/* * BIRD Internet Routing Daemon -- Configuration File Handling * * (c) 1998--2000 Martin Mares * * Can be freely distributed and used under the terms of the GNU GPL. */ /** * DOC: Configuration manager * * Configuration of BIRD is complex, yet straightforward. There are three * modules taking care of the configuration: config manager (which takes care * of storage of the config information and controls switching between configs), * lexical analyzer and parser. * * The configuration manager stores each config as a &config structure * accompanied by a linear pool from which all information associated * with the config and pointed to by the &config structure is allocated. * * There can exist up to four different configurations at one time: an active * one (pointed to by @config), configuration we are just switching from * (@old_config), one queued for the next reconfiguration (@future_config; if * there is one and the user wants to reconfigure once again, we just free the * previous queued config and replace it with the new one) and finally a config * being parsed (@new_config). The stored @old_config is also used for undo * reconfiguration, which works in a similar way. Reconfiguration could also * have timeout (using @config_timer) and undo is automatically called if the * new configuration is not confirmed later. The new config (@new_config) and * associated linear pool (@cfg_mem) is non-NULL only during parsing. * * Loading of new configuration is very simple: just call config_alloc() to get * a new &config structure, then use config_parse() to parse a configuration * file and fill all fields of the structure and finally ask the config manager * to switch to the new config by calling config_commit(). * * CLI commands are parsed in a very similar way -- there is also a stripped-down * &config structure associated with them and they are lex-ed and parsed by the * same functions, only a special fake token is prepended before the command * text to make the parser recognize only the rules corresponding to CLI commands. */ #include #undef LOCAL_DEBUG #include "nest/bird.h" #include "nest/route.h" #include "nest/protocol.h" #include "nest/iface.h" #include "nest/mpls.h" #include "lib/resource.h" #include "lib/string.h" #include "lib/event.h" #include "lib/timer.h" #include "conf/conf.h" #include "filter/filter.h" #include "sysdep/unix/unix.h" static jmp_buf conf_jmpbuf; config_ref config; _Thread_local struct config *new_config; pool *config_pool; struct config *old_config; /* Old configuration */ static config_ref future_config; /* New config held here if recon requested during recon */ static int old_cftype; /* Type of transition old_config -> config (RECONFIG_SOFT/HARD) */ static int future_cftype; /* Type of scheduled transition, may also be RECONFIG_UNDO */ /* Note that when future_cftype is RECONFIG_UNDO, then future_config is NULL, therefore proper check for future scheduled config checks future_cftype */ static void config_done(void); static timer *config_timer; /* Timer for scheduled configuration rollback */ /* These are public just for cmd_show_status(), should not be accessed elsewhere */ int shutting_down; /* Shutdown requested, do not accept new config changes */ int configuring; /* Reconfiguration is running */ int undo_available; /* Undo was not requested from last reconfiguration */ /* Note that both shutting_down and undo_available are related to requests, not processing */ static void config_obstacles_cleared(struct callback *_ UNUSED) { ASSERT_DIE(birdloop_inside(&main_birdloop)); ASSERT_DIE(configuring); config_done(); } /** * config_alloc - allocate a new configuration * @name: name of the config * * This function creates new &config structure, attaches a resource * pool and a linear memory pool to it and makes it available for * further use. Returns a pointer to the structure. */ struct config * config_alloc(const char *name) { pool *p = rp_new(config_pool, the_bird_domain.the_bird, "Config"); linpool *l = lp_new_default(p); struct config *c = lp_allocz(l, sizeof(struct config)); /* Duplication of name string in local linear pool */ uint nlen = strlen(name) + 