/* * BIRD Internet Routing Daemon -- MPLS Structures * * (c) 2022 Ondrej Zajicek * (c) 2022 CZ.NIC z.s.p.o. * * Can be freely distributed and used under the terms of the GNU GPL. */ /** * DOC: MPLS * * The MPLS subsystem manages MPLS labels and handles their allocation to * MPLS-aware routing protocols. These labels are then attached to IP or VPN * routes representing label switched paths -- LSPs. MPLS labels are also used * in special MPLS routes (which use labels as network address) that are * exported to MPLS routing table in kernel. The MPLS subsystem consists of MPLS * domains (struct &mpls_domain), MPLS channels (struct &mpls_channel) and FEC * maps (struct &mpls_fec_map). * * The MPLS domain represents one MPLS label address space, implements the label * allocator, and handles associated configuration and management. The domain is * declared in the configuration (struct &mpls_domain_config). There might be * multiple MPLS domains representing separate label spaces, but in most cases * one domain is enough. MPLS-aware protocols and routing tables are associated * with a specific MPLS domain. * * The MPLS domain has configurable label ranges (struct &mpls_range), by * default it has two ranges: static (16-1000) and dynamic (1000-10000). When * a protocol wants to allocate labels, it first acquires a handle (struct * &mpls_handle) for a specific range using mpls_new_handle(), and then it * allocates labels from that with mpls_new_label(). When not needed, labels are * freed by mpls_free_label() and the handle is released by mpls_free_handle(). * Note that all labels and handles must be freed manually. * * Both MPLS domain and MPLS range are reference counted, so when deconfigured * they could be freed just after all labels and ranges are freed. Users are * expected to hold a reference to a MPLS domain for whole time they use * something from that domain (e.g. &mpls_handle), but releasing reference to * a range while holding associated handle is OK. * * The MPLS channel is subclass of a generic protocol channel. It has two * distinct purposes - to handle per-protocol MPLS configuration (e.g. which * MPLS domain is associated with the protocol, which label range is used by the * protocol), and to announce MPLS routes to a routing table (as a regular * protocol channel). * * The FEC map is a helper structure that maps forwarding equivalent classes * (FECs) to MPLS labels. It is an internal matter of a routing protocol how to * assign meaning to allocated labels, announce LSP routes and associated MPLS * routes (i.e. ILM entries). But the common behavior is implemented in the FEC * map, which can be used by the protocols that work with IP-prefix-based FECs. * * The FEC map keeps hash tables of FECs (struct &mpls_fec) based on network * prefix, next hop eattr and assigned label. It has three labeling policies: * static assignment (%MPLS_POLICY_STATIC), per-prefix policy (%MPLS_POLICY_PREFIX), * and aggregating policy (%MPLS_POLICY_AGGREGATE). In per-prefix policy, each * distinct LSP is a separate FEC and uses a separate label, which is kept even * if the next hop of the LSP changes. In aggregating policy, LSPs with a same * next hop form one FEC and use one label, but when a next hop (or remote * label) of such LSP changes then the LSP must be moved to a different FEC and * assigned a different label. * * The overall process works this way: A protocol wants to announce a LSP route, * it does that by announcing e.g. IP route with %EA_MPLS_POLICY attribute. * After the route is accepted by filters (which may also change the policy * attribute or set a static label), the mpls_handle_rte() is called from * rte_update2(), which applies selected