dump done\n", INDENT, dest); } /* Linearize */ static uint linearize(struct f_line *dest, const struct f_inst *what, uint pos) { for ( ; what; what = what->next) { switch (what->fi_code) { FID_WR_PUT(8) } pos++; } return pos; } struct f_line * f_linearize_concat(const struct f_inst * const inst[], uint count) { uint len = 0; for (uint i=0; inext) len += what->size; struct f_line *out = cfg_allocz(sizeof(struct f_line) + sizeof(struct f_line_item)*len); for (uint i=0; ilen = linearize(out, inst[i], out->len); #ifdef LOCAL_DEBUG f_dump_line(out, 0); #endif return out; } /* Filter line comparison */ int f_same(const struct f_line *fl1, const struct f_line *fl2) { if ((!fl1) && (!fl2)) return 1; if ((!fl1) || (!fl2)) return 0; if (fl1->len != fl2->len) return 0; for (uint i=0; ilen; i++) { #define f1_ (&(fl1->items[i])) #define f2_ (&(fl2->items[i])) if (f1_->fi_code != f2_->fi_code) return 0; if (f1_->flags != f2_->flags) return 0; switch(f1_->fi_code) { FID_WR_PUT(9) } } #undef f1_ #undef f2_ return 1; } #if defined(__GNUC__) && __GNUC__ >= 6 #pragma GCC diagnostic pop #endif FID_WR_DIRECT(H) /* Filter instruction codes */ enum f_instruction_code { FID_WR_PUT(4)m4_dnl } PACKED; /* Filter instruction structure for config */ struct f_inst { struct f_inst *next; /* Next instruction */ enum f_instruction_code fi_code; /* Instruction code */ enum f_type type; /* Type of returned value, if known */ int size; /* How many instructions are underneath */ int lineno; /* Line number */ union { FID_WR_PUT(1)m4_dnl }; }; /* Filter line item */ struct f_line_item { enum f_instruction_code fi_code; /* What to do */ enum f_instruction_flags flags; /* Flags, instruction-specific */ uint lineno; /* Where */ union { FID_WR_PUT(2)m4_dnl }; }; /* Instruction constructors */ FID_WR_PUT(3) m4_divert(-1) # 4) Shipout # # Everything is prepared in FID_WR_PUT_LIST now. Let's go! m4_changequote(`,') # Flusher auxiliary macro m4_define(FID_FLUSH, `m4_ifelse($1,$2,,[[m4_undivert($1)FID_FLUSH(m4_eval($1+1),$2)]])') # Defining the macro used in FID_WR_PUT_LIST m4_define(FID_WR_DPUT, `m4_undivert($1)') # After the code is read and parsed, we: m4_m4wrap(`INST_FLUSH()m4_divert(0)FID_WR_PUT_LIST()m4_divert(-1)FID_FLUSH(1,200)') m4_changequote([[,]]) # And now M4 is going to parse f-inst.c, fill the diversions # and after the file is done, the content of m4_m4wrap (see before) # is executed.