1; char *ndup = lp_allocu(l, nlen); memcpy(ndup, name, nlen); init_list(&c->tests); init_list(&c->symbols); c->pool = p; c->mem = l; c->file_name = ndup; c->tf_route = c->tf_proto = TM_ISO_SHORT_MS; c->tf_base = c->tf_log = TM_ISO_LONG_MS; c->gr_wait = DEFAULT_GR_WAIT; callback_init(&c->obstacles_cleared, config_obstacles_cleared, &main_birdloop); obstacle_target_init(&c->obstacles, &c->obstacles_cleared, p, "Config"); return c; } /** * config_parse - parse a configuration * @c: configuration * * config_parse() reads input by calling a hook function pointed to * by @cf_read_hook and parses it according to the configuration * grammar. It also calls all the preconfig and postconfig hooks * before, resp. after parsing. * * Result: 1 if the config has been parsed successfully, 0 if any * error has occurred (such as anybody calling cf_error()) and * the @err_msg field has been set to the error message. */ int config_parse(struct config *c) { int done = 0; DBG("Parsing configuration file `%s'\n", c->file_name); new_config = c; cfg_mem = c->mem; if (setjmp(conf_jmpbuf)) goto cleanup; cf_lex_init(NULL, c); filter_preconfig(c); sysdep_preconfig(c); protos_preconfig(c); mpls_preconfig(c); rt_preconfig(c); cf_parse(); rt_postconfig(c); if (EMPTY_LIST(c->protos)) cf_error("No protocol is specified in the config file"); done = 1; cleanup: new_config = NULL; cfg_mem = NULL; return done; } /** * cli_parse - parse a CLI command * @c: temporary config structure * * cli_parse() is similar to config_parse(), but instead of a configuration, * it parses a CLI command. See the CLI module for more information. */ int cli_parse(struct config *main_config, struct config *c) { int done = 0; new_config = c; cfg_mem = c->mem; if (setjmp(conf_jmpbuf)) goto cleanup; cf_lex_init(main_config, c); cf_parse(); done = 1; cleanup: new_config = NULL; cfg_mem = NULL; return done; } /** * config_free - free a configuration * @c: configuration to be freed * * This function takes a &config structure and frees all resources * associated with it. */ void config_free(struct config *c) { if (!c) return; synchronize_rcu(); ASSERT_DIE(!obstacle_target_count(&c->obstacles)); rp_free(c->pool); } /** * config_free_old - free stored old configuration * * This function frees the old configuration (%old_config) that is saved for the * purpose of undo. It is useful before parsing a new config when reconfig is * requested, to avoid keeping three (perhaps memory-heavy) configs together. * Configuration is not freed when it is still active during reconfiguration. */ void config_free_old(void) { tm_stop(config_timer); undo_available = 0; config_free(old_config); old_config = NULL; } struct global_runtime global_runtime_internal[2] = {{ .tf_log = { .fmt1 = "%F %T.%3f", }, }}; struct global_runtime * _Atomic global_runtime = &global_runtime_internal[0]; static void global_commit(struct config *new, struct config *old) { /* Updating the global runtime. */ struct global_runtime *og = atomic_load_explicit(&global_runtime, memory_order_relaxed); struct global_runtime *ng = &global_runtime_internal[og == &global_runtime_internal[0]]; ASSERT_DIE(ng != og); #define COPY(x) ng->x = new->x; MACRO_FOREACH(COPY, tf_route, tf_proto, tf_log, tf_base, cli_debug, latency_debug, latency_limit, watchdog_warning, watchdog_timeout, gr_wait, hostname ); #undef COPY ng->load_time = current_time(); if (new->router_id) ng->router_id = new->router_id; else if (old) { /* The startup router ID must be determined after start of device protocol, * thus if old == NULL then we do nothing */ ng->router_id = og->router_id; if (new->router_id_from) { u32 id = if_choose_router_id(new->router_id_from, og->router_id); if (!id) log(L_WARN "Cannot determine router ID, using old one"); else ng->router_id = id; } } atomic_store_explicit(&global_runtime, ng, memory_order_release); /* We have to wait until every reader surely doesn't read the old values */ synchronize_rcu(); } static int config_do_commit(config_ref *cr, int type) { if (type == RECONFIG_UNDO) { OBSREF_SET(*cr, old_config); type = old_cftype; } else config_free(old_config); old_config = NULL; old_cftype = type; struct