labeling policy, finds existing FEC or * creates a new FEC (which includes allocating new label and announcing related * MPLS route by mpls_announce_fec()), and attach FEC label to the LSP route. * After that, the LSP route is stored in routing table by rte_recalculate(). * Changes in routing tables trigger mpls_rte_insert() and mpls_rte_remove() * hooks, which refcount FEC structures and possibly trigger removal of FECs * and withdrawal of MPLS routes. * * TODO: * - show mpls labels CLI command * - label range non-intersection check * - better range reconfigurations (allow reduce ranges over unused labels) * - protocols should do route refresh instead of resetart when reconfiguration * requires changing labels (e.g. different label range) * - registering static allocations * - checking range in static allocations * - special handling of reserved labels */ #include "nest/bird.h" #include "nest/route.h" #include "nest/mpls.h" static struct mpls_range *mpls_new_range(struct mpls_domain *m, struct mpls_range_config *cf); static struct mpls_range *mpls_find_range_(list *l, const char *name); static int mpls_reconfigure_range(struct mpls_domain *m, struct mpls_range *r, struct mpls_range_config *cf); static void mpls_remove_range(struct mpls_range *r); /* * MPLS domain */ list mpls_domains; void mpls_init(void) { init_list(&mpls_domains); } struct mpls_domain_config * mpls_domain_config_new(struct symbol *s) { struct mpls_domain_config *mc = cfg_allocz(sizeof(struct mpls_domain_config)); struct mpls_range_config *rc; cf_define_symbol(new_config, s, SYM_MPLS_DOMAIN, mpls_domain, mc); mc->name = s->name; init_list(&mc->ranges); /* Predefined static range */ rc = mpls_range_config_new(mc, NULL); rc->name = "static"; rc->start = 16; rc->length = 984; mc->static_range = rc; /* Predefined dynamic range */ rc = mpls_range_config_new(mc, NULL); rc->name = "dynamic"; rc->start = 1000; rc->length = 9000; mc->dynamic_range = rc; add_tail(&new_config->mpls_domains, &mc->n); return mc; } void mpls_domain_postconfig(struct mpls_domain_config *cf UNUSED) { /* Add label range non-intersection check */ } static struct mpls_domain * mpls_new_domain(struct mpls_domain_config *cf) { struct pool *p = rp_new(&root_pool, the_bird_domain.the_bird, "MPLS domain"); struct mpls_domain *m = mb_allocz(p, sizeof(struct mpls_domain)); m->cf = cf; m->name = cf->name; m->pool = p; lmap_init(&m->labels, p); lmap_set(&m->labels, 0); init_list(&m->ranges); init_list(&m->handles); struct mpls_range_config *rc; WALK_LIST(rc, cf->ranges) mpls_new_range(m, rc); add_tail(&mpls_domains, &m->n); cf->domain = m; return m; } static struct mpls_domain * mpls_find_domain_(list *l, const char *name) { struct mpls_domain *m; WALK_LIST(m, *l) if (!strcmp(m->name, name)) return m; return NULL; } static int mpls_reconfigure_domain(struct mpls_domain *m, struct mpls_domain_config *cf) { cf->domain = m; m->cf->domain = NULL; m->cf = cf; m->name = cf->name; /* Reconfigure label ranges */ list old_ranges; init_list(&old_ranges); add_tail_list(&old_ranges, &m->ranges); init_list(&m->ranges); struct mpls_range_config *rc; WALK_LIST(rc, cf->ranges) { struct mpls_range *r = mpls_find_range_(&old_ranges, rc->name); if (r && mpls_reconfigure_range(m, r, rc)) { rem_node(&r->n); add_tail(&m->ranges, &r->n); continue; } mpls_new_range(m, rc); } struct mpls_range *r, *r2; WALK_LIST_DELSAFE(r, r2, old_ranges) mpls_remove_range(r); add_tail_list(&m->ranges, &old_ranges); return 1; } static void mpls_free_domain(struct mpls_domain *m) { ASSERT(m->use_count == 0); ASSERT(m->label_count == 0); ASSERT(EMPTY_LIST(m->handles)); struct config *cfg = m->removed; m->cf->domain = NULL; rem_node(&m->n); rfree(m->pool); config_del_obstacle(cfg); } static void mpls_remove_domain(struct mpls_domain *m, struct config *cfg) { m->removed = cfg; config_add_obstacle(cfg); if (!m->use_count) mpls_free_domain(m); } void mpls_lock_domain(struct mpls_domain *m) { m->use_count++; } void mpls_unlock_domain(struct mpls_domain *m) { ASSERT(m->use_count > 0); m->use_count--; if (!m->use_count && m->removed) mpls_free_domain(m); } void mpls_preconfig(struct config *c) { init_list(&c->mpls_domains); } void mpls_commit(struct config *new, struct config *old) { list old_domains; init_list(&old_domains); add_tail_list(&old_domains, &mpls_domains); init_list(&mpls_domains); struct mpls_domain_config *mc; WALK_LIST(mc, new->mpls_domains) { struct mpls_domain *m = mpls_find_domain_(&old_domains, mc->name); if (m && mpls_reconfigure_domain(m, mc)) { rem_node(&m->n); add_tail(&mpls_domains, &m->n); continue; } mpls_new_domain(mc); } struct mpls_domain *m, *m2; WALK_LIST_DELSAFE(m, m2, old_domains) mpls_remove_domain(m, old); add_tail_list(&mpls_domains, &old_domains); } /* * MPLS range */ struct mpls_range_config * mpls_range_config_new(struct mpls_domain_config *mc, struct symbol *s) { struct mpls_range_config *rc = cfg_allocz(sizeof(struct mpls_range_config)); if (s) cf_define_symbol(new_config, s, SYM_MPLS_RANGE, mpls_range, rc); rc->domain = mc; rc->name = s ? s->name : NULL; rc->start = (uint) -1; rc->length = (uint) -1; add_tail(&mc->ranges, &rc->n); return rc; } static struct mpls_range * mpls_new_range(struct mpls_domain *m, struct mpls_range_config *cf) { struct mpls_range *r = mb_allocz(m->pool, sizeof(struct mpls_range)); r->cf = cf; r->name = cf->name; r->lo = cf->start; r->hi = cf->start + cf->length; add_tail(&m->ranges, &r->n); cf->range = r; return r; } static struct mpls_range * mpls_find_range_(list *l, const char *name) { struct mpls_range *r; WALK_LIST(r, *l) if (!strcmp(r->name, name)) return r; return NULL; } static int mpls_reconfigure_range(struct mpls_domain *m UNUSED, struct mpls_range *r, struct mpls_range_config *cf) { if ((cf->start > r->lo) || (cf->start + cf->length < r->hi)) return 0; cf->range = r; r->cf->range = NULL; r->cf = cf; r->name = cf->name; r->lo = cf->start; r->hi = cf->start + cf->length; return 1; } static void mpls_free_range(struct mpls_range *r) { ASSERT(r->use_count == 0); ASSERT(r->label_count == 0); r->cf->range = NULL; rem_node(&r->n); mb_free(r); } static void mpls_remove_range(struct mpls_range *r) { r->removed = 1; if (!r->use_count) mpls_free_range(r); } void mpls_lock_range(struct mpls_range *r) { r->use_count++; } void mpls_unlock_range(struct mpls_range *r) { ASSERT(r->use_count > 0); r->use_count--; if (!r->use_count && r->removed) mpls_free_range(r); } /* * MPLS handle */ struct mpls_handle * mpls_new_handle(struct mpls_domain *m, struct mpls_range *r) { struct mpls_handle *h = mb_allocz(m->pool, sizeof(struct mpls_handle)); h->range = r; mpls_lock_range(h->range); add_tail(&m->handles, &h->n); return h; } void mpls_free_handle(struct mpls_domain *m UNUSED, struct mpls_handle *h) { ASSERT(h->label_count == 0); mpls_unlock_range(h->range); rem_node(&h->n); mb_free(h); } /* * MPLS label */ uint mpls_new_label(struct mpls_domain *m, struct mpls_handle *h) { struct mpls_range *r = h->range; uint n = lmap_first_zero_in_range(&m->labels, r->lo, r->hi); if (n >= r->hi) return 0; m->label_count++; r->label_count++; h->label_count++; lmap_set(&m->labels, n); return n; } void mpls_free_label(struct mpls_domain *m, struct mpls_handle *h, uint n) { struct mpls_range *r = h->range; ASSERT(lmap_test(&m->labels, n)); lmap_clear(&m->labels, n); ASSERT(m->label_count); m->label_count--; ASSERT(r->label_count); r->label_count--; ASSERT(h->label_count); h->label_count--; } /* * MPLS