config *c = OBSREF_GET(*cr); old_config = OBSREF_GET(config); OBSREF_CLEAR(config); OBSREF_SET(config, OBSREF_GET(*cr)); if (!c->hostname) { c->hostname = get_hostname(c->mem); if (!c->hostname) log(L_WARN "Cannot determine hostname"); } configuring = 1; if (old_config && !c->shutdown) log(L_INFO "Reconfiguring"); DBG("filter_commit\n"); filter_commit(c, old_config); DBG("sysdep_commit\n"); sysdep_commit(c, old_config); DBG("global_commit\n"); global_commit(c, old_config); mpls_commit(c, old_config); DBG("rt_commit\n"); rt_commit(c, old_config); DBG("protos_commit\n"); protos_commit(c, old_config, type); /* Can be cleared directly? */ if (!old_config) return 1; if (!callback_is_active(&old_config->obstacles_cleared)) return 0; callback_cancel(&old_config->obstacles_cleared); return 1; } static void config_done(void) { struct config *c = OBSREF_GET(config); ASSERT_DIE(c); if (c->shutdown) sysdep_shutdown_done(); configuring = 0; if (old_config) log(L_INFO "Reconfigured"); if (future_cftype) { int type = future_cftype; struct config *fc = OBSREF_GET(future_config); if (type == RECONFIG_UNDO) { ASSERT_DIE(!fc); ASSERT_DIE(old_config); fc = old_config; } CONFIG_REF_LOCAL(conf, fc); future_cftype = RECONFIG_NONE; OBSREF_CLEAR(future_config); log(L_INFO "Reconfiguring to queued configuration"); if (config_do_commit(&conf, type)) config_done(); } } /** * config_commit - commit a configuration * @c: new configuration * @type: type of reconfiguration (RECONFIG_SOFT or RECONFIG_HARD) * @timeout: timeout for undo (in seconds; or 0 for no timeout) * * When a configuration is parsed and prepared for use, the * config_commit() function starts the process of reconfiguration. * It checks whether there is already a reconfiguration in progress * in which case it just queues the new config for later processing. * Else it notifies all modules about the new configuration by calling * their commit() functions which can either accept it immediately * or call config_add_obstacle() to report that they need some time * to complete the reconfiguration. After all such obstacles are removed * using config_del_obstacle(), the old configuration is freed and * everything runs according to the new one. * * When @timeout is nonzero, the undo timer is activated with given * timeout. The timer is deactivated when config_commit(), * config_confirm() or config_undo() is called. * * Result: %CONF_DONE if the configuration has been accepted immediately, * %CONF_PROGRESS if it will take some time to switch to it, %CONF_QUEUED * if it's been queued due to another reconfiguration being in progress now * or %CONF_SHUTDOWN if BIRD is in shutdown mode and no new configurations * are accepted. */ int config_commit(config_ref *cr, int type, uint timeout) { if (shutting_down) { OBSREF_CLEAR(*cr); return CONF_SHUTDOWN; } undo_available = 1; if (timeout) tm_start(config_timer, timeout S); else tm_stop(config_timer); if (configuring) { if (future_cftype) { log(L_INFO "Queueing new configuration, ignoring the one already queued"); OBSREF_CLEAR(future_config); } else log(L_INFO "Queueing new configuration"); future_cftype = type; OBSREF_SET(future_config, OBSREF_GET(*cr)); return CONF_QUEUED; } if (config_do_commit(cr, type)) { config_done(); return CONF_DONE; } return CONF_PROGRESS; } /** * config_confirm - confirm a commited configuration * * When the undo timer is activated by config_commit() with nonzero timeout, * this function can be used to deactivate it and therefore confirm * the current configuration. * * Result: %CONF_CONFIRM when the current configuration is confirmed, * %CONF_NONE when there is nothing to confirm (i.e. undo timer is not active). */ int config_confirm(void) { if (config_timer->expires == 0) return CONF_NOTHING; tm_stop(config_timer); return CONF_CONFIRM; } /** * config_undo - undo a configuration * * Function config_undo() can be used to change the current * configuration back to stored %old_config. If no reconfiguration is * running, this stored configuration is commited in the same way as a * new configuration in config_commit(). If there is already a * reconfiguration in progress and no next