channel */ static void mpls_channel_init(struct channel *C, struct channel_config *CC) { struct mpls_channel *c = (void *) C; struct mpls_channel_config *cc = (void *) CC; c->domain = cc->domain->domain; c->range = cc->range->range; c->label_policy = cc->label_policy; } static int mpls_channel_start(struct channel *C) { struct mpls_channel *c = (void *) C; mpls_lock_domain(c->domain); mpls_lock_range(c->range); return 0; } /* static void mpls_channel_shutdown(struct channel *C) { struct mpls_channel *c = (void *) C; } */ static void mpls_channel_cleanup(struct channel *C) { struct mpls_channel *c = (void *) C; mpls_unlock_range(c->range); mpls_unlock_domain(c->domain); } static int mpls_channel_reconfigure(struct channel *C, struct channel_config *CC, int *import_changed UNUSED, int *export_changed UNUSED) { struct mpls_channel *c = (void *) C; struct mpls_channel_config *new = (void *) CC; if ((new->domain->domain != c->domain) || (new->range->range != c->range) || (new->label_policy != c->label_policy)) return 0; return 1; } void mpls_channel_postconfig(struct channel_config *CC) { struct mpls_channel_config *cc = (void *) CC; if (!cc->domain) cf_error("MPLS domain not specified"); if (!cc->range) cc->range = (cc->label_policy == MPLS_POLICY_STATIC) ? cc->domain->static_range : cc->domain->dynamic_range; if (cc->range->domain != cc->domain) cf_error("MPLS label range from different MPLS domain"); if (!cc->c.table) cf_error("Routing table not specified"); } struct channel_class channel_mpls = { .channel_size = sizeof(struct mpls_channel), .config_size = sizeof(struct mpls_channel_config), .init = mpls_channel_init, .start = mpls_channel_start, // .shutdown = mpls_channel_shutdown, .cleanup = mpls_channel_cleanup, .reconfigure = mpls_channel_reconfigure, }; /* * MPLS FEC map */ #define NET_KEY(fec) fec->net, fec->path_id, fec->hash #define NET_NEXT(fec) fec->next_k #define NET_EQ(n1,i1,h1,n2,i2,h2) h1 == h2 && i1 == i2 && net_equal(n1, n2) #define NET_FN(n,i,h) h #define NET_REHASH mpls_net_rehash #define NET_PARAMS /8, *2, 2, 2, 8, 24 #define RTA_KEY(fec) fec->rta #define RTA_NEXT(fec) fec->next_k #define RTA_EQ(r1,r2) r1 == r2 #define RTA_FN(r) r->hash_key #define RTA_REHASH mpls_rta_rehash #define RTA_PARAMS /8, *2, 2, 2, 8, 24 #define LABEL_KEY(fec) fec->label #define LABEL_NEXT(fec) fec->next_l #define LABEL_EQ(l1,l2) l1 == l2 #define LABEL_FN(l) u32_hash(l) #define LABEL_REHASH mpls_label_rehash #define LABEL_PARAMS /8, *2, 2, 2, 8, 24 HASH_DEFINE_REHASH_FN(NET, struct mpls_fec) HASH_DEFINE_REHASH_FN(RTA, struct mpls_fec) HASH_DEFINE_REHASH_FN(LABEL, struct mpls_fec) static void mpls_withdraw_fec(struct mpls_fec_map *m, struct mpls_fec *fec); static struct ea_storage * mpls_get_key_attrs(struct mpls_fec_map *m, ea_list *src); struct mpls_fec_map * mpls_fec_map_new(pool *pp, struct channel *C, uint rts) { struct pool *p = rp_new(pp, the_bird_domain.the_bird, "MPLS FEC map"); struct mpls_fec_map *m = mb_allocz(p, sizeof(struct mpls_fec_map)); struct mpls_channel *c = (void *) C; m->pool = p; m->channel = C; m->domain = c->domain; mpls_lock_domain(m->domain); m->handle = mpls_new_handle(c->domain, c->range); /* net_hash and rta_hash are initialized on-demand */ HASH_INIT(m->label_hash, m->pool, 4); m->mpls_rts = rts; return m; } void mpls_fec_map_free(struct mpls_fec_map *m) { /* Free stored rtas */ if (m->attrs_hash.data) { HASH_WALK(m->attrs_hash, next_k, fec) { ea_free(fec->rta->l); fec->rta = NULL; } HASH_WALK_END; } /* Free allocated labels */ HASH_WALK(m->label_hash, next_l, fec) { if (fec->policy != MPLS_POLICY_STATIC) mpls_free_label(m->domain, m->handle, fec->label); } HASH_WALK_END; mpls_free_handle(m->domain, m->handle); mpls_unlock_domain(m->domain); rfree(m->pool); } static slab * mpls_slab(struct mpls_fec_map *m, uint type) { ASSERT(type <= NET_VPN6); int pos = type ? (type - 1) : 0; if (!m->slabs[pos]) m->slabs[pos] = sl_new(m->pool, sizeof(struct mpls_fec) + net_addr_length[pos + 1]); return m->slabs[pos]; } struct mpls_fec * mpls_find_fec_by_label(struct mpls_fec_map *m, u32 label) { return HASH_FIND(m->label_hash, LABEL, label); } struct mpls_fec * mpls_get_fec_by_label(struct mpls_fec_map *m, u32 label) { struct mpls_fec *fec = HASH_FIND(m->label_hash, LABEL, label); if (fec) return fec; fec = sl_allocz(mpls_slab(m, 0)); fec->label = label; fec->policy = MPLS_POLICY_STATIC; DBG("New FEC lab %u\n", fec->label); HASH_INSERT2(m->label_hash, LABEL, m->pool, fec); return fec; } struct mpls_fec * mpls_get_fec_by_net(struct mpls_fec_map *m, const net_addr *net, u32 path_id) { if (!m->net_hash.data) HASH_INIT(m->net_hash, m->pool, 4); u32 hash = net_hash(net) ^ u32_hash(path_id); struct mpls_fec *fec = HASH_FIND(m->net_hash, NET, net, path_id, hash); if (fec) return fec; fec = sl_allocz(mpls_slab(m, net->type)); fec->hash = hash; fec->path_id = path_id; net_copy(fec->net, net); fec->label = mpls_new_label(m->domain, m->handle); fec->policy = MPLS_POLICY_PREFIX; DBG("New FEC net %u\n", fec->label); HASH_INSERT2(m->net_hash, NET, m->pool, fec); HASH_INSERT2(m->label_hash, LABEL, m->pool, fec); return fec; } struct mpls_fec * mpls_get_fec_by_destination(struct mpls_fec_map *m, ea_list *dest) { if (!m->attrs_hash.data) HASH_INIT(m->attrs_hash, m->pool, 4); struct ea_storage *rta = mpls_get_key_attrs(m, dest); u32 hash = rta->hash_key; struct mpls_fec *fec = HASH_FIND(m->attrs_hash, RTA, rta); if (fec) { ea_free(rta->l); return fec; } fec = sl_allocz(mpls_slab(m, 0)); fec->hash = hash; fec->rta = rta; fec->label = mpls_new_label(m->domain, m->handle); fec->policy = MPLS_POLICY_AGGREGATE; DBG("New FEC rta %u\n", fec->label); HASH_INSERT2(m->attrs_hash, RTA, m->pool, fec); HASH_INSERT2(m->label_hash, LABEL, m->pool, fec); return fec; } void mpls_free_fec(struct mpls_fec_map *m, struct mpls_fec *fec) { if (fec->state != MPLS_FEC_DOWN) mpls_withdraw_fec(m, fec); DBG("Free FEC %u\n", fec->label); mpls_free_label(m->domain, m->handle, fec->label); HASH_REMOVE2(m->label_hash, LABEL, m->pool, fec); switch (fec->policy) { case MPLS_POLICY_STATIC: break; case MPLS_POLICY_PREFIX: HASH_REMOVE2(m->net_hash, NET, m->pool, fec); break; case MPLS_POLICY_AGGREGATE: ea_free(fec->rta->l); HASH_REMOVE2(m->attrs_hash, RTA, m->pool, fec); break; default: bug("Unknown fec type"); } sl_free(fec); } static inline void mpls_lock_fec(struct mpls_fec_map *x UNUSED, struct mpls_fec *fec) { if (fec) fec->uc++; } static inline void mpls_unlock_fec(struct mpls_fec_map *x, struct mpls_fec *fec) { if (fec && !--fec->uc) mpls_free_fec(x, fec); } struct mpls_fec_tmp_lock { resource r; struct mpls_fec_map *m; struct mpls_fec *fec; }; static void mpls_fec_tmp_lock_free(resource *r) { struct mpls_fec_tmp_lock *l = SKIP_BACK(struct mpls_fec_tmp_lock, r, r); mpls_unlock_fec(l->m, l->fec); } static void mpls_fec_tmp_lock_dump(resource *r, unsigned indent UNUSED) { struct mpls_fec_tmp_lock *l = SKIP_BACK(struct mpls_fec_tmp_lock, r, r); debug("map=%p fec=%p label=%u", l->m, l->fec, l->fec->label); } static struct resclass mpls_fec_tmp_lock_class = { .name = "Temporary MPLS FEC Lock", .size = sizeof(struct mpls_fec_tmp_lock), .free = mpls_fec_tmp_lock_free, .dump = mpls_fec_tmp_lock_dump, }; static void mpls_lock_fec_tmp(struct mpls_fec_map *m, struct mpls_fec *fec) { if (!fec) return; fec->uc++; struct mpls_fec_tmp_lock *l = ralloc(tmp_res.pool, &mpls_fec_tmp_lock_class); l->m = m; l->fec = fec; } static inline void mpls_damage_fec(struct mpls_fec_map *m UNUSED, struct mpls_fec *fec) { if (fec->state == MPLS_FEC_CLEAN) fec->state = MPLS_FEC_DIRTY; } static struct ea_storage * mpls_get_key_attrs(struct mpls_fec_map *m, ea_list *src) { EA_LOCAL_LIST(4) ea = { .l.flags = EALF_SORTED, }; uint last_id = 0; #define PUT_ATTR(cls) do { \ ASSERT_DIE(last_id < (cls)->id); \ last_id = (cls)->id; \ eattr *a = ea_find_by_class(src, (cls)); \ if (a) ea.a[ea.l.count++] = *a; \ } while (0) PUT_ATTR(&ea_gen_nexthop); PUT_ATTR(&ea_gen_hostentry); ea.a[ea.l.count++] = EA_LITERAL_EMBEDDED(&ea_gen_source, 0, m->mpls_rts); PUT_ATTR(&ea_gen_mpls_class); return ea_get_storage(ea_lookup(&ea.l, 0)); } static void mpls_announce_fec(struct mpls_fec_map *m, struct mpls_fec *fec, ea_list *src) { /* Check existence of hostentry */ const struct eattr *heea = ea_find_by_class(src, &ea_gen_hostentry); if (heea) { /* The same hostentry, but different dependent table */ struct hostentry_adata *head = SKIP_BACK(struct hostentry_adata, ad, heea->u.ad); struct hostentry *he = head->he; ea_set_hostentry(&src, m->channel->table, he->owner, he->addr, he->link, HOSTENTRY_LABEL_COUNT(head), head->labels); } net_addr_mpls n = NET_ADDR_MPLS(fec->label); rte e = { .src = m->channel->proto->main_source, .attrs = src, }; fec->state = MPLS_FEC_CLEAN; rte_update(m->channel, (net_addr *) &n, &e, m->channel->proto->main_source); } static void mpls_withdraw_fec(struct mpls_fec_map *m, struct mpls_fec *fec) { net_addr_mpls n = NET_ADDR_MPLS(fec->label); fec->state = MPLS_FEC_DOWN; rte_update(m->channel, (net_addr *) &n, NULL, m->channel->proto->main_source); } static void mpls_apply_fec(rte *r, struct mpls_fec *fec) { ea_set_attr_u32(&r->attrs, &ea_gen_mpls_label, 0, fec->label); ea_set_attr_u32(&r->attrs, &ea_gen_mpls_policy, 0, fec->policy); } void mpls_handle_rte(struct mpls_fec_map *m, const net_addr *n, rte *r) { struct mpls_fec *fec = NULL; /* Select FEC for route */ uint policy = ea_get_int(r->attrs, &ea_gen_mpls_policy, 0); switch (policy) { case MPLS_POLICY_NONE: return; case MPLS_POLICY_STATIC:; uint label = ea_get_int(r->attrs, &ea_gen_mpls_label, 0); if (label < 16) return; fec = mpls_get_fec_by_label(m, label); mpls_damage_fec(m, fec); break; case MPLS_POLICY_PREFIX: fec = mpls_get_fec_by_net(m, n, r->src->private_id); mpls_damage_fec(m, fec); break; case MPLS_POLICY_AGGREGATE: fec = mpls_get_fec_by_destination(m, r->attrs); break; default: log(L_WARN "Route %N has invalid MPLS policy %u", n, policy); return; } /* Temporarily lock FEC */ mpls_lock_fec_tmp(m, fec); /* Apply FEC label to route */ mpls_apply_fec(r, fec); /* Announce MPLS rule for new/updated FEC */ if (fec->state != MPLS_FEC_CLEAN) mpls_announce_fec(m, fec, r->attrs); } static inline struct mpls_fec_tmp_lock mpls_rte_get_fec_lock(const rte *r) { struct mpls_fec_tmp_lock mt = { .m = SKIP_BACK(struct proto, sources, r->src->owner)->mpls_map, }; if (!mt.m) return mt; uint label = ea_get_int(r->attrs, &ea_gen_mpls_label, 0); if (label < 16) return mt; mt.fec = mpls_find_fec_by_label(mt.m, label); return mt; } void mpls_rte_preimport(rte *new, const rte *old) { struct mpls_fec_tmp_lock new_mt = {}, old_mt = {}; if (new) new_mt = mpls_rte_get_fec_lock(new); if (old) old_mt = mpls_rte_get_fec_lock(old); if (new_mt.fec == old_mt.fec) return; if (new_mt.fec) mpls_lock_fec(new_mt.m, new_mt.fec); if (old_mt.fec) mpls_unlock_fec(old_mt.m, old_mt.fec); } struct ea_class ea_gen_mpls_policy = { .name = "mpls_policy", .type = T_ENUM_MPLS_POLICY, }; struct ea_class ea_gen_mpls_class = { .name = "mpls_class", .type = T_INT, }; struct ea_class ea_gen_mpls_label = { .name = "mpls_label", .type = T_INT, };