reconfiguration is * scheduled, then the undo is scheduled for later processing as * usual, but if another reconfiguration is already scheduled, then * such reconfiguration is removed instead (i.e. undo is applied on * the last commit that scheduled it). * * Result: %CONF_DONE if the configuration has been accepted immediately, * %CONF_PROGRESS if it will take some time to switch to it, %CONF_QUEUED * if it's been queued due to another reconfiguration being in progress now, * %CONF_UNQUEUED if a scheduled reconfiguration is removed, %CONF_NOTHING * if there is no relevant configuration to undo (the previous config request * was config_undo() too) or %CONF_SHUTDOWN if BIRD is in shutdown mode and * no new configuration changes are accepted. */ int config_undo(void) { if (shutting_down) return CONF_SHUTDOWN; if (!undo_available || !old_config) return CONF_NOTHING; undo_available = 0; tm_stop(config_timer); if (configuring) { if (future_cftype) { OBSREF_CLEAR(future_config); log(L_INFO "Removing queued configuration"); future_cftype = RECONFIG_NONE; return CONF_UNQUEUED; } else { log(L_INFO "Queueing undo configuration"); future_cftype = RECONFIG_UNDO; return CONF_QUEUED; } } CONFIG_REF_LOCAL_EMPTY(undo_conf); if (config_do_commit(&undo_conf, RECONFIG_UNDO)) { OBSREF_CLEAR(undo_conf); config_done(); return CONF_DONE; } return CONF_PROGRESS; } int config_status(void) { if (shutting_down) return CONF_SHUTDOWN; if (configuring) return future_cftype ? CONF_QUEUED : CONF_PROGRESS; return CONF_DONE; } btime config_timer_status(void) { return tm_active(config_timer) ? tm_remains(config_timer) : -1; } extern void cmd_reconfig_undo_notify(void); static void config_timeout(timer *t UNUSED) { log(L_INFO "Config timeout expired, starting undo"); cmd_reconfig_undo_notify(); int r = config_undo(); if (r < 0) log(L_ERR "Undo request failed"); } void config_init(void) { config_pool = rp_new(&root_pool, the_bird_domain.the_bird, "Configurations"); config_timer = tm_new(config_pool); config_timer->hook = config_timeout; } /** * order_shutdown - order BIRD shutdown * * This function initiates shutdown of BIRD. It's accomplished by asking * for switching to an empty configuration. */ void order_shutdown(int gr) { if (shutting_down) return; if (!gr) log(L_INFO "Shutting down"); else log(L_INFO "Shutting down for graceful restart"); struct config *c = lp_alloc(OBSREF_GET(config)->mem, sizeof(struct config)); memcpy(c, OBSREF_GET(config), sizeof(struct config)); init_list(&c->protos); init_list(&c->tables); init_list(&c->mpls_domains); init_list(&c->symbols); obstacle_target_init(&c->obstacles, &c->obstacles_cleared, c->pool, "Config"); c->cli = (struct cli_config_list) {}; memset(c->def_tables, 0, sizeof(c->def_tables)); c->shutdown = 1; c->gr_down = gr; CONFIG_REF_LOCAL(cr, c); config_commit(&cr, RECONFIG_HARD, 0); shutting_down = 1; } /** * cf_error - report a configuration error * @msg: printf-like format string * * cf_error() can be called during execution of config_parse(), that is * from the parser, a preconfig hook or a postconfig hook, to report an * error in the configuration. */ void cf_error(const char *msg, ...) { char buf[1024]; va_list args; va_start(args, msg); if (bvsnprintf(buf, sizeof(buf), msg, args) < 0) strcpy(buf, ""); va_end(args); new_config->err_msg = cfg_strdup(buf); new_config->err_lino = ifs->lino; new_config->err_chno = ifs->chno - ifs->toklen + 1; new_config->err_file_name = ifs->file_name; cf_lex_unwind(); longjmp(conf_jmpbuf, 1); } /** * cfg_strdup - copy a string to config memory * @c: string to copy * * cfg_strdup() creates a new copy of the string in the memory * pool associated with the configuration being currently parsed. * It's often used when a string literal occurs in the configuration * and we want to preserve it for further use. */ char * cfg_strdup(const char *c) { int l = strlen(c) + 1; char *z = cfg_allocu(l); memcpy(z, c, l); return z; } void cfg_copy_list(list *dest, list *src, unsigned node_size) { node *dn, *sn; init_list(dest); WALK_LIST(sn, *src) { dn = cfg_alloc(node_size); memcpy(dn, sn, node_size); memset(dn, 0, sizeof(node)); add_tail(dest, dn); } }